Как осуществить интерференцию поляризованных лучей. Интерференция поляризованных лучей

ИНТЕРФЕРЕНЦИЯ ПОЛЯРИЗОВАННЫХ ЛУЧЕЙ - явление, возникающее при сложении когерентных поляризованных световых колебаний (см. Поляризация света ).И. п. л. исследовалась в классич. опытах О. Френеля (A. Fresnel) и Д. Ф. Араго (D. F. Arago) (1816). Наиб, контраст интерференц. картины наблюдается при сложении когерентных колебаний одного вида поляризации (линейных, круговых, эллиптич.) с совпадающими азимутами. Интерференция никогда не наблюдается, если волны поляризованы во взаимно перпендикулярных плоскостях. При сложении двух линейно поляризованных взаимно перпендикулярных колебаний в общем случае возникает эллиптически поляризованное колебание, интенсивность к-рого равна сумме интенсивностей исходных колебаний. И. п. л. можно наблюдать, напр., при прохождении линейно поляризованного света через анизотропные среды. Проходя через такую среду, поляризованное колебание разделяется на два когерентных элементарных ортогональных колебания, распространяющихся с разл. скоростью. Далее одно из этих колебаний преобразуют в ортогональное (чтобы получить совпадающие азимуты) или выделяют из обоих колебаний составляющие одного вида поляризации с совпадающими азимутами. Схема наблюдения И. п. л. в параллельных лучах дана на рис. 1, а . Пучок параллельных лучей выходит из поляризатора N 1 линейно поляризованным в направлении N 1 N 1 (рис. 1, б) . В пластинке К , вырезанной из двоякопреломляющего одноосного кристалла параллельно его оптич. оси ОО и расположенной перпендикулярно падающим лучам, происходит разделение колебания N 1 N 1 на составляющие А е , параллельную оптич. оси (необыкновенную), и A 0 , перпендикулярную оптич. оси (обыкновенную). Для повышения контраста интерференц. картины угол между N 1 N 1 и А 0 устанавливают равным 45°, благодаря чему амплитуды колебаний А е и А 0 равны. Показатели преломления n е и n 0 для этих двух лучей различны, а следовательно, различны и скорости их

Рис. 1. Наблюдение интерференции поляризованных лучей в параллельных лучах: а - схема; б - определение амплитуд колебаний, соответствующих схеме а .

распространения в К , вследствие чего на выходе пластины К между ними возникает разность фаз d=(2p/l)(n 0 -n е) , где l - толщина пластинки, l - длина волны падающего света. Анализатор N 2 из каждого луча А е и А 0 пропускает только составляющие с колебаниями, параллельными его направлению пропускания N 2 N 2 . Если гл. сечения поляризатора и анализатора скрещены (N 1 ^N 2 ) , то амплитуды слагающих А 1 и А 2 равны, а разность фаз между ними D=d+p. Т. к. эти составляющие когерентны и линейно поляризованы в одном направлении, то они интерферируют. В зависимости от величины D на к--л. участке пластинки наблюдатель видит этот участок тёмным или светлым (d=2kpl) в монохроматич. свете и различно окрашенным в белом свете (т.н. хроматич. поляризация). Если пластинка неоднородна по толщине пли по показателю преломления, то места её с одинаковыми этими параметрами будут соответственно одинаково тёмными или одинаково светлыми (или одинаково окрашенными в белом свете). Кривые одинаковой цветности наз. изохромами. Пример схемы наблюдения И. п. л. в сходящихся лунах показан на рис. 2. Сходящийся плоскополяризованный пучок лучей из линзы L 1 падает на пластинку, вырезанную из одноосного кристалла перпендикулярно его оптич. оси. При этом лучи разного наклона проходят разные пути в пластинке, а обыкновенный и необыкновенный лучи приобретают разность хода D=(2pl /lcosy)(n 0 -n е) , где y - угол между направлением распространения лучей и нормалью к поверхности кристалла. Наблюдаемая в этом случае интерференц. картина дана на рис. 1, а к ст. Коноскопические фигуры . Точки, соответствующие одинаковым разностям фаз D,

Рис. 2. Схема для наблюдения интерференции поляризованных лучей в сходящихся лучах: N 1 , - поляризатор; N 2 , - анализатор, К - пластинка толщиной l , вырезанная из одноосного двупреломляющего кристалла; L 1 , L 2 - линзы.

