Из каких полезных ископаемых состоит земная кора. Строение земной коры - реферат

Земная кора — тонкая верхняя оболочка Земли, которая имеет толщину на континентах 40-50 км, под океанами -5-10 км и составляет всего около 1% .

Восемь элементов - кислород, кремний, водород, алюминий, железо, магний, кальций, натрий - образовывают 99,5% земной коры.

На континентах кора трехслойная: осадочные породы укрывают гранитные, а гранитные залегают на базальтовых. Под океанами кора «океанического», двухслойного типа; осадочные породы залегают просто на базальтах, гранитного пласта нет. Различают также переходный тип земной коры (островно-дуговые зоны на окраинах океанов и некоторые участки на , например ).

Наибольшую толщину земная кора имеет в горных районах (под — свыше 75 км), среднюю - в районах платформ (под низиной - 35-40, в границах Русской платформы - 30-35), а наименьшую-в центральных районах океанов (5-7 км).

Преобладающая часть земной поверхности - это равнины континентов и океанического дна Континенты окружены шельфом — мелководной полосой глубиной до 200 г и средней шириной близко SO км, которая после резкого обрывчатого изгиба дна переходит в континентальный склон (уклон изменяется от 15-17 до 20-30°). Склоны постепенно выравниваются и переходят в абиссальные равнины (глубины 3,7-6,0 км). Наибольшие глубины (9-11 км) имеют океанические , подавляющее большинство которых расположенная на северной и западной окраинах .

Земная кора формировалась постепенно: сначала был сформирован базальтовый слой, затем — гранитный, осадочный слой продолжает формироваться и в настоящее время.

С разными породами земной коры, как и с ее тектоническими структурами, связаны разные : горючие, металлические, строительные, а также такие, что есть сырьем для химической и .

Глубинные толщи литосферы, которые исследуют геофизическими методами, имеют довольно сложную и еще недостаточно изученное строение, также, как мантия и ядро Земли. Но уже известно, что с глубиной плотность пород возрастает, и если на поверхности она составляет в среднем 2,3-2,7 г/см3, то на глубине близко 400 км — 3,5 г/см3, а на глубине 2900 км (граница мантии и внешнего ядра) — 5,6 г/см3. В центре ядра, где давление достигает 3,5 тыс. т/см2, она увеличивается до 13-17 г/см3. Установлен также и характер возрастания глубинной температуры Земли. На глубине 100 км она составляет приблизительно 1300 К, на глубине близко 3000 км -4800 К, а в центре земного ядра - 6900 К.

Преобладающая часть вещества Земли находится в твердом состоянии, но на границе земной коры и верхней мантии (глубины 100-150 км) залегает толща смягченных, тестообразных горных пород. Эта толща (100-150 км) называется астеносферой. Геофизики считают, что в разреженном состоянии могут находиться и другие участки Земли (за счет разуплотнения, активного радиораспада пород и т.п.), в частности — зона внешнего ядра. Внутреннее ядро находится в металлической фазе, но относительно его вещественного состава единого мнения на сегодня нет.

В 80-х годах прошлого столетия американский ученый Кларк задался целью определить средний химический состав земной коры. Для этого он собрал все химические анализы известных в его время горных пород и вывел из них среднее. Конечно, Кларк знал, что различные горные породы, рыхлые и мягкие, подобные песку или глине, и твердые, вроде гранита или базальта, распространены на поверхности Земли весьма неравномерно: некоторые горные породы слагают большие участки земной поверхности, другие же встречаются редко и только в виде маленьких пятен. Например, больше половины площади Канады, почти вся Швеция и вся Финляндия покрыты сплошными выходами на земную поверхность гранитов. Огромные площади слагают граниты и сходные с ними горные породы в Африке, Южной Америке, Индии, Австралии и в других местах. В то же время существуют такие горные породы (например, щелочные, содержащие повышенные количества калия или натрия), которые можно найти на поверхности Земли лишь в виде отдельных мелких пятен, общая площадь которых для всех материков не превысит нескольких сотен тысяч квадратных километров.

Но Кларк, делая свои подсчеты, исходил из предположения, что чем чаще та или иная горная порода встречается на земной поверхности, тем больше образцов ее подвергалось химическому анализу и что поэтому относительное число химических анализов для каждой горной породы достаточно хорошо отражает относительную распространенность пород на поверхности.

Впоследствии многие ученые указывали на то, что это смелое предположение Кларка не может считаться правильным: некоторые наиболее редкие горные породы подвергались химическим исследованиям непропорционально часто именно потому, что из-за своей редкости и необычности они больше привлекали внимание геологов. Как показали более поздние исследования, данные, полученные Кларком, как средние из 6000 анализов, для наиболее распространенных химических элементов оказались все же близкими к истине. Величины же, которые он получил для менее распространенных элементов, в дальнейшем были значительно изменены. Чтобы отметить заслугу Кларка, впервые познакомившего нас, хотя бы приблизительно, с общим химическим составом земной поверхности, ученые условились называть процентное содержание элемента в земной коре «кларком» этого элемента. Таблица Кларка была опубликована в 1889 г.

