Кобальт. Свойства кобальта

Кобальт -- твердый металл, существующий в двух модификациях. При температурах от комнатной до 427 °C устойчива б-модификация. При температурах от 427 °C до температуры плавления (1494 °C) устойчива в-модификация кобальта (решётка кубическая гранецентрированная). Кобальт -- ферромагнетик, точка Кюри 1121 °C.

Представляет собой блестящий металл, похожий на железо, с удельным весом 8,8. Температура его плавления несколько больше, чем у никеля. Кобальт очень тягуч. Он обладает большой твердостью и прочностью, чем сталь. Он ферромагнитен и только выше 10000 переходит в модификацию, не обладающую способностью намагничиваться.

Желтоватый оттенок ему придает тонкий слой оксидов.

При обычной температуре и до 417 °С кристаллическая решетка Кобальта гексагональная плотноупакованная (с периодами а = 2,5017Е, с = 4,614Е), выше этой температуры решетка Кобальта кубическая гранецентрированная (а = 3,5370Е). Атомный радиус 1,25Е, ионные радиусы Со 2+ 0,78Е и Со 3+ 0,64Е. Плотность 8,9 г/см 3 (при 20 °С); t пл 1493°С, t кип 3100°С. Теплоемкость 0,44 кдж/(кг·К), или 0,1056 кал/(г·°С); теплопроводность 69,08 вт/(м·К), или 165 кал/(см·сек·°С) при 0-100 °С. Удельное электросопротивление 5,68·10 -8 ом·м, или 5,68·10 -6 ом·см (при О °С). Кобальт ферромагнитен, причем сохраняет ферромагнетизм от низких температур до точки Кюри, И = 1121 °С. Механические свойства Кобальта зависят от способа механической и термической обработки. Предел прочности при растяжении 500 Мн/м 2 (или 50 кгс/мм 2) для кованого и отожженного Кобальта; 242-260 Мн/м 2 для литого; 700 Мн/м 2 для проволоки. Твердость по Бринеллю 2,8 Гн/м 2 (или 280 кгс/мм 2) для наклепанного металла, 3,0 Гн/м 2 для осажденного электролизом; 1,2-1,3 Гн/м 2 для отожженного.

Химические свойства кобальта

Конфигурация внешних электронных оболочек атома Кобальта 3d 7 4s 2 . В соединениях Кобальт проявляет переменную валентность. В простых соединениях наиболее устойчив Со(П), в комплексных - Со(III). Для Со(I) и Co(IV) получены только немногочисленные комплексные соединения. При обыкновенной температуре компактный Кобальт стоек против действия воды и воздуха. Мелко раздробленный Кобальт, полученный восстановлением его оксида водородом при 250 °С (пирофорный Кобальт), на воздухе самовоспламеняется, превращаясь в СоО. Компактный Кобальт начинает окисляться на воздухе выше 300 °С; при красном калении он разлагает водяной пар: Со + Н 2 О = СоО + Н 2 . С галогенами Кобальт легко соединяется при нагревании, образуя галогениды СоХ 2 . При нагревании Кобальт взаимодействует с S, Se, P, As, Sb, С, Si, В, причем состав получающихся соединений иногда не удовлетворяет указанным выше валентным состояниям (например, Со 2 Р, Co 2 As, CoSb 2 , Со 3 С, CoSi 3). В разбавленных соляной и серной кислотах Кобальт медленно растворяется с выделением водорода и образованием соответственно хлорида СоCl 2 и сульфата CoSO 4 . Разбавленная азотная кислота растворяет Кобальт с выделением оксидов азота и образованием нитрата Co(NO 3) 2 . Концентрированная HNO 3 пассивирует Кобальт. Названные соли Со (II) хорошо растворимы в воде [при 25°С 100 г воды растворяют 52,4 г СоCl 2 , 39,3 г CoSO 4 , 136,4 г Co(NO 3) 2 ]. Едкие щелочи осаждают из растворов солей Со 2+ синий гидрооксид Со(ОН) 2 , которая постепенно буреет вследствие окисления кислородом воздуха до Со(ОН) 3 . Нагревание в кислороде при 400-500 °С переводит СоО в черную закись-окись Со 3 О 4 , или СоО·Со 2 О 3 - соединение типа шпинели. Соединение того же типа CoAl 2 О 4 или СоО·Al 2 О 3 синего цвета (тенарова синь, открытая в 1804 году Л. Ж. Тенаром) получается при прокаливании смеси СоО и Al 2 О 3 при температуре около 1000 °С