расположены по концентрич. окружности (тёмным или светлым в зависимости от D). Лучи, входящие в К с колебаниями, параллельными гл. плоскости или перпендикулярными ей, не разделяются на два слагающих и при N 2 ^N 1 не будут пропущены анализатором N 2 . В этих плоскостях получится тёмный крест. Если N 2 ||N 1 , крест будет светлым. И. п. л. применяется в

Если кристалл положительный, то фронт обыкновенной волны опережает фронт необыкновенной волны. В результате между ними возникает определенная разность хода. На выходе пластинки разность фаз равна:, где-разность фаз между обыкновенной и необыкновенной волной в момент падения на пластинку. Рассм. несколько наиболее интересных случаев, положив=0.1. Ра зность хода между обыкновенной и необыкновенной волнами, создаваемая пластинкой, удовлетворяет условию - пластинка в четверть длины волны. На выходе из пластинки разность фаз (с точностью до) равна. Пусть вектор Е направлен под углом а к одному из гл. направлений, параллельных оптической оси пластинки 00". Если амплитуда падающей волны Е, то ее можно разложить на две составляющие: обыкновенную и необыкновенную. Амплитуда обыкновенной волны:необыкновенной. После выхода из пластинки две волны, складываясь в случае дают эллиптическую поляризацию. Соотношение осей будет зависеть от угла α. В частности, если α =45 и амплитуда обыкновенной и необыкновенной волн будет одинаковой, то на выходе из пластинки свет будет поляризован циркулярно. При этом (+) значение разности фаз соответствует поляризации по левому кругу, отрицательное - по правому. С помощью пластинки в 0.25λ можно выполнить и обратную операцию: превратить эллиптически или циркулярно поляризованный свет в линейно поляризованный. Если оптическая ось пластинки совпадает с одной из осей эллипса поляризации, то в момент падения света на пластинку разность фаз (с точностью до величины, кратной 2π) равна нулю или π. В этом случае обыкновенная и необыкновенная волна, складываясь, дают линейно поляризованный свет.2. Толщина пластинки такова, что разность хода и сдвиг фаз, создаваемые ей, будут соответственно равны и. Выходящий из пластинки свет при этом остается линейно поляризованным, но плоскость поляризации поворачивается против часовой стрелки на угол 2α, если смотреть навстречу лучу.3. для пластинки в целую длину волны разность хода Выходящий свет в этом случае остается поляризованным линейно, причем плоскость колебаний не изменяет своего направления при любой ориентации пластинки.Анализ состояния поляризации. Поляризаторы и кристаллические пластинки используют также для анализа состояния поляризации. Свет любой поляризации всегда можно представить как суперпозицию двух световых потоков, один из которых поляризован эллиптически (в частном случае линейно или циркулярно), а другой является естественным. Анализ состояния поляризации сводится к выявлению соотношения между интенсивностями поляризованной и неполяризованной компонентами и определению полуосей эллипса. На первом этапе анализ проводится с помощью одного поляризатора. При его вращении интенсивность изменяется от некоторого максимального I макс до минимального значения I min . Поскольку в соответствии с законом Малюса свет не проходит через поляризатор, если плоскость пропускания последнего перпендикулярна к световому вектору, то, если I min =0 можно заключить, что свет имеет линейную поляризацию. При I макс =I min (независимо от положения анализатор пропускает половину падающего на него светового потока) свет является естественным или циркулярно поляризованным, а при он поляризован частично или эллиптически. Положения анализатора, соответствующие максимуму или минимуму пропускания, отличаются на 90° и определяют положение полуосей эллипса поляризованной компоненты светового потока. Второй этап анализа производится с помощью пластинки ви анализатора. Пластинка располагается так, чтобы на выходе из нее поляризованная компонента светового потока имела линейную поляризацию. Для этого оптическую ось пластинки ориентируют по направлению одной из осей эллипса поляризованной компоненты. (При I макс ориентация оптической оси пластинки не имеет значения). Поскольку естественный свет при прохождении через пластинку не изменяет состояния поляризации, то из пластинки в общем случае выходит смесь линейно поляризованного и естественного света. Затем этот свет анализируется, как и на первом этапе, с помощью анализатора.