Финский геолог Седерхольм сделал попытку вычислить средний химический состав земной коры, учитывая относительный размер площади, занимаемой каждой горной породой. Он не мог этого сделать для всего земного шара и ограничил свои подсчеты лишь территорией Финляндии. Расхождение с данными Кларка получилось довольно большим. Так, например, среднее содержание кремнезема (SiO 2) в горных породах Финляндии у Седерхольма получилось равным 67,70%, тогда как у Кларка среднее содержание кремнезема в породах всего мира было равно 60,58%. Напротив, содержание глинозема (Al 2 O 3), полуторной окиси железа (Fe 2 O 3), окисей кальция (CaO), магния (MgO), натрия (Na 2 O) оказалось значительно меньшим, чем это предполагал Кларк.

С тех пор многие крупные ученые занимались уточнением данных о химическом составе земной коры: за границей - Вашингтон, Фохт, И. и В. Ноддаки, Гольдшмидт, Гевеши и др., в нашей стране - В. И. Вернадский, А. Е. Ферсман, В. Г. Хлопин, А. П. Виноградов и др. Особенно точные таблицы кларков всех элементов были составлены советским академиком А. Е. Ферсманом.

В таблице приведено содержание (в весовых процентах) элементов, наиболее распространенных в земной коре. Их здесь всего 12; остальные 80 элементов образуют ничтожную долю веса земной коры.

Средний состав земной коры (по А. Е. Ферсману)

Весовые проценты

Действительно, если бы мы привели кларки всех элементов, то первое, что бросилось бы нам в глаза, это неравномерность их распространения. Количество кисло рода, наиболее распространенного элемента, достигает 49,13% (по весу), а протактиния всего 7∙10 -11 %. Самые распространенные элементы имеют кларки в миллиарды раз более высокие, чем наиболее редкие элементы. Эта неравномерность распространения химических элементов может быть иллюстрирована и по-другому. Если мы расположим элементы в порядке убывания их кларков, то увидим, что первые три элемента (кислород, кремний и алюминий) составляют по весу 82,58%, первые девять элементов составляют уже 98,13%, а первые двенадцать - 99,29%. То же самое можно выразить и графически.

Итак, мы видим, что земная кора по весу почти наполовину состоит из кислорода, приблизительно на четверть - из кремния, на тринадцатую часть - из алюминия, на двадцать четвертую часть - из железа и т. д. Принимая во внимание большие размеры атомов кислорода, можно сказать, что земная кора как из кирпичей построена из атомов кислорода и только в промежутках между ними, как бы цементируя их, расположены другие элементы.

По среднему содержанию элементов нетрудно рассчитать их абсолютные массы, содержащиеся в том или ином объеме, отвечающем по своему составу среднему составу земной коры. Так, можно определить, что в 1 км 3 горных пород будет в среднем содержаться: железа 130 ∙ 10 6 т, алюминия 230 ∙ 10 6 т, меди 260 000 т, олова 100 000 т и т. д.

Элементы, слагающие земную кору, находятся в разнообразных соединениях между собой. Эти соединения, образовавшиеся в результате природных процессов, называются минералами . Всего известно несколько тысяч минералов, но наибольшим распространением пользуются лишь несколько десятков их. Здесь мы опять видим такую же диспропорцию в распространении различных минералов, как и в распространении отдельных элементов.

Преобладание в земной коре кислорода, кремния и алюминия определяет то, что большая часть минералов относится к разряду силикатов и алюмосиликатов , т. е. является солями кремневых и алюмо — кремневых кислот. Кроме того, среди минералов распространены сульфиды, сульфаты и окислы.

Примером алюмокремневой кислоты (не существующей в свободном виде), служит соединение H 2 Al 2 Si 2 O 8 , или (если написать в форме комбинации окислов) H 2 O ∙ Al 2 O 3 ∙ 2SiO 2 . Среди кремневых кислот выделяют: ортокремневую кислоту H 4 SiO 4 , или 2H 2 O ∙ SiO 2 , и метакремневую кислоту H 2 SiO 3 , или H 2 O ∙ SiO 2 .

При замещении водорода алюмокремневой кислоты калием, натрием или кальцием получаются минералы, называемые полевыми шпатами . Примером полевого шпата является минерал ортоклаз, имеющий состав К 2 О ∙ Al 2 O 3 ∙ 6SiO 2 .

Водные алюмосиликаты образуют различные слюды , как светлые (содержащие калий или натрий), так и темные (с магнием и железом). Например, светлая слюда или мусковит имеет состав: К 2 О ∙ 3Al 2 O 3 ∙ 6SiO 2 ∙ 2H 2 O.

При замещении водорода кремневых кислот магнием железом и кальцием получаются темноцветные минералы - оливины , пироксены и амфиболы .