Из простых соединений Со (III) известны лишь немногие. При действии фтора на порошок Со или СоCl 2 при 300-400 °С образуется коричневый фторид CoF 3 . Комплексные соединения Со (III) весьма устойчивы и получаются легко. Например, KNO 2 осаждает из растворов солей Со (II), содержащих СН 3 СООН, желтый труднорастворимый гексанитрокобальтат (III) калия K 3 . Весьма многочисленны кобальтаммины (прежнее название кобальтиаки) - комплексные соединения Со (III), содержащие аммиак или некоторые органических амины.

Вода и воздух при обычной температуре не оказывают действия на компактный кобальт, но в мелкораздробленном состоянии он обладает пирофорными свойствами. В разбавленных кислотах, например в соляной или серной, кобальт растворяется значительно труднее, что соответствует его положению в электрохимическом ряду напряжений справа от железа (его нормальный потенциал равен -0,28 в). Разбавленная азотная кислота легко растворяет кобальт, а при действии концентрированной HNO3 он пассивируется. Образует соединения чаще всего в степени окисления +2, реже - в степени окисления +3 и очень редко в степенях окисления +1, +4 и +5.

При нагревании на воздухе Со окисляется, а при температуре белого каления сгорает до Сo 3 O 4 . При нагревании кобальт соединяется со многими другими веществами, причем реакция его с S, P, As, Sb, Sn и Zn нередко сопровождается воспламенением. При сплавлении с кремнием Со образует целый ряд соединений. При высокой температуре он соединяется также с бором, но не реагирует с азотом. Кобальт легко образует соединения с галогенами. С железом и никелем, а также с хромом и марганцем он образует твердые растворы в любых соотношениях. По отношению к углероду кобальт ведет себя так же, как железо; однако при охлаждении углеродсодержащих расплавов никогда не выделяется карбид Со 3 С (хотя, по данным Руффа, существование его в расплаве является вероятным); если содержание углерода превышает пределы существования твердого раствора, избыток углерода всегда выделяется в виде графита. При действии СН4 или СО на тонкоизмельченный металлический кобальт при слабом нагревании (ниже 225°), по данным Бара, образуется соединение Со2С, разлагающееся при более высоких температурах. Каталитическое разложение СH 4 и СО под действием кобальта происходит лишь при таких температурах, когда карбид становится неустойчивым

Co + 2HCl(разб.)+t= CoCl 2 + H 2

Co + H 2 SO 4 (разб.)+t= CoSO 4 + H 2

3Co + 8HNO 4 (разб.)+t= 3Co(NO 3) 2 + 2NO + 4H 2 O

4Co + 4NaOH + 3O 2 +t= 4NaCoO2 + 2H 2 O

2Co + O2 +t=2CoO

Получение

Кобальт - относительно редкий металл, и богатые им месторождения в настоящее время практически исчерпаны. Поэтому кобальтсодержащее сырье (часто это никелевые руды, содержащие кобальт как примесь) сначала обогащают, получают из него концентрат.

Этот сплав затем выщелачивают серной кислотой. Иногда для извлечения кобальта проводят сернокислотное «кучное» выщелачивание исходной руды (измельченную руду размещают в высоких кучах на специальных бетонных площадках и сверху поливают эти кучи выщелачивающим раствором).

Для очистки кобальта от сопутствующих примесей все более широко применяют экстракцию.

Наиболее сложная задача при очистке кобальта от примесей - это отделение кобальта от наиболее близкого к нему по химическим свойствам никеля.

2СоСl 2 + NaClO + 4NaOH + H 2 O = 2Co(OH) 3 v + 5NaCl

Чёрный осадок Co(OH) 3 прокаливают для удаления воды, а полученный оксид Со 3 O 4 восстанавливают водородом или углеродом. Металлический кобальт, содержащий до 2-3% примесей (никель, железо, медь), может быть очищен электролизом.

