Получение метана из углекислого газа реакция. Способ получения метана и его производных

Фермерские хозяйства ежегодно сталкиваются с проблемой утилизации навоза. В никуда уходят немалые средства, которые требуются для организации его вывоза и захоронения. Но есть способ, позволяющий не только сэкономить свои деньги, но и заставить служить себе во благо этот природный продукт.

Рачительные хозяева уже давно применяют на практике экотехнологию, позволяющую получить биогаз из навоза и использовать результат в качестве топлива.

Поэтому в нашем материале речь пойдет о технологии получения биогаза, также мы расскажем о том, как соорудить биоэнергетическую установку.

Определение требующегося объема

Объем реактора определяется исходя из суточного количества навоза, производимого в хозяйстве. Также необходимо учитывать тип сырья, температурный режим и время брожения. Чтобы установка полноценно работала, емкость заполняется на 85-90% объема, как минимум 10% должно оставаться свободным для выхода газа.

Процесс разложения органики в мезофильной установке при средней температуре 35 градусов длится от 12 суток, после чего ферментированные остатки извлекаются, и реактор заполняется новой порцией субстрата. Поскольку перед отправкой в реактор отходы разбавляются водой до 90%, то количество жидкости также нужно учитывать при определении суточной загрузки.

Исходя из приведенных показателей, объем реактора будет равен суточному количеству подготовленного субстрата (навоза с водой) умноженному на 12 (время необходимое для разложения биомассы) и увеличенному на 10% (свободный объем емкости).

Строительство подземного сооружения

Теперь поговорим о простейшей установке, позволяющей получить с наименьшими затратами. Рассмотрим строительство подземной системы. Чтобы ее изготовить нужно вырыть яму, ее основание и стены заливаются армированным керамзитобетоном.

С противоположных сторон камеры выводятся входное и выходное отверстия, куда монтируются наклонные трубы для подачи субстрата и откачки отработанной массы.

Выходная труба диаметром примерно 7 см должна находиться практически у самого дна бункера, другой ее конец монтируется в компенсирующую емкость прямоугольной формы, в которую будут откачиваться отходы. Трубопровод для подачи субстрата располагается приблизительно на расстоянии 50 см от дна и имеет диаметр 25-35 см. Верхняя часть трубы входит в отсек для приема сырья.

Реактор должен быть полностью герметичным. Чтобы исключить возможность попадания воздуха, емкость необходимо покрыть слоем битумной гидроизоляции

Верхняя часть бункера – газгольдер, имеющий купольную или конусную форму. Он изготавливается из металлических листов или кровельного железа. Можно также конструкцию завершить кирпичной кладкой, которая затем оббивается стальной сеткой и штукатурится. Сверху газгольдера нужно сделать герметичный люк, вывести газовую трубу, проходящую через гидрозатвор и установить клапан для сброса давления газа.

Для перемешивания субстрата можно оборудовать установку дренажной системой, действующей по принципу барботажа. Для этого внутри конструкции вертикально закрепите пластиковые трубы, чтобы их верхний край был выше слоя субстрата. Проделайте в них множество отверстий. Газ под давлением будет опускаться вниз, а поднимаясь вверх, пузырьки газа будут перемешивать находящуюся в емкости биомассу.

Если вы не желаете заниматься строительством бетонного бункера, можно купить готовую емкость из ПВХ. Для сохранения тепла ее нужно обложить вокруг слоем теплоизоляции – пенополистиролом. Дно ямы заливается армированным бетоном слоем 10 см. Резервуары из поливинилхлорида допускается использовать, если объем реактора не превышает 3 м3.

Выводы и полезное видео по теме

Как сделать самую простейшую установку из обычной бочки, вы узнаете, если посмотрите видео:

Простейший реактор можно сделать за несколько дней своими руками, используя подручные средства. Если хозяйство крупное, то лучше всего купить готовую установку или обратиться к специалистам.

