Что такое оптический и геометрический путь света. Законы геометрической оптики

Оптическая длина пути

Оптической длиной пути между точками А и В прозрачной среды называется расстояние, на которое свет (Оптическое излучение) распространился бы в вакууме за время его прохождения от А до В. Оптической длиной пути в однородной среде называется произведение расстояния, пройденного светом в среде с показателем преломления n, на показатель преломления:

Для неоднородной среды необходимо разбить геометрическую длину на столь малые промежутки, что можно было бы считать на этом промежутке показатель преломления постоянным:

Полная оптическая длина пути находится интегрированием :


Wikimedia Foundation . 2010 .

Смотреть что такое "Оптическая длина пути" в других словарях:

    Произведение длины пути светового луча на показатель преломления среды (путь, который прошел бы свет за то же время, распространяясь в вакууме) … Большой Энциклопедический словарь

    Между точками А и В прозрачной среды, расстояние, на к рое свет (оптическое излучение) распространился бы в вакууме за то же время, за какое он проходит от А до В в среде. Поскольку скорость света в любой среде меньше его скорости в вакууме, О. д … Физическая энциклопедия

    Кратчайшее расстояние, которое проходит волновой фронт излучения передатчика от его выходного окна до входного окна приемника. Источник: НПБ 82 99 EdwART. Словарь терминов и определений по средствам охранной и пожарной защиты, 2010 … Словарь черезвычайных ситуаций

    оптическая длина пути - (s) Сумма произведений расстояний, проходимых монохроматическим излучением в различных средах, на соответствующие показатели преломления этих сред. [ГОСТ 7601 78] Тематики оптика, оптические приборы и измерения Обобщающие термины оптические… … Справочник технического переводчика

    Произведение длины пути светового луча на показатель преломления среды (путь, который прошёл бы свет за то же время, распространяясь в вакууме). * * * ОПТИЧЕСКАЯ ДЛИНА ПУТИ ОПТИЧЕСКАЯ ДЛИНА ПУТИ, произведение длины пути светового луча на… … Энциклопедический словарь

    оптическая длина пути - optinis kelio ilgis statusas T sritis fizika atitikmenys: angl. optical path length vok. optische Weglänge, f rus. оптическая длина пути, f pranc. longueur de trajet optique, f … Fizikos terminų žodynas

    Оптический путь, между точками А и В прозрачной среды; расстояние, на которое свет (Оптическое излучение) распространился бы в вакууме за время его прохождения от А до В. Поскольку скорость света в любой среде меньше его скорости в… … Большая советская энциклопедия

    Произведение длины пути светового луча па показатель преломления среды (путь, к рый прошёл бы свет за то же время, распространяясь в вакууме) … Естествознание. Энциклопедический словарь

    Понятие геом. и волновой оптики, выражается суммой произведений расстояний! проходимых излучением в разл. средах, на соответствующие показатели преломления сред. О. д. п. равна расстоянию, к рое свет прошёл бы за то же время, распространяясь в… … Большой энциклопедический политехнический словарь

    ДЛИНА ПУТИ между точками А и В прозрачной среды расстояние, на к рое свет (оптич. излучение) распространился бы в вакууме за то же время, за какое он проходит от А до В в среде. Поскольку скорость света в любой среде меньше его скорости в вакууме … Физическая энциклопедия

Пусть в некоторой точке пространства О волна делится на две когерентные. Одна из них проходит путь S 1 в среде с показателем преломления n 1 , а вторая – путь S 2 в среде с показателем n 2 , после чего волны накладываются в точке Р. Если в данный момент времени t фазы волны в точке О одинаковы и равны j 1 =j 2 =wt , то в точке Р фазы волн будут равны соответственно

где v 1 и v 2 - фазовые скорости в средах. Разность фаз δ в точке Р будет равна

При этом v 1 =c /n 1 , v 2 =c /n 2 . Подставляя эти величины в (2), получим

Поскольку , где l 0 – длина волны света в вакууме, то

Оптической длиной пути L в данной среде называется произведение расстояния S , пройденного светом в среде, на абсолютный показатель преломления среды n :

L = S n .

Таким образом, из (3) следует, что изменение фазы определяется не просто расстоянием S , а оптической длиной пути L в данной среде. Если волна проходит несколько сред, то L=Σn i S i . Если среда является оптически неоднородной (n≠const), то .

Величину δ можно представить в виде:

где L 1 и L 2 – оптические длины пути в соответствующих средах.

Величину, равную разности оптических длин путей двух волн Δ опт = L 2 - L 1

называют оптической разностью хода . Тогда для δ имеем:

Сопоставление оптических длин пути двух интерферирующих волн позволяет предсказать результат их интерференции. В точках, для которых

будут наблюдаться максимумы (оптическая разность хода равна целому числу длин волн в вакууме). Порядок максимума m показывает, сколько длин волн в вакууме составляет оптическая разность хода интерферирующих волн. Если же для точек выполняется условие

Еще до установления природы света были известны следующие законы геометрической оптики (вопрос о природе света не рассматривался).