Образование соединений кобальта

· При нагревании, кобальт реагирует с галогенами, причём соединения кобальта (III) образуются только с фтором. 2Co + 3F 2 > CoF 3 , но, Co + Cl 2 > CoCl 2

· С серой кобальт образует 2 различных модификации CoS. Серебристо-серую б-форму (при сплавлении порошков) и чёрную в-форму (выпадает в осадок из растворов).

· При нагревании CoS в атмосфере сероводорода получается сложный сульфид Со 9 S 8

· С другими окисляющими элементами, такими как углерод, фосфор, азот, селен, кремний, бор. кобальт тоже образует сложные соединения, являющиеся смесями где присутствует кобальт со степенями окисления 1, 2, 3.

· Кобальт способен растворять водород, не образуя химических соединений. Косвенным путем синтезированы два стехиометрических гидрида кобальта СоН 2 и СоН.

· Растворы солей кобальта CoSO 4 , CoCl 2 , Со(NO 3) 2 придают воде бледно-розовую окраску. Растворы солей кобальта в спиртах темно-синие. Многие соли кобальта нерастворимы.

· Кобальт создаёт комплексные соединения. Чаще всего на основе аммиака.

Наиболее устойчивыми комплексами являются лутеосоли 3+ жёлтого цвета.

Препараты, содержащие кобальт

Показания к назначению макроэлемента носят предупредительный и восстановительный характер. Медики практикуют назначение препаратов при заболеваниях суставов, болезненных менструациях, климаксе, ухудшении памяти, язве желудка, варикозном расширении вен, судорогах.

Как правило, препараты кобальта прописывают при анемиях и нарушениях кроветворной функции. К таким лекарственным формам относится:

  • Коамид;
  • Ферковен.

Входит кобальт и в состав поливитаминных комплексов:

  • Компливит. Содержит 100 мкг кобальта в виде сульфата.
  • Олиговит. Содержит 50 мкг элемента в виде сульфата кобальта.

Прием препаратов, содержащих кобальт, а также витаминно-минеральных комплексов должен производиться только по рекомендации лечащего врача.

Кобальт-коамид (Coamidum) – комплексный препарат кобальта и амида никотиновой кислоты. Выпускается в виде порошка сиреневого цвета, без запаха с горьковатым вкусом.

Препарат растворяется в воде в пропорции 1:10. Плохо растворяется в органических растворителях. Водные растворы стерилизуют обычными способами.

Препарат назначают для стимуляции кроветворения, усвоению железа и процессов его преобразования (образование белковых комплексов, синтез гемоглобина и др.).

Показания: гипохромная анемия, анемия Аддисон-Бирмера (пернициозная анемия злокачественная), анемия при спру. При железодефицитных анемиях назначают одновременно препараты железа. Препарат вводят под кожу в виде 1% водного раствора по 1 мл ежедневно.

Длительность лечения зависит от течения заболевания и результатов. Средняя продолжительность лечения – 3-4 недели.

Ферковен (Fercovenum). Форма выпуска – ампулы по 5 мл. Прозрачная жидкость красновато-коричневого цвета, сладковатого вкуса; рН 11,0-12,0.

Действующие вещества: железа сахарат, кобальта глюконат.

Фармакологическое действие – стимулятор кроветворения.

Состав: кобальта глюконат и раствор углеводов. Содержание железа в 1 мл составляет около 0,02 г, кобальта – 0,00009 г.

Показания к применению:

  • гипохромная анемия (снижение содержания гемоглобина в крови);
  • плохая переносимость и недостаточная всасываемость препаратов железа;
  • ликвидация дефицита железа.

Способ применения. Внутривенно один раз в сутки. Применяют ежедневно в течение 10-15 дней: первые две инъекции – по 2 мл, затем – по 5 мл. Вводят медленно (в течение 8-10 мин.). Избегать контакта раствора с кожей.

Применяют только в стационаре (больнице).

При дефиците железа дозировку препарата рассчитывают по формуле. Дефицит железа в мг равен: масса больного в кг×2,5× .

Для поддержания эффекта, достигнутого введением Ферковена, применяют препараты железа внутрь.