Муравьиная кислота , формула которой – HCOOH, представляет собой простейшую монокарбоновую кислоту. Как становится понятно из ее названия, источником ее обнаружения стали характерные выделения рыжих муравьев. Рассматриваемая кислота входит в состав ядовитого вещества, выделяемого жалящими муравьями. Также она ее содержит жгучая жидкость, которую образуют жалящие гусеницы шелкопряда.

Впервые раствор муравьиной кислоты был получен в ходе опытов известного английского ученого Джона Рея. В конце семнадцатого столетия он смешал в сосуде воду и рыжих лесных муравьев. Далее сосуд был нагрет до кипения, и через него пропущена струя горячего пара. Итогом эксперимента стало получение водного раствора, отличительной характеристикой которой являлась сильнокислая реакция.

Добиться получения чистой муравьиной кислоты удалось в середине восемнадцатого столетия Андреасу Сигизмунду Маргграфу. Безводная кислота, которая была получена немецким химиком Юстусом Либихом, считается наиболее простой и сильной карбоновой кислотой одновременно. Согласно современной номенклатуре, она носит название метановой кислоты и является чрезвычайно опасным соединением.

На сегодняшний день получение представленной кислоты осуществляется несколькими способами, включающими ряд последовательных этапов. Но доказано, что водород и углекислый газ способны превращаться в муравьиную кислоту и возвращаться в исходное состояние. Разработка данной теории велась немецкими учеными. Актуальность темы состояла в минимизации поступления углекислого газа в атмосферный воздух. Добиться такого результата позволяет его активное использование в качестве главного источника углерода для синтезирования органических веществ.

Инновационная методика, над которой работали немецкие специалисты, предполагает осуществление каталитического гидрирования с образованием муравьиной кислоты. Согласно ей, углекислый газ становится одновременно базовым материалом и растворителем для отделения конечного продукта, так как реакция проводится в сверхкритическом СО2. Благодаря указанному интегрированному подходу становится реальным одностадийное получение метановой кислоты.

Процесс гидрирования углекислого газа с образованием метановой кислоты на сегодняшний день относится к объектам активного исследования. Основная цель, которую преследуют ученые, – получение химических соединений из отходов, которые образуются вследствие сгорания ископаемого топлива. Помимо широкого распространения муравьиной кислоты в различных отраслях необходимо отметить ее участие в хранении водорода. Не исключено, что роль топлива для автотранспорта, оснащенного солнечными батареями, будет играть эта кислота, извлечь водород из которой позволяют каталитические реакции.

Образование метановой кислоты из углекислого газа путем гомогенного катализа является предметом изучения специалистов с 70-х годов двадцатого столетия. Главной трудностью считается смещение равновесия в сторону исходных веществ, которое наблюдается на стадии равновесной реакции. Чтобы решить возникшую проблему, требуется удаление муравьиной кислоты из состава реакционной смеси. Но на данный момент этого удастся достичь только при условии преобразования метановой кислоты в соль либо другое соединение. Следовательно, получить чистую кислоту можно лишь при наличии дополнительной стадии, заключающейся в разрушении данного вещества, что не позволяет достичь организации бесперебойного процесса образования муравьиной кислоты.

Однако все более популярной становится уникальная концепция, разработкой которой занимаются ученые из группы Уолтера Ляйтнера. Они предполагают, что интеграция стадий гидрирования углекислого газа и выделения продукта с их осуществлением в пределах одного аппарата дает возможность сделать процесс получения чистой метановой кислоты бесперебойным. Каким образом ученым удалось добиться максимальной эффективности? Причиной тому стало применение двухфазной системы, в которой подвижная фаза представлена сверхкритическим углекислым газом, стационарная фаза – ионной жидкостью, жидкой солью. Следует отметить, что ионная жидкость использовалась для растворения как катализатора, так и основания, призванного стабилизировать кислоту. Поступление потока углекислого газа в условиях, когда давление и температура превышают критические цифры, способствует удалению метановой кислоты из состава реакционной смеси. Немаловажно, что присутствие сверхкритического углекислого газа не приводит к растворению ионных жидкостей, катализатора, основания, обеспечивая максимальную чистоту получаемого вещества.