  • 1. Закон независимости световых лучей: эффект, производимый отдельным лучом, не зависит от того, действуют ли одновременно остальные лучи или они устранены.
  • 2. Закон прямолинейного распространения света: свет в однородной прозрачной среде распространяется прямолинейно.

Рис. 21.1.

  • 3. Закон отражения света: отраженный луч лежит в одной плоскости с падающим лучом и перпендикуляром, проведенным к границе раздела двух сред в точке падения; угол отражения /|" равен углу падения /, (рис. 21.1): i[ = i x .
  • 4. Закон преломления света (закон Снелля, 1621): падающий луч, преломленный луч и перпендикуляр

к поверхности раздела двух сред, проведенный в точке падения луча, лежат в одной плоскости; при преломлении света на границе раздела двух изотропных сред с показателями преломления п х и п 2 выполняется условие

Полное внутреннее отражение - это отражение светового луча от границы раздела двух прозрачных сред в случае его падения из оптически более плотной среды в оптически менее плотную среду под углом /, > / пр, для которого выполняется равенство

где « 21 - относительный показатель преломления (случай л, > п 2).

Наименьший угол падения / пр, при котором весь падающий свет полностью отражается в среду /, называется предельным углом полного отражения.

Явление полного отражения используется в световодах и призмах полного отражения (например, в биноклях).

Оптической длиной пути L между точками Ли В прозрачной среды называют расстояние, на которое свет (оптическое излучение) распространился бы в вакууме за то же время, за которое он проходит от А до В в среде. Так как скорость света в любой среде меньше его скорости в вакууме, то L всегда больше реально проходимого расстояния. В неоднородной среде

где п - показатель преломления среды; ds - бесконечно малый элемент траектории луча.

В однородной среде, где геометрическая длина пути света равна s, оптическая длина пути будет определяться как

Рис. 21.2. Пример таутохронных путей света (SMNS" > SABS")

Три последних закона геометрической оптики можно получить из принципа Ферма (ок. 1660): в любой среде свет распространяется по такому пути, для прохождения которого ему требуется минимальное время. В случае, когда это время является одинаковым для всех возможных путей, все пути света между двумя точками называются таутохронными (рис. 21.2).

Условию таутохронизма удовлетворяют, например, все пути лучей, проходящих через линзу и дающих изображение S" источника света S. Свет распространяется по путям неравной геометрической длины за одно и то же время (рис. 21.2). Именно то, что испущенные из точки S лучи одновременно и через наименьшее возможное время собираются в точке S", позволяет получить изображение источника S.

Оптическими системами называется совокупность оптических деталей (линз, призм, плоскопараллельных пластинок, зеркал и т.п.), скомбинированных для получения оптического изображения или для преобразования светового потока, идущего от источника света.

Различают следующие типы оптических систем в зависимости от положения предмета и его изображения: микроскоп (предмет расположен на конечном расстоянии, изображение - на бесконечности), телескоп (и предмет, и его изображение находятся в бесконечности), объектив (предмет расположен в бесконечности, а изображение - на конечном расстоянии), проекционная система (предмет и его изображение расположены на конечном расстоянии от оптической системы). Оптические системы находят применение в технологическом оборудовании для оптической локации, оптической связи и т.д.

Оптические микроскопы позволяют исследовать объекты, размеры которых меньше минимального разрешения глаза, равного 0,1 мм. Использование микроскопов дает возможность различать структуры с расстоянием между элементами до 0,2 мкм. В зависимости от решаемых задач микроскопы могут быть учебными, исследовательскими, универсальными и т.д. Например, как правило, металлографические исследования образцов металлов начинаются с помощью метода световой микроскопии (рис. 21.3). На представленной типичной микрофотографии сплава (рис. 21.3, а) видно, что поверхность фольг сплава алюминия с медью со-


Рис. 21.3. а - зеренная структура поверхности фольги сплава А1-0,5 ат.% Си (Шепелевич и др., 1999); б - поперечное сечение по толщине фольги сплава А1-3,0 ат.% Си (Шепелевич и др., 1999) (гладкая сторона - сторона фольги, контактирующая с подложкой при затвердевании) держит области более мелких и более крупных зерен (см. подтему 30.1). Анализ зеренной структуры шлифа поперечного сечения толщины образцов показывает, что микроструктура сплавов системы алюминий - медь изменяется по толщине фольг (рис. 21.3, б).

Определение 1

Оптика – один из разделов физики, который изучает свойства и физическую природу света, а также его взаимодействия с веществами.