Статистика показывает, что наиболее распространены среди минералов в земной коре полевые шпаты (55,0%). Мета — и орто-силикаты образуют 15%, а кварц (SiO 2) - 12%. Среди других минералов относительно распространены слюды (3%) и магнетит (Fe 3 O 4) совместно с гематитом (Fe 2 O 3) (3%). Остальных минералов в составе земной коры значительно меньше. Большинство минералов имеет кристаллическое сложение.

Минералы в земной коре распределены не беспорядочно. Они группируются в некоторые естественные ассоциации, образующие так называемые горные породы . Породой является, например, гранит, характеризующийся определенной ассоциацией минералов, среди которых преобладают полевые шпаты, кварц, и слюды. Встречаются породы, состоящие почти или полностью из одного минерала. Таков, например, кварцит, состоящий почти целиком из кварца, или мрамор, сложенный почти исключительно одним кальцитом. Чаще, однако, в породе участвует несколько минералов, более или менее равномерно распространенных в ней в определенном количественном взаимоотношении.

Породы, слагающие земную кору, разделяются на группы в зависимости от их происхождения. В большей своей части земная кора сложена горными породами магматического происхождения , образовавшимися в результате внедрения в земную кору с глубины или излияния на поверхность и застывания расплавленных каменных масс. В эту группу входят многие горные породы: гранит, базальт, андезит, диорит и др.

На несколько процентов земная кора сложена осадочными горными породами , образовавшимися в результате осаждения и накопления минерального материала на поверхности Земли, преимущественно на дне морских бассейнов, но также на дне озер, речных потоков, в болотах и просто на поверхности суши.

Наконец, в земной коре распространены метаморфические горные породы , представляющие собой результат химического и физического изменения осадочных пород под влиянием высокой температуры и большого давления. Такие изменения осадочные горные породы претерпевают там, где они опустились на большую глубину при прогибании земной коры и, будучи погребены под тяжелыми толщами более поздних пород, оказались в зоне высоких температур и под большим давлением. Кроме того, метаморфические породы образуются в тех местах, где расплавленная магма внедряется в осадочные породы и воздействует на них своей температурой, а также химически.

Принадлежность горной породы к той или иной генетической группе кладет отпечаток на ее минералогический состав и внутреннее сложение.

Горные породы магматического происхождения в свою очередь делятся на породы внедрившиеся, или интрузивные, и породы, излившиеся, или эффузивные. Внедрившиеся горные породы представляют собой результат застывания расплавленного минерального вещества на той или иной глубине под поверхностью Земли. Мы можем их видеть только после того, как размывом будут уничтожены вышележащие горные породы и массив внедрившейся породы (так называемая интрузия) обнажится на поверхности. Внедрившиеся горные породы характеризуются, как правило, плотным крупнокристаллическим сложением, причем размеры кристаллов разных минералов обычно близки по своему размеру: от 0,2 до 1 см. Типичной горной породой этой группы является гранит - вообще наиболее распространенная порода среди внедрившихся.

Излившиеся горные породы, среди которых наиболее распространен базальт, характеризуются либо стекловатым, аморфным сложением, либо тонкокристаллическим, образовавшимся в результате раскристаллизации с течением времени вулканического стекла. Быстрое застывание после излияния на поверхность мешает образованию в излившихся породах крупных кристаллов.

По своему составу магматические горные породы, внедрившиеся и излившиеся, делятся на кислые, средние, основные и ультраосновные в зависимости от содержания в них кремнезема.

В кислых породах кремнезема более 65%, в средних - от 52 до 65 %, в основных - от 40 до 52 %, а в ультраосновных - меньше 40%. Интересно, что среди внедрившихся горных пород резко преобладает кислая порода - гранит, тогда как среди излившихся господствует основная порода базальт. Средние породы распространены относительно мало. Обычно выделяют также щелочные породы, обогащенные калием и натрием.

Осадочные горные породы разделяются обычно на три генетические группы: обломочные, органогенные и химические. Первые из них представляют собой продукты механического разрушения других пород, перемещения и переотложения их обломков. Иногда (например, в брекчиях и галечниках) мы имеем дело с накоплением крупных обломков, оставшихся угловатыми или подвергшихся окатыванию. В других случаях обломочная горная порода сложена мелкими обломками минералов, как в песчанике. Наконец, часто обломки минералов оказываются истертыми в крайне тонкую массу, образующую после своего переотложения водой глину. Минералогический состав обломочных пород зависит от состава исходной горной породы, а также от прочности отдельных минералов, от их сопротивляемости перетиранию и растворению во время переноса. Поскольку наиболее прочным минералом, из числа широко распространенных, является кварц, значительная часть обломочных пород состоит из крупных или мелких обломков кварца.

Органогенные осадочные породы образованы накоплением остатков организмов. Главную роль при этом играют скелеты организмов. У морских организмов они бывают преимущественно известковыми; это - раковины, членики, оболочки, иглы и т. л. Из накопления известковых скелетов организмов образуются известняки. Остатки некоторых организмов имеют иной состав: кремнистый, фосфатный, железистый и др. В соответствии с этим органогенные породы имеют различный состав, наряду с известняками встречаются кремнистые диатомиты и опоки, фосфориты и др.