Руководители Института индустриальных наук (Institute of Industrial Science) Токийского университета, Национального института науки и передовых технологий (National Institute of Advanced Industrial Science and Technology, AIST), компаний Hitachi Zosen Corp, JGC Corp и EX Research Institute Ltd 18 ноября 2016 года приняли решение об организации новой объединенной научно-исследовательской группы "CCR (carbon capture & reuse) Study Group". Эта группа займется разработкой крупномасштабных технологий, при помощи которых можно будет получать жидкое и газообразное топлив о, к примеру, метан, используя для этого атмосферный углекислый газ и водород, полученный путем электролиза при помощи энергии от экологически чистых возобновляемых источников.

В первую очередь эта группа займется исследованиями, направленными на увеличение эффективности использования энергии, получаемой из возобновляемых источников, эффективности технологий выделения углекислого газа из атмосферы и его дальнейшего использования и разработкой новых, более современных методов получения водорода из воды путем электролиза.

В основе будущих технологий будут лежать достаточно известные физические процессы и химические превращения, реализованные на современном технологическом уровне. Углекислый газ, попадающий в атмосферу при сжигании любого типа ископаемого топлива, будет реагировать с водородом. Этот водород будет получен методом электролиза, а требующаяся для этого энергия будет поступать исключительно из экологически чистых источников, в основном от солнечных и ветряных электростанций.

Данная технология рассматривается не только в качестве чистого источника жидкого и ископаемого топлива. Еще одной функцией такой технологии станет сохранение в виде топлива излишков энергии, получаемой от солнечных и ветряных электростанций в часы ее минимального потребления.

Группа CCR будет иметь дело со всеми существующими видами возобновляемых источников чистой энергии. Помимо этого, будут исследоваться и разрабатываться новые эффективные методы получения водорода, выделения углекислого газа и превращения его в топливо.

Работа над всеми исследуемыми и разрабатываемыми технологиями будет вестись с двух позиций. Первой позицией будет создание малогабаритных, возможно мобильных установок не очень большой мощности, которые смогут обеспечить газообразным метаном потребности некоей отдельной небольшой группы людей (децентрализованная модель). А вторым направлением станет разработка крупномасштабных производственных систем, которые будут иметь достаточно высокую мощность и которые могут быть включены в общую энергетическую сеть страны (централизованная модель).

Опубликовано: 31.12.2016 11:32

Получение метана из углекислого газа - процесс, требующий лабораторных условий. Так, в 2009 году, в Университете Пенсильвании (США) было произведено получение метана из воды и углекислого газа с помощью нанотрубок, состоящих из TiO 2 (диоксида титана) и содержащих примесь азота. Для получения метана исследователи произвели размещение воды (в парообразном состоянии) и углекислого газа внутри металлических контейнеров, закрытых крышкой с нанотрубками с внутренней стороны.

Процесс получения метана таков - под действием света Солнца внутри трубок возникали частицы, переносящие электрический заряд. Такие частицы разделяли молекулы воды на ионы водорода (Н, которые потом соединяются в молекулы водорода Н 2) и гидроксильные радикалы (частицы -ОН). Далее в процессе получения метана происходило расщепление углекислого газа на угарный газ (СО) и кислород (О 2). В конце угарный газ реагирует с водородом, результатом чего является получение воды и метана.

Обратная реакция - получение углекислого газа происходит в результате парового деформирования метана - при температуре в 700-1100оС и давлении 0,3-2,5Мпа.

В промышленности, основными способами производства двуокиси углерода CO2 являются ее получение как побочного продукта реакции конвертации метана CH4 в водород H2, реакций сжигания (окисления) углеводородов, реакции разложения известняка CaCO3 на известь CaO и воду H20.