Побочные эффекты. При первых введениях в вену Ферковена и при передозировке препарата возможны:

  • гиперемия (покраснение) лица, шеи;
  • ощущение сжатия в грудной клетке;
  • боли в пояснице.

Побочные явления устраняют при помощи обезболивающего средства (вводят под кожу) 0,5 мл 0,1% раствора Атропина.

Противопоказания:

  • гемохроматоз (нарушение обмена железосодержащих пигментов);
  • заболевания печени;
  • коронарная недостаточность (несоответствие между потребностью сердца в кислороде и его доставкой);
  • гипертоническая болезнь II-III стадий (стойкое повышение артериального давления).

Компливит. Витаминно-минеральный комплекс, восполняет дефицит витаминов и минералов.

Форма выпуска – 365 таблеток для витаминно-минеральной поддержки в течение года.

Состав включает 11 витаминов и 8 минералов. Из них:

  • аскорбиновая кислота, фолиевая кислота, рибофлавин;
  • ацетат токоферола (альфа-форма), пантотенат кальция;
  • тиоктовая кислота, рутозид, никотиновая кислота;
  • медь, никотинамид, цианокобаламин, пиридоксин;
  • цинк, тиамин, кобальт, железо, кальций, марганец, магний.

Дополнительные компоненты:

  • карбонат магния, крахмал, метилцеллюлоза;
  • тальк, пигментный диоксид титана, мука;
  • воск, стеарат кальция, повидон, сахароза, желатин.

Форма выпуска: двояковыпуклые таблетки белого цвета со специфическим запахом.

Показания к применению:

  • профилактика и восполнение дефицита витаминов и минеральных веществ;
  • повышенные физические и умственные нагрузки;
  • период выздоровления после продолжительных и/или тяжело протекающих заболеваний, в том числе инфекционных;
  • комплексное лечение при назначении антибиотикотерапии.

Олиговит. Показания к применению:

  • профилактика и лечение гипо- и авитаминозов и дефицита минеральных веществ при неполноценном и несбалансированном питании;
  • период выздоровления после перенесенных заболеваний, повышенной физической и умственной нагрузке, во время интенсивных занятий спортом.

Противопоказания:

  • повышенная чувствительность к компонентам препарата;
  • беременность и период грудного вскармливания;
  • гипервитаминоз А, Е, D;
  • тиреотоксикоз, декомпенсированная сердечная недостаточность;
  • язвенная болезнь желудка и двенадцатиперстной кишки в стадии обострения;
  • повышенное содержание кальция (гиперкальциемия).

Кобальт в виде порошка используют в основном в качестве добавки к сталям. При этом повышается жаропрочность стали , улучшаются ее механические свойства (твердость и износоустойчивость при повышенных температурах). Данный металл входит в состав твердых сплавов , из которых изготовляется быстрорежущий инструмент. Один из основных компонентов твердого сплава - карбид вольфрама или титана - спекается в смеси с порошком металлического кобальта. Именно Co улучшает вязкость сплава и уменьшает его чувствительность к толчкам и ударам. Так, например, резец из суперкобальтовой стали (18% Co) оказался самым износоустойчивым и с лучшими режущими свойствами по сравнению с резцами из ванадиевой стали (0% Co) и кобальтовой стали (6% Co). Также кобальтовый сплав может использоваться для защиты от износа поверхностей деталей, подверженных большим нагрузкам. Твердый сплав способен увеличить срок службы стальной детали в 4-8 раз.

Также стоит отметить магнитные свойства кобальта. Данный металл способен сохранять эти свойства после однократного намагничивания. Магниты должны иметь высокое сопротивление к размагничиванию, быть устойчивыми по отношению к температуре и вибрациям, легко поддаваться механической обработке. Добавление кобальта в стали позволяет им сохранять магнитные свойства при высоких температурах и вибрациях, а также увеличивает сопротивление размагничиванию. Так, например, японская сталь, содержащая до 60% Co, имеет большую коэрцитивную силу (сопротивление размагничиванию) и всего лишь на 2-3,5% теряет магнитные свойства при вибрациях. Магнитные сплавы на основе кобальта применяют при производстве сердечников электромоторов, трансформаторов и в других электротехнических устройствах.