К органогенным осадочным породам относятся также угли, горючие сланцы и нефть, представляющие собой продукты преобразования в земле остатков растительного и животного мягкого вещества.

Породы химические в своем образовании связаны преимущественно с химическим осаждением солей из водных растворов. Из насыщенных растворов, встречающихся в некоторых озерах и морских лагунах, выпадают поваренная соль, гипс, кальцит, сульфатные и хлорные соли магния, кальция, калия, а также различные соли сложного состава.

Метаморфические горные породы образуются при соприкосновении в земной коре осадочных горных пород с расплавленной магмой. Они возникают также в глубоких зонах земной коры, где повсеместно господствует высокая температура. Явлению метаморфизма способствует одновременное смятие горной породы или ее растрескивание под влиянием давления, действующего в земной коре. У метаморфических пород в зависимости от степени метаморфизма обнаруживается состав, промежуточный между осадочными и магматическими породами. При сильном нагревании осадочной породы и при воздействии на нее давления происходит прежде всего перекристаллизация породы. Аморфные составные части переходят в. кристаллическое состояние, мелкие кристаллы объединяются и укрупняются. Типичным примером является превращение известняка в мрамор - плотную крупнокристаллическую кальцитовую породу.

При перекристаллизации происходит перегруппировка некоторых ионов и образование новых соединений, ранее в осадочной породе отсутствовавших. Так, например, при метаморфизации известняка, содержащего примесь кварца (обычно в виде песчинок или в виде кремневых включений), нередко образуется минерал волластонит - силикат кальция (CaSiO 3).

Из магмы, действующей на осадочную породу, выделяются газы и жидкости, которые, проникая в окружающие породы, могут вызвать в них различные химические изменения. В этих условиях осадочная порода может, например, подвергнуться окварцеванию, т. е. пропитаться кварцем, когда газы или растворы приносят кремнезем.

Давление, развивающееся в земной коре под влиянием тектонических сил (см. ниже), сминает горные породы. В результате породы часто приобретают сланцеватое строение - разделяются на тонкие параллельные пластинки или плитки. Этот процесс обычно сопровождается образованием новых плоских минералов (слюды, хлорита и др.). Так образуются различные метаморфические сланцы.

Следует сказать несколько слов о рудных минералах. Так называются минералы, в которых содержание тех или иных металлов достаточно для практически выгодного их выделения. Железная руда - это минералы с достаточно высоким содержанием железа, молибденовая руда - минералы с достаточно высоким содержанием молибдена и т. д. Процентное содержание металла, требуемое, чтобы данный минерал считался рудой, чрезвычайно различно для разных металлов, а также для разных условий залегания их в земной коре. В некоторых случаях добыча производится там, где содержание нужного металла в руде измеряется небольшими долями процента, в других случаях нужны десятки процентов содержания металла, чтобы руда привлекла внимание геологов. Меняются требования к качеству руды и по мере того, как совершенствуется техника ее добычи и обогащения.

По своему химическому составу рудные минералы бывают весьма различны: многие из них принадлежат к группе сульфатов (например, реальгар HgS - руда ртути), другие являются окислами (например, гематит Fe 2 O 3 - руда железа), силикатами, карбонатами или имеют сложный состав.

Помимо химического состава рудных минералов, крайне важна концентрация большого числа их внутри того или иного объема горных пород. Если единичные рудные минералы рассеяны в большом объеме горной породы далеко друг от друга, то добыча таких минералов крайне невыгодна или просто невозможна. Другое дело, если они расположены тесно, густой массой, и их сравнительно нетрудно добыть в большом количестве, сооружая шахты и штольни. Скопления рудных минералов, которые выгодно разрабатывать, называются рудными месторождениями.

Скопления рудных минералов (рудные месторождения) образуются в земной коре разными способами. Многие из них возникают при подъеме с глубины магматических горных пород и сопровождающих их горячих водных растворов, другие сосредоточены в осадочных горных породах, третьи встречаются в породах метаморфических. В дальнейшем, при рассмотрении процессов, развивающихся в земной коре, мы кратко расскажем и об условиях образования рудных и других полезных ископаемых.

Изучение внутреннего строения планет, в том числе нашей Земли — чрезвычайно сложная задача. Мы не можем физически «пробурить» земную кору вплоть до ядра планеты, поэтому все знания полученные нами на данный момент — это знания полученные «на ощупь», причем самым буквальным образом.

Как работает сейсморазведка на примере разведки нефтяных месторождений. «Прозваниваем» землю и «слушаем», что принесет нам отраженный сигнал

Дело в том, что наиболее простой и надежный способ узнать что же находится под поверхностью планеты и входит в состав её коры — это изучении скорости распространения сейсмических волн в недрах планеты.

Известно, что скорость продольных сейсмических волн возрастает в более плотных средах и напротив, уменьшается в рыхлых грунтах. Соответственно, зная параметры разных типов породы и имея расчетные данные о давлении и т.п., «слушая» полученный ответ, можно понять через какие слои земной коры прошел сейсмический сигнал и как глубоко они находятся под поверхностью.