6,10 Распространение света в оптически неоднородной среде. Природа процессов рассеяния. Рэлеевское рассеяние и рассеяние Ми, Комбинационное рассеяние света. Рассеяние света состоит в том, что световая волна, проходящая через вещество, вызывает колебания электронов в атомах (молекулах). Эти электроны возбуждают вторичные волны, распространяющиеся по всем направлениям. При этом вторичные волны оказываются когерентными между собой и поэтому интерферируют. Теоретический расчет: в случае однородной среды вторичные волны полностью гасят друг друга во всех направлениях, кроме направления распространения первичной волны. В силу этого перераспределения света по направлениям, т. е. рассеяния света в однородной среде, не происходит. В случае неоднородной среды световые волны, дифрагируя на мелких неоднородностях среды, дают дифракционную картину в виде довольно равномерного распределения интенсивности по всем направлениям. Это явление и называют рассеянием света. Прикол этих сред: содержание мелких частиц, показатель преломления которых отличается от окружающей среды. В свете прошедшем сквозь толстый слой мутной среды, обнаруживается преобладание длинноволновой части спектра, и среда кажется красноватой коротковолновой и среда кажется голубой. Причина: электроны, совершающие вынужденные колебания в атомах электрически изотропной частицы малого размера (), эквивалентны одному колеблющемуся диполю. Этот диполь колеблется с частотой падающей на него световой волны и интенсивность излучаемого им света.- з-н Рэлея. Т.е.коротковолновая часть спектра рассеивается значительно более интенсивно, нежели длинноволновая. Голубой свет, частота которого примерно в 1.5 раза больше частоты красного света, рассеивается почти в 5 раз интенсивнее, чем красный. Это и объясняет голубой цвет рассеянного света и красноватый - прошедшего.Рассеяние Ми . Теория Рэлея правильно описывает основные закономерности рассеяния света молекулами а также мелкими частицами, размер которых много меньше длины волны (а <λ/15). При рассеянии света на более крупных частицах наблюдаются значительные расхождения с рассмотренной теорией. Строгое описание рассеяния света малыми частицами произвольной формы, размеров и диэлектрических свойств представляет сложную математическую задачу. В соответствии с теорией Ми характер рассеяния зависит от приведенного радиуса частицы . Интенсивность рассеяния зависит от флуктуаций величины ε, которые будут особенно большими в разреженных газах. В жидкостях флуктуации заметными вблизи фазовых переходов. Причиной сильного рассеяния света являются флуктуации плотности, которые из-за неограниченного возрастания сжимаемости веществавблизи критической точки становятся большими.Комбинационное рассеяние света. - неупругое рассеяние. Комбинационное рассеяние вызывается изменением дипольного момента молекул среды под действием поля падающей волны Е. Индуциремый дипольный момент молекул определяется поляризуемостью молекул и напряженностью волны.


Явления интерференции поляризованных лучей исследовались в классических опытах Френеля и Арго (1816 г.), доказавших поперечность световых колебаний. Суть их в зависимости результата интерференции от угла между плоскостями световых колебаний: полосы наиболее контрастны при параллельных плоскостях и исчезают, если волны поляризованы ортогонально. Трудность получения интерференции поляризованных волн состоит в том, что при наложении двух когерентных лучей, поляризованных во взаимно перпендикулярных направлениях, никакой интерференционной картины с максимумами и минимумами интенсивности получиться не может. Интерференция возникает только в том случае, если колебания во взаимодействующих лучах совершаются вдоль одного и того же направления. Колебания в двух лучах, первоначально поляризованных во взаимно перпендикулярных направлениях, можно свести в одну плоскость, пропустив эти лучи через поляризующую кристаллическую пластинку.

Рассмотрим схему получения интерференции поляризованных лучей (рис. 11.13).

Рис. 11.13

Прошедшее через поляризатор Р излучение точечного источника S попадает на полуволновую кристаллическую пластинку Q, которая позволяет изменять угол между плоскостями поляризации интерферирующих лучей: ее поворот на угол α поворачивает вектор на 2α. Если наблюдать интерференционные полосы через анализатор А, то при его повороте на π/2 картина, наблюдаемая на экране Э, инвертируется: из-за дополнительной разности фаз π темные полосы становятся светлыми и наоборот. Анализатор здесь необходим также для того, чтобы свести колебания двух различно поляризованных лучей в одну плоскость.