Стоит отметить, что кобальт также нашел применение в авиационной и космической промышленности. Кобальтовые сплавы постепенно начинают конкурировать с никелевыми, которые хорошо зарекомендовали себя и давно используются в данной отрасли промышленности. Сплавы, содержащие Co, используются в двигателях, где достигается достаточно высокая температура, в конструкциях авиационных турбин. Никелевые сплавы при высоких температурах теряют свою прочность (при температурах от 1038°С) и тем самым проигрывают кобальтовым.

В последнее время кобальт и его сплавы стали применяться при изготовлении ферритов, в производстве «печатных схем» в радиотехнической промышленности, при изготовлении квантовых генераторов и усилителей. Кобальтат лития применяется в качестве высокоэффективного положительного электрода для производства литиевых аккумуляторов. Силицид кобальта отличный термоэлектрический материал и позволяет производить термоэлектрогенераторы с высоким КПД. Соединения Co, введенные в стекла при их варке, обеспечивают красивый синий (кобальтовый) цвет стеклянных изделий.

ОПРЕДЕЛЕНИЕ

Кобальт - двадцать седьмой элемент Периодической таблицы. Обозначение - Co от латинского «cobaltum». Расположен в четвертом периоде, VIIIB группе. Относится к металлам. Заряд ядра равен 247.

В природе кобальт мало распространен: содержание в земной коре составляет около 0,004% (масс.). Чаще всего кобальт встречается в соединении с мышьяком в виде минералов кобальтовый шпейс CoAs 2 и кобальтовый блеск CoAs.

Кобальт - твердый, тягучий, похожий на железо блестящий металл (рис. 1). Как и железо, он обладает магнитными свойствами. Вода и воздух на него не действуют. В разбавленных кислотах растворяется значительно труднее, чем железо.

Рис. 1. Кобальт. Внешний вид.

Атомная и молекулярная масса кобальта

Относительной молекулярная масса вещества (M r) - это число, показывающее, во сколько раз масса данной молекулы больше 1/12 массы атома углерода, а относительная атомная масса элемента (A r) — во сколько раз средняя масса атомов химического элемента больше 1/12 массы атома углерода.

Поскольку в свободном состоянии кобальт существует в виде одноатомных молекул Co, значения его атомной и молекулярной масс совпадают. Они равны 58,9332.

Аллотропия и аллотропные модификации кобальта

Кобальт имеет две модификации. До 430 o С устойчив α-кобальт (гексагональная плотноупакованная решетка); выше 430 o С — b-кобальт (гранецентрированная кубическая решетка).

Изотопы кобальта

Известно, что в природе кобальт может находиться в виде единственного стабильного изотопа 59 Co. Массовое число равно 59, ядро атома содержит двадцать семь протонов и тридцать два нейтрона.

Существуют искусственные нестабильные изотопы кобальта с массовыми числами от 45-ти до 75-ти и одиннадцати мета стабильных состояний, среди которых наиболее долгоживущим является 60 Co с периодом полураспада равным 5,2714 лет.

Ионы кобальта

Электронная формула, демонстрирующая распределение по орбиталям электронов кобальта выглядит следующим образом:

1s 2 2s 2 2p 6 3s 2 3p 6 3d 7 4s 2 .

В результате химического взаимодействия кобальт отдает свои валентные электроны, т.е. является их донором, и превращается в положительно заряженный ион:

Cо 0 -2e → Cо 2+ ;

Cо 0 -3e → Cо 3+ ;

Cо 0 -4e → Cо 4+ .

Молекула и атом кобальта

В свободном состоянии кобальт существует в виде одноатомных молекул Cо. Приведем некоторые свойства, характеризующие атом и молекулу кобальта:

Сплавы кобальта

Кобальт применяется главным образом в сплавах, которые используются в качестве жаропрочных и жаростойких материалов. Жаропрочный и жаростойкий сплав виталлиум содержит 65% кобальта, 28% хрома, 3% вольфрама и 4% молибдена. Этот сплав сохраняет высокую прочность и не подается коррозии при температурах до 800-850 o С.

Твердые сплавы стеллиты, содержащие 40-60% кобальта, 20-35% хрома, 5-20: вольфрама и 1-2% углерода, применяются для изготовления режущего инструмента. Кобальт входит также в состав керамикометаллических твердых сплавов - керметов.

