Какие бывают рентгенологические методы исследования. Основные методы рентгенологического исследования

Позвоночник человека представляет собой сложный анатомо-функциональный комплекс, состоящий из разнородных по тканевому составу, анатомическому строению и функциям компонентов. Тяжесть заболеваний и повреждений позвоночника, характер их течения, а также выбор методов лечения находятся в прямой зависимости от степени вовлечения в патологический процесс этих компонентов и характера возникающих в них патологических изменений. Вместе с тем естественной рентгеновской контрастностью обладает и, следовательно, отображается на обычных рентгенограммах только один компонент позвоночного столба - позвонки, что обусловливает необходимость применения для развернутой рентгенологической характеристики анатомо-функционального состояния позвоночника, помимо стандартного рентгеноанатомического, ряда специальных методов рентгенологического исследования (прямого и косвенного рентгенофункциональных, искусственного контрастирования и вычислительной рентгенодиагностики).

Основу рентгенологического исследования позвоночника составляет обычная рентгенография. Полный его комплекс включает в себя производство рентгенограмм при исследовании шейного отдела в пяти проекциях, грудного - в четырех и поясничного, так же как и шейного, - в пяти. При исследовании шейного отдела этими проекциями являются: две стандартные, т.е. задняя и боковая, две косые (под углом 45° к сагиттальной плоскости) для выведения суставных щелей межпозвоночных суставов и рентгенограмма "через рот", позволяющая получить изображение в задней проекции двух верхних шейных позвонков, перекрытых на стандартной задней рентгенограмме тенями лицевого черепа и затылочной кости. Исследование грудного отдела позвоночника, помимо стандартных, производится еще и в двух косых проекциях, выполняемых с той же целью, что и при исследовании шейного отдела, однако тело ребенка отклоняется от сагиттальной плоскости под углом не 45°, а 15°. Четыре из пяти проекций, используемых для исследования поясничного отдела позвоночника, аналогичны четырем первым проекциям для исследования шейного отдела. Пятой является боковая, выполняемая при отклонении центрального пучка лучей в каудальном направлении под углом 20-25° с центрацией его на LIV. Рентгенография в этой проекции производится с целью выявления признаков остеохондроза нижнепоясничных межпозвоночных дисков.

Применение всех вышеперечисленных проекций позволяет получить развернутую информацию об особенностях анатомического строения всех отделов позвонков, однако показания к их использованию относительно ограничены, так как рентгенодиагностика большинства наиболее распространенных патологических изменений костных компонентов позвоночного столба у детей может быть обеспечена на основании анализа рентгенограмм, произведенных только в двух стандартных проекциях - задней и боковой.

Интерпретация данных обычной рентгенографии позволяет получить информацию об особенностях пространственного положения позвоночника (или его отделов) во фронтальной и сагиттальной плоскостях и позвонков в горизонтальной, об особенностях формы, размеров, контуров и внутренней структуры позвонков, характере анатомических соотношений между ними, форме и высоте межпозвоночных пространств, а также о величине локального костного возраста позвоночника. Как известно, биологический возраст различных систем человеческого организма не всегда совпадает с паспортным. Наиболее точным показателем возрастного периода формирования костно-суставной системы является степень оссификации костей запястья и эпифизов коротких трубчатых костей кисти. Однако при некоторых заболеваниях того или иного отдела опорно-двигательного аппарата в детском возрасте отмечается изменение темпов его развития по сравнению с темпами развития скелета в целом. Степень выраженности этого изменения является одним из показателей тяжести вызвавшего их патологического процесса

В качестве рентгенологического показателя возрастного периода формирования позвоночника используются стадии оссификации апофизов тел позвонков (Рохлин Д. Г., Финкельштейн М. А., 1956; Дьяченко В. А., 1954). По данным наших исследований, в процессе оссификации этих апофизов могут быть выделены шесть четко различимых между собой стадий, каждая из которых в норме соответствует определенному паспортному возрасту. Несовпадение нормативного возраста выявленной при рентгеноанатомическом исследовании стадии оссификации апофизов тел позвонков с паспортным возрастом ребенка расценивается как показатель нарушения темпов формирования позвоночника, в случае меньшего, чем паспортный, возраста стадии - в сторону замедления, большего - в сторону ускорения.