Данный раздел делят на три, приведенные ниже, части:

  • геометрическая или, как ее еще называют, лучевая оптика, которая базируется на понятии о световых лучах, откуда и исходит ее название;
  • волновая оптика, исследует явления, в которых проявляются волновые свойства света;
  • квантовая оптика, рассматривает такие взаимодействия света с веществами, при которых о себе дают знать корпускулярные свойства света.

В текущей главе нами будут рассмотрены два подраздела оптики. Корпускулярные свойства света будут рассматриваться в пятой главе.

Задолго до возникновения понимания истинной физической природы света человечеству уже были известны основные законы геометрической оптики.

Закон прямолинейного распространения света

Определение 1

Закон прямолинейного распространения света гласит, что в оптически однородной среде свет распространяется прямолинейно.

Подтверждением этому служат резкие тени, которые отбрасываются непрозрачными телами при освещении с помощью источника света сравнительно малых размеров, то есть так называемым «точечным источником».

Иное доказательство заключается в достаточно известном эксперименте по прохождению света далекого источника сквозь малое отверстие, с образующимся в результате узким световым пучком. Данный опыт подводит нас к представлению светового луча в виде геометрической линии, вдоль которой распространяется свет.

Определение 2

Стоит отметить тот факт, что само понятие светового луча вместе с законом прямолинейного распространения света утрачивают весь свой смысл, в случае если свет проходит через отверстия, размеры которых аналогичны с длиной волны.

Исходя из этого, геометрическая оптика, которая опирается на определение световых лучей – это предельный случай волновой оптики при λ → 0 , рамки применения которой рассмотрим в разделе, посвященном дифракции света.

На грани раздела двух прозрачных сред свет может частично отразиться таким образом, что некоторая часть световой энергии будет рассеиваться после отражения по уже новому направлению, а другая пересечет границу и продолжит свое распространение во второй среде.

Закон отражения света

Определение 3

Закон отражения света , основывается на том, что падающий и отраженный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, находятся в одной плоскости (плоскость падения). При этом углы отражения и падения, γ и α – соответственно, являются равными величинами.

Закон преломления света

Определение 4

Закон преломления света , базируется на том, что падающий и преломленный лучи, также как перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости. Отношение sin угла падения α к sin угла преломления β является величиной, неизменной для двух приведенных сред:

sin α sin β = n .

Ученый В. Снеллиус экспериментально установил закон преломления в 1621 году.

Определение 5

Постоянная величина n – является относительным показателем преломления второй среды относительно первой.

Определение 6

Показатель преломления среды относительно вакуума имеет название – абсолютный показатель преломления .

Определение 7

Относительный показатель преломления двух сред – это отношение абсолютных показателей преломления данных сред, т.е.:

Свое значение законы преломления и отражения находят в волновой физике. Исходя из ее определений, преломление является результатом преобразования скорости распространения волн в процессе перехода между двумя средами.

Определение 8

Физический смысл показателя преломления – это отношение скорости распространения волн в первой среде υ 1 к скорости во второй υ 2:

Определение 9

Абсолютный показатель преломления эквивалентен отношению скорости света в вакууме c к скорости света υ в среде:

На рисунке 3 . 1 . 1 проиллюстрированы законы отражения и преломления света.

Рисунок 3 . 1 . 1 . Законы отражения υ преломления: γ = α ; n 1 sin α = n 2 sin β .

Определение 10

Среда, абсолютный показатель преломления которой является меньшим, является оптически менее плотной .

Определение 11

В условиях перехода света из одной среды, уступающей в оптической плотности другой (n 2 < n 1) мы получаем возможность наблюдать явление исчезновения преломленного луча.

Данное явление можно наблюдать при углах падения, которые превышают некий критический угол α п р. Этот угол носит название предельного угла полного внутреннего отражения (см. рис. 3 . 1 . 2).

Для угла падения α = α п р sin β = 1 ; значение sin α п р = n 2 n 1 < 1 .

При условии, что второй средой будет воздух (n 2 ≈ 1) , то равенство будет допустимо переписать в вид: sin α п р = 1 n , где n = n 1 > 1 – абсолютный показатель преломления первой среды.

В условиях границы раздела «стекло–воздух», где n = 1 , 5 , критический угол равен α п р = 42 ° , в то время как для границы «вода–воздух» n = 1 , 33 , а α п р = 48 , 7 ° .

Рисунок 3 . 1 . 2 . Полное внутреннее отражение света на границе вода–воздух; S – точечный источник света.

Феномен полного внутреннего отражения широко используется во многих оптических устройствах. Одним из таких устройств является волоконный световод – тонкие, изогнутые случайным образом, нити из оптически прозрачного материала, внутри которых свет, попавший на торец, может распространяться на огромные расстояния. Данное изобретение стало возможным только благодаря правильному применению феномена полного внутреннего отражения от боковых поверхностей (рис 3 . 1 . 3).