Примеры решения задач

ПРИМЕР 1

Задание Кобальт массой 2,95 г растворили в соляной кислоте, при этом образовалась соль кобальта (II), через полученный раствор пропустили сероводород. Определите массу образовавшегося осадка.
Решение Запишем уравнения реакций, о которых говорится в условии задачи:

Co + 2HCl dilute = CoCl 2 + H 2 (1);

CoCl 2 + H 2 S = CoS↓ + 2HCl (2).

Найдем количество вещества кобальта, вступившего в реакцию (молярная масса - 59 г/моль):

n (Co) = m (Co) / M (Co);

n (Co) = 2,95 / 59 = 0,044 моль.

Согласно уравнению (1) n (Co) : n (CoCl 2) = 1:1, следовательно, n (Co) = n (CoCl 2) = 0,044 моль. Тогда, количество моль сульфида кобальта (II) (осадок) также будет равно 0,044 моль, поскольку n (CoCl 2) : n (CoS) = 1:1. Масса сульфида кобальта (II) равна (молярная масса - 91 г/моль):

m (CoS)= n (CoS)×M (CoS);

m (CoS)= 0,044 × 91 = 4,004 г.

Ответ Масса сульфида кобальта (II) равна 4,004 г

ПРИМЕР 2

Задание Стандартный электродный потенциал никеля больше, чем кобальта (E o Co 2+ /Co 0 = -0,27 В, E o Ni 2+ /Ni 0 = -0,25 В). Изменится ли это соотношение, если измерить потенциал никеля в растворе его ионов с концентрацией 0,001 моль/дм 3 , а потенциал кобальта - в растворе с концентрацией 0,1 моль/дм 3 ?
Решение Определим электродные потенциалы кобальта и никеля в заданных условиях используя уравнение Нернста:

E ’ Ni 2+ / Ni 0 = E o Ni 2+ / Ni 0 - 0,059/n × lg (a Ni 2+ / a Ni 0);

E ’ Ni 2+ / Ni 0 = -0,25 + (0,059/2) × lg10 -3 ;

E ’ Ni 2+ / Ni 0 = -0,339 В.

E ’ Co 2+ /Co o = E o Co 2+ /Co o - 0,059/n × lg (a Co 2+ / a Co o);

E ’ Co 2+ /Co o = -0,27 + (0,059/2) × lg10 -1 ;

E ’ Co 2+ /Co o = -0,307 В.

Ответ В заданных условиях потенциал кобальта больше, чем потенциал никеля.

ТЕМА : «Кобальт – химический элемент»

Выполнила:

Студентка биолого-химического

факультета Савенко О.В.

Проверила:

Профессор Максина Н.В.

Уссурийск, 2001г.

ПЛАН :

Элемент периодической системы…………………………….……3

История открытия…………………………………………………...3

Нахождение в природе……………………………………………...3

Получение……………………………………………………………4

Физические и химические свойства………………………………..4

Применение…………………………………………………………..7

Биологическая роль………………………………………………….7

Радионуклеид Кобальт-60…………………………………………..8

Список используемой литературы…………………………………9

Элемент периодической системы

Название элемента «кобальт» происходит от латинского Сobaltum.

Со, химический элемент с атомным номером 27. Его атомная масса 58,9332. Химический символ элемента Cо произносится так же, как и название самого элемента.

Природный кобальт состоит из двух стабильных нуклидов: 59 Со (99,83% по массе) и 57 Со (0,17%). В периодической системе элементов Д. И. Менделеева кобальт входит в группу VIIIВ и вместе с железом и никелем образует в 4-м периоде в этой группе триаду близких по свойствам переходных металлов. Конфигурация двух внешних электронных слоев атома кобальта 3s 2 p 6 d 7 4s 2 . Образует соединения чаще всего в степени окисления +2, реже - в степени окисления +3 и очень редко в степенях окисления +1, +4 и +5.

Радиус нейтрального атома кобальта 0,125 Нм, радиус ионов (координационное число 6) Со 2+ - 0,082 Нм, Со 3+ - 0,069 Нм и Со 4+ - 0,064 Нм. Энергии последовательной ионизации атома кобальта 7,865, 17,06, 33,50, 53,2 и 82,2 ЭВ. По шкале Полинга электроотрицательность кобальта 1,88.