CO2 как побочный продукт парового реформинга CH4 и других углеводородов в водород H2

Водород H2 требуется промышленности, прежде всего, для его использования в процессе производства аммиака NH3 (процесс Хабера, каталитическая реакция водорода и азота); аммиак же нужен для производства минеральных удобрений и азотной кислоты. Водород можно производить разными способами, в том числе и любимым экологами электролизом воды - однако, к сожалению, на данное время все способы производства водорода, кроме реформинга углеводородов, являются в масштабах крупных производств абсолютно экономически неоправданными - если только на производстве нет избытка «бесплатной» электроэнергии. Поэтому, основным способом производства водорода, в процессе которого выделяется и углекислый газ, является паровой реформинг метана: при температуре порядка 700...1100°C и давлении 3...25 бар, в присутствии катализатора, водяной пар H2O реагирует с метаном CH4 с выделением синтез-газа (процесс эндотермический, то есть идет с поглощением тепла):
CH4 + H2O (+ тепло) → CO + 3H2

Аналогичным образом паровому реформингу можно подвергать пропан:
С3H8 + 3H2O (+ тепло) → 2CO + 7H2

А также этанол (этиловый спирт):
C2H5OH + H2O (+ тепло) → 2CO + 4H2

Паровому реформингу можно подвергать даже бензин. В бензине содержится более 100 разных химических соединений, ниже показаны реакции парового реформинга изооктана и толуола:
C8H18 + 8H2O (+ тепло) → 8CO + 17H2
C7H8 + 7H2O (+ тепло) → 7CO + 11H2

Итак, в процессе парового реформинга того или иного углеводородного топлива получен водород и монооксид углерода CO (угарный газ). На следующем этапе процесса производства водорода, угарный газ в присутствии катализатора подвергается реакции перемещения атома кислорода O из воды в газ = CO окисляется в CO2, а водород H2 выделяется в свободной форме. Реакция экзотермическая, при ней выделяется порядка 40,4 кДж/моль тепла:
CO + H2O → CO2 + H2 (+ тепло)

В условиях промышлененых предприятий, выделяющийся при паровом реформинге углеводородов диоксид углерода CO2 легко изолировать и собрать. Однако, CO2 в этом случае является нежелательным побочным продуктом, простой свободный выпуск его в атмосферу, хотя и является сейчас превалирующим путем избавления от CO2, нежелателен с экологической точки зрения, и некоторыми предприятиями практикуются более «продвинутые» методы, такие как, например, закачивание CO2 в нефтяные месторождения со снижающимся дебетом или закачивание его в океан.

Получение CO2 при полном сжигании углеводородного топлива

При сжигании, то есть окислении достаточным количеством кислорода углеводородов, таких как метан, пропан, бензин, керосин, дизельное топливо и др., образуются углекислый газ и, обычно, вода. Например, реакция сгорания метана CH4 выглядит так:
CH 4 + 2O 2 → CO 2 + 2H 2 O

CO2 как побочный продукт получения H2 методом частичного окисления топлива

Порядка 95% промышленно производимого в мире водорода производится вышеописанным способом парового реформинга углеводородного топлива, прежде всего метана CH4, содержащегося в природном газе. Кроме парового реформинга, из углеводородного топлива с довольно высокой эффективностью можно получать водород и способом частичного окисления, когда метан и другие углеводороды реагируют с недостаточным для полного сжигания топлива количеством кислорода (напомним, что в процессе полного сжигания топлива, кратко описанным чуть выше, получается углекислый газ CO2 и вода H20). При подаче же меньшего, чем стехиометрическое, количества кислорода, продуктами реакции преимущественно являются водород H2 и монооксид углерода, он же угарный газ CO; в небольших количествах получаются и углексилый газ CO2, и некоторые другие вещества. Так как обычно, на практике, этот процесс проводят не с очищенным кислородом, а с воздухом, то как на входе, так и на выходе процесса имеется азот, который в реакции не участвует.