при прохождении поляризованного света через кристаллическую пластинку разность хода между двумя компонентами поляризации зависит от толщины пластинки, среднего угла преломления и разности показателей и . Очевидно, что возникающая при этом разность фаз

Вращение плоскости поляризации.

Вращение плоскости поляризации поперечной волны - физическое явление, заключающееся в повороте поляризационного вектора линейно-поляризованной поперечной волны вокруг её волнового вектора при прохождении волны через анизотропную среду. Волна может быть электромагнитной, акустической, гравитационной и т. д.

Линейно-поляризованная поперечная волна может быть описана как суперпозиция двух циркулярно поляризованных волн с одинаковым волновым вектором и амплитудой. В изотропной среде проекции полевого вектора этих двух волн на плоскость поляризации колеблются синфазно, их сумма равна полевому вектору суммарной линейно-поляризованной волны. Если фазовая скорость циркулярно поляризованных волн в среде различна (циркулярная анизотропия среды, см. также Двойное лучепреломление ), то одна из волн отстаёт от другой, что приводит к появлению разности фаз между колебаниями указанных проекций на выбранную плоскость. Эта разность фаз изменяется при распространении волны (в однородной среде - линейно растёт). Если повернуть плоскость поляризации вокруг волнового вектора на угол, равный половине разности фаз, то колебания проекций полевых векторов на неё будут вновь синфазны - повёрнутая плоскость будет плоскостью поляризации в данный момент.

Вращение плоскости поляризации электромагнитной волны в плазме при наложении магнитного поля (эффект Фарадея).

Таким образом, непосредственной причиной поворота плоскости поляризации является набег разности фаз между циркулярно поляризованными составляющими линейно-поляризованной волны при её распространении в циркулярно-анизотропной среде. Для электромагнитных колебаний такая среда называется оптически активной (или гиротропной

), для упругих поперечных волн - акустически активной. Известен также поворот плоскости поляризации при отражении от анизотропной среды (см., например, магнитооптический эффект Керра ).

Циркулярная анизотропия среды (и, соответственно, поворот плоскости поляризации распространяющейся в ней волны) может зависеть от наложенных на среду внешних полей (электрического, магнитного) и от механических напряжений (см.Фотоупругость

). Кроме того, степень анизотропии и набег фаз, вообще говоря, могут зависеть от длины волны (дисперсия). Угол поворота плоскости поляризации линейно зависит при прочих равных условиях от длины пробега волны в активной среде. Оптически активная среда, состоящая из смеси активных и неактивных молекул, поворачивает плоскость поляризации пропорционально концентрации оптически активного вещества, на чём основан поляриметрический метод измерения концентрации таких веществ в растворах; коэффициент пропорциональности, связывающий поворот плоскости поляризации с длиной луча и концентрацией вещества, называется удельным вращением данного вещества.

В случае акустических колебаний поворот плоскости поляризации наблюдается лишь для поперечных упругих волн (так как для продольных волн плоскость поляризации не определена) и, следовательно, может происходить лишь в твёрдых телах, но не в жидкостях или газах.

Общая теория относительности предсказывает вращение плоскости поляризации световой волны в пустоте при распространении световой волны в пространстве с некоторыми типами метрики вследствие параллельного переноса вектора поляризации по нулевой геодезической - траектории светового луча (гравитационный эффект Фарадея, или эффект Рытова - Скротского)

Эффект вращения плоскости поляризации света используется

§ для определения концентрации оптически активных веществ в растворах (см., например, Сахариметрия

§ для исследования механических напряжений в прозрачных телах;

§ для управления прозрачностью жидкокристаллического слоя в жидкокристаллических индикаторах (циркулярная анизотропия ЖК зависит от приложенного электрического поля).