Кобальт - блестящий, серебристо-белый, тяжелый металл с розоватым оттенком.

История открытия

С древности оксиды кобальта использовались для окрашивания стекол и эмалей в глубокий синий цвет. До 17 века секрет получения краски из руд держался в тайне. Эти руды в Саксонии называли «кобольд» (нем. Kobold - домовой, злой гном, мешавший рудокопам добывать руду и выплавлять из нее металл). Честь открытия кобальта принадлежит шведскому химику Г. Брандту. В 1735 году он выделил из коварных «нечистых» руд новый серебристо-белый со слабым розоватым оттенком металл, который предложил называть «кобольдом». Позднее это название трансформировалось в «кобальт».

Нахождение в природе

В земной коре содержание кобальта равно 410 -3 % по массе. Кобальт входит в состав более 30 минералов. К ним относятся каролит CuCo 2 SO 4 , линнеит Co 3 S 4 , кобальтин CoAsS, сферокобальтит CoCO 3 , смальтит СоAs 2 и другие. Как правило, кобальту в природе сопутствуют его соседи по 4-му периоду - никель, железо, медь и марганец. В морской воде приблизительно (1-7)·10 -10 % кобальта.

Получение

Кобальт - относительно редкий металл, и богатые им месторождения в настоящее время практически исчерпаны. Поэтому кобальтсодержащее сырье (часто это никелевые руды, содержащие кобальт как примесь) сначала обогащают, получают из него концентрат. Далее для извлечения кобальта концентрат или обрабатывают растворами серной кислоты или аммиака, или методами пирометаллургии перерабатывают в сульфидный или металлический сплав. Этот сплав затем выщелачивают серной кислотой. Иногда для извлечения кобальта проводят сернокислотное «кучное» выщелачивание исходной руды (измельченную руду размещают в высоких кучах на специальных бетонных площадках и сверху поливают эти кучи выщелачивающим раствором).

Для очистки кобальта от сопутствующих примесей все более широко применяют экстракцию. Наиболее сложная задача при очистке кобальта от примесей - это отделение кобальта от наиболее близкого к нему по химическим свойствам никеля. Раствор, содержащий катионы двух этих металлов, часто обрабатывают сильными окислителями - хлором или гипохлоритом натрия NaOCl; кобальт при этом переходит в осадок. Окончательную очистку (рафинирование) кобальта осуществляют электролизом его сульфатного водного раствора, в который обычно добавлена борная кислота Н3ВО3.

Физические и химические свойства

Кобальт - твердый металл, существующий в двух модификациях. При температурах от комнатной до 427°C устойчива a-модификация (кристаллическая решетка гексагональная с параметрами а=0,2505 Нм и с=0,4089 Нм). Плотность 8,90 кг / дм 3 . При температурах от 427°C до температуры плавления (1494°C) устойчива b-модификация кобальта (решетка кубическая гранецентрированная). Температура кипения кобальта около 2960°C. Кобальт - ферромагнетик, точка Кюри 1121°C. Стандартный электродный потенциал Со 0 /Со 2+ –0,29 B.

На воздухе компактный кобальт устойчив, при нагревании выше 300°C покрывается оксидной пленкой (высокодисперсный кобальт пирофорен). С парами воды, содержащимися в воздухе, водой, растворами щелочей и карбоновых кислот кобальт не взаимодействует. Концентрированная азотная кислота пассивирует поверхность кобальта, как пассивирует она и поверхность железа.

Известно несколько оксидов кобальта. Оксид кобальта(II) СоО обладает основными свойствами. Он существует в двух полиморфных модификациях: a-форма (кубическая решетка), устойчивая при температурах от комнатной до 985°C, и существующая при высоких температурах b-форма (также кубическая решетка). СоО можно получить или нагреванием в инертной атмосфере гидроксоркарбоната кобальта Со(ОН) 2 СоСО 3 , или осторожным восстановлением Со 3 О 4 .