Частичное окисление является экзотермическим процессом, то есть в результате реакции выделяется тепло. Частичное окисление, как правило, протекает значительно быстрее, чем паровой реформинг, и требует меньшего по объему реактора. Как видно на примере приведенных ниже реакций, изначально частичное окисление производит меньше водорода на единицу топлива, чем получается в процессе парового реформинга.

Реакция частичного окисления метана CH4:
CH 4 + ½O 2 → CO + H 2 (+ тепло)

Пропана C3H8:
C 3 H 8 + 1½O 2 → 3CO + 4H 2 (+ тепло)

Этилового спирта C2H5OH:
C 2 H 5 OH + ½O 2 → 2CO + 3H 2 (+ тепло)

Частичное окисление бензина на примере изооктана и толуола, из более чем ста химических соединений, присутствующих в бензине:
C 8 H 18 + 4O 2 → 8CO + 9H 2 (+ тепло)
C 7 H 18 + 3½O 2 → 7CO + 4H 2 (+ тепло)

Для конвертации CO в углекислый газ и получения дополнительного водорода используется уже упомянутая в описании процесса парового реформинга реакция сдвига кислорода вода→газ:
CO + H 2 O → CO 2 + H 2 (+ небольшое количество тепла)

CO2 при ферментации сахара

В производстве алкогольных напитков и хлебобулочных изделий из дрожжевого теста, используется процесс ферментации сахаров - глюкозы, фруктозы, сахарозы и др., с образованием этилового спирта C2H5OH и диоксида углерода CO2. Например, реакция ферментации глюкозы C6H12O6 такова:
C 6 H 12 O 6 → 2C 2 H 5 OH + 2CO 2

А ферментации фруктозы C12H22O11 - выглядит вот так:
C 12 H 22 O 11 + H 2 O → 4C 2 H 5 OH + 4CO 2

Оборудование для производства CO2 пр-ва компании Wittemann

В производстве алкогольных напитков, получаемый алкоголь является желательным и даже, можно сказать, необходимым продуктом реакции брожения. Углекислый газ же иногда выпускается в атмосферу, а иногда оставляется в напитке для его газирования. В выпечке хлеба все происходит наоборот: CO2 нужен для образования пузырьков, вызывающих поднятие теста, а этиловый спирт почти полностью испаряется при выпечке.

Многие предприятия, прежде всего спиртозаводы, для которых CO 2 является совсем уж ненужным побочным продуктом, наладили его сбор и продажу. Газ из бродильных чанов через спиртовые ловушки подается в углекислотный цех, где CO2 очищают, сжижают и разливают в баллоны. Собственно, именно спиртовые заводы являются во многих регионах основными поставщиками углекислоты - и для многих из них, продажа углекислоты является отнюдь не последним источником доходов.

Существует целая отрасль производства оборудования для выделения чистого углекислого газа на пивоваренных и спиртовых заводах (Huppmann/GEA Brewery, Wittemann и др.), а также его прямого производства из углеводородного топлива. Поставщики газов, такие как Air Products и Air Liquide, также осуществляют установку станций по выделению CO 2 и его последующей очистке, сжижению у заправке в баллоны.

CO2 при производстве негашеной извести CaO из CaCO3

Процесс производства широко используемой негашеной извести CaO также имеет в качестве побочного продукта реакции двуокись углерода. Реакция разложения известняка CaCO3 эндотермическая, нуждается в температуре порядка +850°C и выглядит так:
CaCO3 → CaO + CO2

Если же известняк (или другой карбонат металла) вступает в реакцию с кислотой, то в качестве одного из продуктов реакции выделяется углекисота H2CO3. Например, соляная кислота HCl реагирует с известняком (карбонатом кальция) CaCO3 следующим образом:
2HCl + CaCO 3 → CaCl 2 + H 2 CO 3

Угольная кислота является очень нестойкой, и при атмосферных условиях быстро разлагается на CO2 и воду H2O.