Изучение строения земной коры с помощью сейсмоволн

Сейсмические колебания могут быть вызваны источни­ками двух видов: естественными и искусственными . Естествен­ными источниками колебаний являются землетрясения, волны которых несут необходимую информацию о плотности по­род, сквозь которые они проникают.

Арсенал искусственных источников колебаний более обширен, но в первую очередь ис­кусственные колебания вызываются обыкновенным взрывом, однако есть и более «тонкие» способы работы — генераторы направленных импульсов, сейсмовибраторов и т.п.

Проведением взрывных работ и изучением скоростей сейсмических волн занимается сейсморазведка - одна из важнейших отраслей современной геофизики.

Что же дало изучение сейсмических волн внутри Земли? Анализ их распространения выявил несколько скачков изменения ско­рости при прохождении через недра планеты.

Земная кора

Первый скачок, при котором скорости возрастают с 6,7 до 8,1 км/с, как счи­тают геологи, регистрирует подошву земной коры . Эта по­верхность располагается в разных местах планеты на различных уровнях, от 5 до 75 км. Граница земной коры и нижележащей оболочки - мантии, получила название «поверхности Мохоровичича» , по имени впервые установившего ее югославского ученого А. Мохо­ровичича.

Мантия

Мантия залегает на глубинах до 2 900 км и делится на две части: верхнюю и нижнюю. Граница между верхней и нижней мантией также фиксируется по скачку скорости рас­пространения продольных сейсмических волн (11,5 км/с) и располагается на глубинах от 400 до 900 км.

Верхняя ман­тия имеет сложное строение. В ее верхней части имеется слой расположенный на глубинах 100-200 км, где проис­ходит затухание поперечных сейсмических волн на 0,2- 0,3 км/с, а скорости продольных волн, по существу, не ме­няются. Этот слой назван волноводом . Его толщина обычно равняется 200-300 км.

Часть верхней мантии и кора, залегаю­щие над волноводом, называются литосферой , а сам слой пониженных скоростей - астеносферой .

Таким образом, литосфера представляет собой жесткую твердую оболочку, подстилаемую пластичной астеносфе­рой. Предполагается, что в астеносфере возникают процес­сы, вызывающие движение литосферы.

Внутреннее строение нашей планеты

Ядро Земли

В подошве мантии происходит резкое уменьшение ско­рости распространения продольных волн с 13,9 до 7,6 км/с. На этом уровне лежит граница между мантией и ядром Зем­ли , глубже которой поперечные сейсмические волны уже не распространяются.

Радиус ядра достигает 3500 км, его объем: 16% объема планеты, а масса: 31% массы Земли.

Многие ученые считают, что ядро находится в расплавленном состоя­нии. Его внешняя часть характеризуется резко пониженными значениями скоростей продольных волн, во внутренней ча­сти (радиусом в 1200 км) скорости сейсмических волн вновь возрастают до 11 км/с. Плотность пород ядра равна 11 г/см 3 , и она обуславливается наличием тяжелых элементов. Таким тяжелым элементом может быть железо. Вероятнее всего, железо является составной частью ядра, так как ядро чисто железного или железо-никелевого состава должно иметь плотность, на 8-15% превышающую существующую плот­ность ядра. Поэтому к железу в ядре, по-видимому, при­соединены кислород, сера, углерод и водород.

Геохимический метод изучения строения пла­нет

Имеется еще один путь изучения глубинного строения пла­нет - геохимический способ . Выделение различных оболочек Земли и других планет земной группы по физическим параметрам находит достаточно четкое геохимическое подтверждение, основанное на теории гетерогенной аккреции, согласно кото­рой состав ядер планет и их внешних оболочек в основной своей части является исходно различным и зависит от само­го раннего этапа их развития.

В результате этого процесса в ядре концентрировались наиболее тяжелые (железо-никелевые ) компоненты, а во внешних оболочках - более легкие сили­катные (хондритовые ), обогащенные в верхней мантии лету­чими веществами и водой.

Важнейшей особенностью планет земной группы ( , Земля, ) явля­ется то, что их внешняя оболочка, так называемая кора , со­стоит из двух типов вещества: «материкового » - полевошпа­тового и «океанического » - базальтового.

Материковая (континентальная) кора Земли

Материковая (континентальная) кора Земли сложена гранитами или породами, близкими им по составу, т. е. породами с большим количеством полевых шпатов. Образование «гра­нитного» слоя Земли обусловлено преобразованием более древних осадков в процессе гранитизации.

Гранитный слой надо рассматривать как специ­фическую оболочку коры Земли - единственной планеты, на которой получили широкое развитие процессы дифферен­циации вещества с участием воды и имеющей гидросферу, кислородную атмосферу и биосферу. На Луне и, вероятно, на планетах земной группы континентальная кора слагается габбро-анортозитами - породами, состоящими из большого количества полевого шпата, правда, несколько другого соста­ва, чем в гранитах.