Важный случай И. с. - интерференция поляризованных лучей (см. Поляризация света). В общем случае, когда складываются две различно поляризованные когерентные световые волны, происходит векторное сложение их амплитуд, что приводит к эллиптической поляризации. Это явление наблюдается, например, при прохождении линейно поляризованного света через анизотропные среды. Попадая в такую среду, линейно поляризованный луч разделяется на 2 когерентных, поляризованных во взаимно перпендикулярных плоскостях луча. Вследствие различного состояния поляризации скорость их распространения в этой среде различна и между ними возникает разность фаз, зависящая от расстояния, пройденного в веществе. Величинабудет определять состояние эллиптической поляризации; в частности, при, равной целому числу полуволн, поляризация будет линейной.

Интерференцию поляризованных лучей широко используют в кристаллооптике для определения структуры и ориентации осей кристалла, в минералогии для определения минералов и горных пород, для обнаружения и исследования напряжений и деформаций в твёрдых телах, для создания особо узкополосных светофильтров и др.

Оптическая ось кристалла.

Оптическая ось кристалла, направление в кристалле, в котором свет распространяется, не испытывая двойного лучепреломления.

Главное сечение кристалла.

Главное сечение кристалла- плоскость, образованная направлением распространения падающего света и направлением оптической оси кристалла.

Оптически активные вещества.

Оптически активные вещества, среды, обладающие естественнойоптической активностью. О.-а. в. подразделяются на 2 типа. Относящиеся к 1-му из них оптически активны в любом агрегатном состоянии (сахара, камфора, винная кислота), ко 2-му - активны только в кристаллической фазе (кварц, киноварь). У веществ 1-го типа оптическая активность обусловлена асимметричным строением их молекул, 2-го типа - специфической ориентацией молекул (ионов) в элементарных ячейках кристалла (асимметрией поля сил, связывающих частицы в кристаллической решётке). Кристаллы О.-а. в. всегда существуют в двух формах - правой и левой; при этом решётка правого кристалла зеркально-симметрична решётке левого и не может быть пространственно совмещена с нею (т. н. энантиоморфные формы, см.Энантиоморфизм). Оптической активности правой и левой форм О.-а. в. 2-го типа имеют разные знаки (и равны по абсолютной величине при одинаковых внешних условиях), поэтому их называется оптическими антиподами (иногда так называют и кристаллы О.-а. в. 1-го типа).

Молекулы правого и левого О.-а. в. 1-го типа являются оптическими изомерами (см. Изомерия,Стереохимия),т. е. по своему строению представляют собойзеркальные отражениядруг друга. Их можно отличить одну от другой, в то время как частицы оптических антиподов (О.-а. в. 1-го типа) просто неразличимы (идентичны). Физические и химические свойства чистых оптических изомеров совершенно одинаковы в отсутствии какого-либо асимметричного агента, реагирующего на зеркальную асимметрию молекул. Продукт химической реакции без участия такого агента - всегда смесь оптических изомеров в равных количествах, т. н. рацемат. Физические свойства рацемата и чистых оптических изомеров зачастую различны. Например, температура плавления рацемата несколько ниже, чем чистого изомера. Рацемат разделяют на чистые изомеры либо отбором энантиоморфных кристаллов, либо в химической реакции с участием асимметричного агента - чистого изомера или асимметричного катализатора, либо микробиологически. Последнее свидетельствует о наличии асимметричных агентов в биологических процессах и связано со специфическим и пока не нашедшим удовлетворительного объяснения свойством живой природы строить белки из левых оптических изомероваминокислот- 19 из 20 жизненно важных аминокислот оптически активны. (Применительно к О.-а. в. 1-го типа термины "левый" и "правый" -L иD - условны в том смысле, что не соответствуют непосредственно направлениювращения плоскости поляризациив них, в отличие от этих же терминов - l и d - для О.-а. в. 2-го типа или терминов "левовращающий" и "правовращающий".) Физиологическое и биохимическое действие оптических изомеров часто совершенно различно. Например, белки, синтезированные искусств, путём из D-amинокислот, не усваиваются организмом; бактерии сбраживают лишь один из изомеров, не затрагивая другой;L -никотин в несколько раз ядовитееD -никотина. Удивительный феномен преимущественной роли только одной из форм оптических изомеров в биологических процессах может иметь фундаментальное значение для выяснения путей зарождения и эволюции жизни на Земле.