Определение 12

Волоконная оптика – это научно-техническое направление, основывающееся на разработке и использовании оптических световодов.

Рисунок 3 . 1 . 3 . Распространение света в волоконном световоде. При сильном изгибе волокна закон полного внутреннего отражения нарушается, и свет частично выходит из волокна через боковую поверхность.

Рисунок 3 . 1 . 4 . Модель отражения и преломления света.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

ОПТИЧЕСКАЯ ДЛИНАПУТИ -произведениедлины пути светового луча напоказатель преломлениясреды (путь, который прошел бысветза то жевремя, распространяясь в вакууме).

Расчет интерференционной картины от двух источников.

Расчет интерференционной картины от двух когерентных источников.

Рассмотрим две когерентные световые волны, исходящие из источников и(рис.1.11.).

Экран для наблюдения интерференционной картины (чередование светлых и темных полос) поместим параллельно обеим щелям на одинаковом расстоянии .Обозначим за x - расстояние от центра интерференционной картины до исследуемой точки Р на экране.

Расстояние между источниками иобозначим какd . Источникиирасположены симметрично относительно центра интерференционной картины. Из рисунка видно, что

Следовательно

и оптическая разность хода равна

Разность хода составляет несколько длин волн и всегда значительно меньшеи, поэтому можем считать, чтои. Тогда выражение для оптической разности хода будет иметь следующий вид:

Так как расстояние от источников до экрана во много раз превосходит расстояние от центра интерференционной картины до точки наблюдения , то можно допустить, чтот. е.

Подставив значение (1.95) в условие (1.92) и выразив х, получим, что максимумы интенсивности будут наблюдаться при значениях

, (1.96)

где - длина волны в среде, аm - порядок интерференции, ах max - координаты максимумов интенсивности.

Подставив (1.95) в условие (1.93), получим координаты минимумов интенсивности

, (1.97)

На экране будет видна интерференционная картина, которая имеет вид чередующихся светлых и темных полос. Цвет светлых полос определяется светофильтром, используемым в установке.

Расстояние между соседними минимумами (или максимумами) называется шириной интерференционной полосы. Из (1.96) и (1.97) следует, что эти расстояния имеют одинаковое значение. Чтобы рассчитать ширину интерференционной полосы, нужно из значения координаты одного максимума вычесть координату соседнего максимума

Для этих целей можно использовать и значения координат двух любых соседних минимумов.

Координаты минимумов и максимумов интенсивности.

Оптическая длина путей лучей. Условия получения интерференционных максимумов и минимумов.

В вакууме скорость света равна , в среде с показателем преломления n скорость света v становится меньше и определяется соотношением (1.52)

Длина волны в вакууме , а в среде - в n раз меньше чем в вакууме (1.54):

При переходе из одной среды в другую частота света не изменяется, так как вторичные электромагнитные волны, излучаемые заряженными частицами в среде, есть результат вынужденных колебаний, совершающихся с частотой падающей волны.

Пусть два точечных когерентных источника света иизлучают монохроматический свет (рис.1.11). Для них должны выполнятся условия когерентности:. До точки P первый луч проходит в среде с показателем преломленияпуть, второй луч проходит в среде с показателем преломления- путь. Расстоянияиот источников до наблюдаемой точки называются геометрические длины путей лучей. Произведение показателя преломления среды на геометрическую длину пути называется оптической длиной пути L=ns. L 1 = и L 1 = - оптические длины первого и второго путей, соответственно.

Пусть и- фазовые скорости волн.

Первый луч возбудит в точке P колебание:

, (1.87)

а второй луч - колебание

, (1.88)

Разность фаз колебаний, возбуждаемых лучами в точке P, будет равна:

, (1.89)

Множитель равен(- длина волны в вакууме), и выражению для разности фаз можно придать вид

есть величина, называемая оптической разностью хода. При расчете интерференционных картин следует учитывать именно оптическую разность хода лучей, т. е. показатели преломления сред, в которых лучи распространяются.

Из формулы (1.90) видно, что если оптическая разность хода равна целому числу длин волн в вакууме

то разность фаз и колебания будут происходить с одинаковой фазой. Числоm называется порядком интерференции. Следовательно, условие (1.92) есть условие интерференционного максимума.

Если равна полуцелому числу длин волн в вакууме,

, (1.93)

то , так что колебания в точке P находятся в противофазе. Условие (1.93) - условие интерференционного минимума.

Итак, если на длине равной оптической разности хода лучей , укладывается четное число длин полуволн, то в данной точке экрана наблюдается максимум интенсивности. Если на длине оптической разности хода лучейукладывается нечетное число длин полуволн, то в данной точки экрана наблюдается минимум освещенности.

Напомним, что если два пути лучей оптически эквивалентны, они называются таутохронными. Оптические системы - линзы, зеркала - удовлетворяют условию таутохронизма.