Этими породами сложены древнейшие (4,0-4,5 млрд. лет) поверхности планет.

Океаническая (базальтовая) кора Земли

Океаническая (базальтовая) кора Земли образована в ре­зультате растяжения и связана с зонами глубинных разло­мов, обусловивших проникновение к базальтовым очагам верхней мантии. Базальтовый вулканизм накладывается на ра­нее сформировавшуюся континентальную кору и является от­носительно более молодым геологическим образованием.

Проявления базаль­тового вулканизма на всех планетах земного типа, по-видимому, аналогичны. Широкое развитие базальтовых «морей» на Луне, Марсе, Меркурии, очевидно, связано с растяжени­ем и образованием вследствие этого процесса зон проницае­мости, по которым базальтовые расплавы мантии устрем­лялись к поверхности. Этот механизм проявления базальто­вого вулканизма является более или менее сходным для всех планет земной группы.

Спутница Земли - Луна также имеет оболочечное строе­ние, в целом повторяющее земное, хотя и имеющее разительно отличие по составу.

Тепловой поток Земли. Горячее всего в районе разломов земной коры, а холоднее — в районах древних материковых плит

Метод измерения теплового потока для изучения строения пла­нет

Еще один путь изучения глубинного строения Земли - это изучение ее теплового потока. Известно, что Земля, го­рячая изнутри, отдает свое тепло. О нагреве глубоких гори­зонтов свидетельствуют извержения вулканов, гейзеры, го­рячие источники. Тепло - главный энергетический источник Земли.

Прирост температуры с углублением от поверхно­сти Земли в среднем составляет около 15° С на 1 км. Это значит, что на границе литосферы и астеносферы, располо­женной примерно на глубине 100 км, температура должна быть близкой к 1500° С. Установлено, что при такой темпера­туре происходит плавление базальтов. Это означает, что астеносферная оболочка может служить источником магмы ба­зальтового состава.

С глубиной изменение температуры про­исходит по более сложному закону и находится в зависи­мости от изменения давления. Согласно расчетным данным, на глубине 400 км температура не превышает 1600° С и на границе ядра и мантии оценивается в 2500-5000° С.

Установлено, что выделение тепла происходит постоян­но по всей поверхности планеты. Тепло - важнейший физи­ческий параметр. От степени нагрева горных пород зависят некоторые их свойства: вязкость, электропроводность, магнитность, фазовое состояние. Поэтому по термическому состоянию можно судить о глубинном строении Земли.

Изме­рение температуры нашей планеты на большой глубине - задача технически сложная, так как измерениям доступны лишь первые километры земной коры. Однако внутренняя температура Земли может быть изучена косвенным путем при измерениях теплового потока.

Несмотря на то, что основным источ­ником тепла на Земле является Солнце, суммарная мощность теплового потока нашей планеты превышает в 30 раз мощность всех электростанций Земли.

Измерения показали, что средний тепловой поток на кон­тинентах и в океанах одинаков. Этот результат объясняется тем, что в океанах большая часть тепла (до 90%) поступает из мантии, где интенсивнее происходит процесс переноса вещества движущимися потоками - конвекцией .

Конвек­ция - процесс, при котором разогретая жидкость расширяет­ся, становясь легче, и поднимается, а более холодные слои опускаются. Поскольку мантийное вещество ближе по сво­ему состоянию к твердому телу, конвекция в нем протека­ет в особых условиях, при невысоких скоростях течения ма­териала.

Какова же тепловая история нашей планеты? Ее пер­воначальный разогрев, вероятно, связан с теплом, образован­ным при соударении частиц и их уплотнении в собственном поле силы тяжести. Затем тепло явилось результатом радио­активного распада. Под воздействием тепла возникла слои­стая структура Земли и планет земной группы.

Радиоактив­ное тепло в Земле выделяется и сейчас. Существует гипоте­за, согласно которой на границе расплавленного ядра Земли продолжаются и поныне процессы расщепления вещества с выделением огромного количества тепловой энергии, разо­гревающей мантию.

На этом видеоуроке все желающие смогут изучить тему «Строение Земли». Пользователи узнают о том, как изучают земную кору, какими свойствами она обладает, из каких слоев состоит наша планета. Учитель расскажет о строении Земли, о том, как ее изучали в разное время.

2. Мантия.

По мере продвижения вглубь Земли увеличиваются температура и давление. В центре Земли находится ядро, его радиус около 3500 км, а температура более 4500 градусов. Ядро окружено мантией, ее толщина около 2900 км. Над мантией расположена земная кора, толщина ее колеблется от 5 км (под океанами) до 70 км (под горными системами). Земная кора - самая твердая оболочка. Вещество мантии находится в особом пластическом состоянии, это вещество под давлением может медленно течь.

Рис. 1. Внутреннее строение Земли ()

Земная кора - верхняя часть литосферы, внешняя твердая оболочка Земли.

Земная кора состоит из горных пород и минералов.