Если нитрат кобальта Со(NO 3) 2 , его гидроксид Со(ОН) 2 или гидроксокарбонат прокалить на воздухе при температуре около 700°C, то образуется оксид кобальта Со 3 О 4 (CoO·Co 2 O 3). Этот оксид по химическому поведению похож на Fe 3 О 4 . Оба эти оксида сравнительно легко восстанавливаются водородом до свободных металлов:

Со 3 О 4 + 4H 2 = 3Со + 4H 2 O.

При прокаливании Со(NO 3) 2 , Со(ОН) 2 и т. д. при 300°C возникает еще один оксид кобальта - Со 2 О 3 .

При приливании раствора щелочи к раствору соли кобальта(II) выпадает осадок Со(ОН) 2 , который легко окисляется. Так, при нагревании на воздухе при температуре немногим выше 100°C Со(ОН) 2 превращается в СоООН.

Если на водные растворы солей двухвалентного кобальта действовать щелочью в присутствии сильных окислителей, то образуется Со(ОН) 3 .

При нагревании кобальт реагирует со фтором с образованием трифторида СоF 3 . Если на СоО или СоCO 3 действовать газообразным HF, то образуется еще один фторид кобальта СоF 2 . При нагревании кобальт взаимодействует с хлором и бромом с образованием, соответственно, дихлорида СоСl 2 и дибромида СоBr 2 . За счет реакции металлического кобальта с газообразным НI при температурах 400-500°C можно получить дииодид кобальта СоI 2 .

Сплавлением порошков кобальта и серы можно приготовить серебристо-серый сульфид кобальта СоS (b-модификация). Если же через раствор соли кобальта(II) пропускать ток сероводорода H 2 S, то выпадает черный осадок сульфида кобальта СоS (a-модификация):

CoSO 4 + H 2 S = CoS + H 2 SO 4

При нагревании CoS в атмосфере H 2 S образуется Со 9 S 8 с кубической кристаллической решеткой. Известны и другие сульфиды кобальта, в том числе Co 2 S 3 , Co 3 S 4 и CoS 2 .

С графитом кобальт образует карбиды Со 3 C и Со 2 С, c фосфором - фосфиды составов СоP, Со 2 P, СоP 3 . Кобальт реагирует и с другими неметаллами, в том числе с азотом (возникают нитриды Со 3 N и Co 2 N), селеном (получены селениды кобальта CoSe и CoSe 2), кремнием (известны силициды Co 2 Si, CoSi CoSi 2) и бором (в числе известных боридов кобальта - Со 3 В, Со 2 В, СоВ).

Металлический кобальт способен поглощать значительные объемы водорода, не образуя при этом соединений постоянного состава. Косвенным путем синтезированы два стехиометрических гидрида кобальта СоН 2 и СоН.

Известны растворимые в воде соли кобальта - сульфат СоSO 4 , хлорид СоСl 2 , нитрат Со(NO 3) 2 и другие. Интересно, что разбавленные водные растворы этих солей имеют бледно-розовую окраску. Если же перечисленные соли (в виде соответствующих кристаллогидратов) растворить в спирте или ацетоне, то возникают темно-синие растворы. При добавлении воды к этим растворам их окраска мгновенно переходит в бледно-розовую.

К нерастворимым соединениям кобальта относятся фосфат Со 3 (PO 4) 2 , силикат Со 2 SiO 4 и многие другие.

Для кобальта, как и для никеля, характерно образование комплексных соединений. Так, в качестве лигандов при образовании комплексов с кобальтом часто выступают молекулы аммиака NH 3 . При действии аммиака на растворы солей кобальта(II) возникают амминные комплексы кобальта красного или розового цвета, содержащие катионы состава 2+ . Эти комплексы довольно неустойчивы и легко разлагаются даже водой.

Значительно стабильнее амминные комплексы трехвалентного кобальта, которые можно получить действием аммиака на растворы солей кобальта в присутствии окислителей. Так, известны гексамминные комплексы с катионом 3+ (эти комплексы желтого или коричневого цвета получили название лутеосолей), аквапентамминные комплексы красного или розового цвета с катионом 3+ (так называемые розеосоли) и др. В ряде случаев лиганды вокруг атома кобальта могут иметь различное пространственное расположение, и тогда существуют цис- и транс-изомеры соответствующих комплексов.