При наложении двух когерентных лучей, поляризованных во взаимно перпендикулярных направлениях, никакой интерференционной картины, с характерным для нее чередованием максимумов и минимумов интенсивности, не наблюдается. Интерференция возникает только в том случае, если колебания во взаимодействующих лучах совершаются вдоль одного и того же направления. Направления колебаний в двух лучах, первоначально поляризованных во взаимно перпендикулярных направлениях, можно свести в одну плоскость, пропустив эти лучи через поляризационное устройство, установленное так, чтобы его плоскость не совпадала с плоскостью колебаний ни одного из лучей.

Рассмотрим, что получается при наложении вышедших из кристаллической пластинки обыкновенного и необыкновенного лучей. При нормальном падении света

на параллельную оптической оси грань кристалла обыкновенный и необыкновенный лучи распространяются не разделяясь, но с различной скоростью. В связи с этим между ними возникает разность хода

или разность фаз

где d – путь, пройденный лучами в кристалле, λ 0 – длина волны в вакууме [см. формулы (17.3) и (17.4)].

Таким образом, если пропустить естественный свет через вырезанную параллельно оптической оси кристаллическую пластинку толщины d (рис. 12l,a), из пластинки выйдут два поляризованных во взаимно перпендикулярных плоскостях луча1 и2 1 , между которыми будет существовать разность фаз (31.2). Поставим на пути этих лучей какой-нибудь поляризатор, например поляроид или николь. Колебания обоих лучей после прохождения через поляризатор будут лежать в одной плоскости. Амплитуды их будут равны составляющим амплитуд лучей1 и2 в направлении плоскости поляризатора (рис. 121, б).

Поскольку оба луча получены разделением света, полученного от одного источника, они, казалось бы, должны интерферировать, и при толщине кристалла d такой, что возникающая между лучами разность хода (31.1) равна, например, λ 0 /2, интенсивность выходящих из поляризатора лучей (при определенной ориентации плоскости поляризатора) должна быть равна нулю.

Опыт, однако, показывает, что, если лучи 1 и2 возникают за счет прохождения через кристалл естественного света, они не дают интерференции, т. е. не являются когерентными. Это объясняется весьма просто. Хотя обыкновенный и необыкновенный лучи порождены одним и тем же источником света, они содержат в основном колебания, принадлежащие разным цугам волн, испускаемых отдельными атомами. Колебания, соответствующие одному такому цугу волн, совершаются в случайно ориентированной плоскости. В обыкновенном луче колебания обусловлены преимущественно цугами, плоскости колебаний которых близки к одному направлению в пространстве, в необыкновенном луче – цугами, плоскости колебаний которых близки к другому, перпендикулярному к первому направлению. Поскольку отдельные цуги некогерентны, возникающие из естественного света обыкновенный и необыкновенный лучи, а, следовательно, и лучи1 и2 , также оказываются некогерентными.

Иначе обстоит дело, если на кристаллическую пластинку, изображенную на рис. 121, падает плоскополяризованный свет. В этом случае колебания каждого цуга разделяются между обыкновенным и необыкновенным лучами в одной и той же пропорции (зависящей от ориентации оптической оси пластинки относительно плоскости колебаний в падающем луче), так что лучи о ие , а, следовательно, и лучи1 и2 , оказываются когерентными.

Две когерентные плоско-поляризованные световые волны, плоскости колебаний которых взаимно перпендикулярны, при наложении друг на друга дают, вообще говоря, эллиптически поляризованный свет. В частном случае может получиться свет, поляризованный по кругу, или плоскополяризованный свет. Какая из этих трех возможностей имеет место, зависит от толщины кристаллической пластинки и показателей преломления n e иn о, а также от соотношения амплитуд лучей1 и2 .

Вырезанная параллельно оптической оси пластинка, для которой (n о –n e)d = λ 0 /4, называетсяпластинкой в четверть волны ; пластинка, для которой, (n о –n e)d = λ 0 /2 называетсяпластинкой в полволны и т. д. 1 .

лучей будут неодинаковыми. Поэтому при наложении эти лучи образуют свет, поляризованный по эллипсу, одна из осей которого совпадает по направлению с осью пластинки O . Приφ, равном 0 или/2, в пластинке будет

14-я лекция. Дисперсия света.

Элементарная теория дисперсии. Комплексная диэлектрическая проницаемость вещества. Кривые дисперсии и поглощение света в веществе.

Волновой пакет. Групповая скорость.