Рис. 2. Строение Земли и земной коры ()

Выделяют два типа земной коры:

1. Континентальная (она состоит из осадочного, гранитного и базальтового слоев).

2. Океаническая (она состоит из осадочного и базальтового слоев).

Рис. 3. Строение земной коры ()

На мантию приходится 67% всей массы Земли и 87% ее объема. Выделяют верхнюю и нижнюю мантию. Вещество мантии может перемещаться под давлением. Внутреннее тепло от мантии передается к земной коре.

Ядро - самая глубокая часть Земли. Выделяют внешнее жидкое ядро и внутреннее твердое ядро.

Большая часть земной коры покрыта водами океанов и морей. Континентальная земная кора гораздо больше океанической и имеет три слоя. Верхняя часть земной коры нагревается солнечными лучами. На глубине более 20 метров температура практически не меняется, а потом возрастает.

Доступнее всего для изучения человеком - верхняя часть земной коры. Иногда делают глубокие скважины для изучения внутреннего строения земной коры. Самая глубокая скважина - глубиной более 12 км. Помогают изучать земную кору и шахты. Кроме того, внутреннее строение Земли изучают с помощью специальных приборов, методов, снимков из космоса и наук: геофизики, геологии, сейсмологии.

Домашнее задание

Параграф 16.

1. Из каких частей состоит Земля?

Список литературы

Основная

1. Начальный курс географии: Учеб. для 6 кл. общеобразоват. учреждений / Т.П. Герасимова, Н.П. Неклюкова. - 10-е изд., стереотип. - М.: Дрофа, 2010. - 176 с.

2. География. 6 кл.: атлас. - 3-е изд., стереотип. - М.: Дрофа, ДИК, 2011. - 32 с.

3. География. 6 кл.: атлас. - 4-е изд., стереотип. - М.: Дрофа, ДИК, 2013. - 32 с.

4. География. 6 кл.: конт. карты. - М.: ДИК, Дрофа, 2012. - 16 с.

Энциклопедии, словари, справочники и статистические сборники

1. География. Современная иллюстрированная энциклопедия / А.П. Горкин. - М.: Росмэн-Пресс, 2006. - 624 с.

Литература для подготовки к ГИА и ЕГЭ

1. География: начальный курс. Тесты. Учеб. пособие для учащихся 6 кл. - М.: Гуманит. изд. центр ВЛАДОС, 2011. - 144 с.

2. Тесты. География. 6-10 кл.: Учебно-методическое пособие / А.А. Летягин. - М.: ООО «Агентство «КРПА «Олимп»: «Астрель», «АСТ», 2001. - 284 с.

Материалы в сети Интернет

1. Федеральный институт педагогических измерений ().

2. Русское Географическое Общество ().

4. 900 детских презентаций и 20 000 презентаций для школьников ().

ЗЕМНАЯ КОРА, верхняя твёрдая оболочка Земли, ограниченная снизу Мохоровичича границей. Термин «земная кора» появился в 18 веке в работах М. В. Ломоносова и в 19 веке в трудах Ч. Лайеля; с развитием контракционной гипотезы в 19 веке получил определённое значение в соответствии с идеей охлаждения Земли до тех пор, пока не образовалась кора (Дж. Дана). В основе представлений о составе, структуре и физических свойствах земной коры лежат геофизические данные о скоростях распространения сейсмических волн (в основном продольных, V p), которые на границе Мохоровичича при переходе к породам мантии Земли скачкообразно возрастают с 7,5-7,8 км/с до 8,1-8,2 км/с. Природа нижней границы земной коры, по-видимому, обусловлена изменением химического состава пород (основные породы - ультраосновные) либо фазовыми переходами (в системе габбро - эклогит).

Для земной коры характерна горизонтальная неоднородность (анизотропия), выражающаяся в различии состава, строения, мощности и других характеристик коры в пределах её отдельных структурных элементов: континентов и океанов, платформ и складчатых поясов, впадин и поднятий и др. Выделяют два главных типа земной коры - континентальную и океаническую.

Континентальная кора, распространённая в пределах континентов и микроконтинентов в океанах, имеет среднюю мощность 35-40 км, которая уменьшается до 25-30 км на континентальных окраинах (на шельфе) и в областях рифтогенеза и возрастает до 45-75 км в областях горообразования. В континентальной коре различают осадочный (V p до 4,5 км/с), «гранитный» (V p 5,1-6,4 км/с) и «базальтовый» (V p 6,1-7,5 км/с) слои. Осадочный слой отсутствует на щитах и менее крупных поднятиях фундамента древних платформ, а также в осевых зонах складчатых сооружений. Во впадинах молодых и древних платформ, передовых и межгорных прогибах складчатых сооружений мощность осадочного слоя достигает 10 км (редко 20-25 км). Он сложен преимущественно континентальными и мелководноморскими осадочными породами, возраст которых менее 1,7 миллиарда лет, а также платобазальтами (траппами), силлами магматических пород основного состава, туфами. Названия «гранитного» и «базальтового» слоёв условны и исторически связаны с выделением границы Конрада (V p 6,2 км/с), разделяющей слои, в которых скорости продольных сейсмических волн соответствуют скоростям в граните и базальте. Последующие исследования (в том числе сверхглубокое бурение) поставили под сомнение существование чёткой сейсмической границы, поэтому оба эти слоя объединяют в консолидированную кору. «Гранитный» слой выступает на поверхность в пределах щитов и массивов платформ и в осевых зонах складчатых сооружений; он также вскрыт скважинами сверхглубокого бурения (в том числе Кольской сверхглубокой скважиной на глубину свыше 12 км). Его мощность на платформах 15-20 км, в складчатых сооружениях 25-30 км. В пределах щитов древних платформ в состав этого слоя входят гнейсы, различные кристаллические сланцы, амфиболиты, мраморы, кварциты и гранитоиды, поэтому его часто называют гранитно-гнейсовым (V p 6-6,4 км/с). В фундаменте молодых платформ и в пределах молодых складчатых сооружений верхний слой консолидированной коры сложен менее метаморфизованными породами и содержит меньше гранитов, в связи с чем его также именуют гранитнометаморфическим (V p 5,1-6 км/с). Прямое изучение «базальтового» слоя континентальной коры невозможно. Значениям скоростей сейсмических волн, по которым он выделен, могут удовлетворять как магматические породы основного состава (базиты), так и породы, испытавшие высокую степень метаморфизма (гранулиты), поэтому нижний слой консолидированной коры иногда называют гранулит-базитовым. Отнесение к земной коре или верхней мантии пород со скоростями продольных сейсмических волн более 7 км/с спорно. Возраст древнейших пород консолидированной коры достигает 4 миллиардов лет.

Основные отличия океанической коры от континентальной - отсутствие «гранитного» слоя, существенно меньшая мощность (в среднем 5-7 км), более молодой возраст (юра, мел, кайнозой; менее 170 миллионов лет), большая латеральная однородность. Океаническая кора, строение которой изучено глубоководным бурением, драгированием, наблюдением с подводных аппаратов в стенках разломов, состоит из трёх слоёв. Первый слой, или осадочный, состоит из пелагических кремнистых, карбонатных и глинистых осадков (V p 1,6-5,4 км/с). В направлении континентальных подножий его мощность возрастает до 10-15 км. Осадочный слой может отсутствовать в осевых зонах срединно-океанических хребтов. В глубоководных впадинах задуговых бассейнов, часть из которых подстилается океанической корой, толщина осадочного слоя, обычно включающего турбидиты, может достигать 15-20 км. Второй слой (V p 4,5-5,5 км/с) в верхней части сложен базальтами (часто с подушечной отдельностью - пиллоу-базальтами) с редкими прослоями пелагических осадков; в нижней части слоя развит комплекс параллельных даек долеритов (общая мощность 1,2-2 км). Третий слой (V p 6-7,5 км/с) в верхней части состоит из массивных габбро, в нижней - из расслоенного комплекса, в котором габбро чередуются с ультраосновными породами (общая мощность 2-5 км). В пределах внутренних поднятий океанов земная кора утолщена до 25-30 км за счёт увеличения мощности второго и третьего слоёв. Древним аналогом океанической коры на континентах являются офиолиты.

Океаническая кора формируется на дивергентных границах литосферных плит (протягиваются вдоль осевых частей срединно-океанических хребтов), на которых происходит подъём к поверхности и застывание базальтовой магмы. Континентальная кора образуется в процессе переработки океанической коры на активных континентальных окраинах.

Кроме двух главных типов земной коры, выделяют переходные типы. Субокеаническая кора представляет собой утонённую в результате рифтогенеза до 15-20 км континентальную кору, пронизанную дайками и силлами основных магматических пород; развита вдоль континентальных склонов и подножий, а также подстилает глубоководные впадины некоторых задуговых бассейнов. Субконтинентальная кора (недостаточно консолидированная, мощность менее 25 км) наблюдается в вулканических островных дугах, где океаническая кора превращается в континентальную.

Земная кора испытывает горизонтальные и вертикальные тектонические движения. В ней расположены очаги землетрясений, формируются магматические очаги, породы локально или на больших площадях подвергаются метаморфизму. Тектонические движения земной коры и протекающие в ней эндогенные процессы обусловлены существованием в недрах Земли частично расплавленной астеносферы. Под действием тектонических движений и деформаций, магматической деятельности, метаморфизма, экзогенных процессов (перемещение ледников, оползни, карст, речная эрозия и др.) горные породы земной коры вовлекаются в складчатые и разрывные дислокации тектонические. Воздействие на породы земной коры атмо-, гидро- и биосферы приводит к их выветриванию.

Об эволюции земной коры на протяжении геологической истории смотри в статье Земля.

Лит.: Хаин В. Е., Ломизе М. Г. Геотектоника с основами геодинамики. 2-е изд. М., 2005; Хаин В. Е., Короновский Н. В. Планета Земля от ядра до ионосферы. М., 2007.