Дополнительным средством получения информации для стандартного рентгеноанатомического анализа является послойная рентгенография, или, как ее чаще называют, томография, обеспечивающая возможность изучения позвонков по слоям без затрудняющего анализ проекционного наслоения изображений разноудаленных от пленки частей этих позвонков. Основным показанием к применению томографии при заболеваниях позвоночника является необходимость решения вопроса о наличии или отсутствии и характере патологических изменений костной структуры, не выявляющихся на обычных рентгенограммах за тенью реактивного склероза или в силу незначительности их размеров.

Диагностическая ценность томографических данных в значительной мере зависит от правильности выбора проекций для проведения исследования и правильности определения глубины томографических срезов. Мы считаем целесообразным производить послойную рентгенографию позвоночника в боковой проекции по следующим соображениям. В положении больного лежа на боку позвоночник на всем его протяжении располагается параллельно поверхности снимочного стола, что является одним из ведущих условий получения качественного томографического изображения, тогда как в положении лежа на спине из-за наличия физиологических изгибов позвоночника соблюдение этого условия не обеспечивается. Далее, на томограммах, произведенных в боковой проекции, отображаются на одном и том же срезе как передние, так и задние отделы позвонков, причем последние - в наиболее выгодном для анализа виде, что позволяет ограничиваться относительно небольшим количеством срезов. На томограммах же, произведенных в задней проекции, отображаются либо, только тела, либо отдельные части дужек позвонков. Кроме того, исследование в задней проекции исключает возможность использования для определения уровня среза такого удобного анатомического ориентира, как верхушки остистых отростков.

Значимость правильности выбора глубины томографического среза определяется тем, что показания к применению послойной рентгенографии возникают, как правило, при относительно небольших по размеру патологических очагах, вследствие чего ошибка в определении глубины среза на 1 или даже на 0,5 см может привести к непопаданию их изображения на пленку. Использование симультанной кассеты, позволяющей за один пробег томографа получить последовательное изображение нескольких слоев снимаемого объекта при любом заданном расстоянии между слоями, подкупает своей простотой и высокой вероятностью совпадения одного из срезов с расположением участка деструкции. Вместе с тем такой способ томографирования связан с неоправданным расходованием рентгеновских пленок, анализ изображения на большинстве которых не несет диагностической информации, поскольку на них отображаются неизмененные участки позвонков.

Гораздо более оправданной является так называемая избирательная томография, направленная на выделение строго определенного участка тела или дужки позвонка. Расчет глубины среза в случаях, когда участок патологически измененной костной ткани в какой-то мере виден на обычной задней рентгенограмме, производится на основании данных простой рентгенометрии. Измеряется расстояние от патологического очага до основания остистого отростка позвонка, затем после укладки больного измеряется расстояние от поверхности снимочного стола до легко определяемой пальпаторно верхушки остистого отростка подлежащего исследованию позвонка, и к полученной величине добавляется или из нее вычитается величина, равная измеренному по рентгенограмме расстоянию между патологическим очагом и основанием остистого отростка. Сказанное может быть проиллюстрировано на следующем конкретном примере. Педположим, что на обычной рентгенограмме выявлены увеличение размеров и изменение костной структуры правого верхнего суставного отростка одного из грудных позвонков. Величина расстояния между этим суставным отростком и основанием остистого на рентгенограмме равна 1,5 см. Расстояние от поверхности снимочного стола до верхушки остистого отростка исследуемого позвонка, измеренное после укладки больного на бок, равно 12 см. Отсюда глубина среза равна 12-1,5 (если больной лежит на правом боку) и 12+1,5 см (если лежит на левом).

При трудности определения местоположения участка деструкции или других патологических изменений костной ткани на задней рентгенограмме выявление его на томограмме обеспечивается, как правило, выполнением трех томографических срезов: на уровне основания остистого отростка и правого и левого суставных. На первом из названных томографических срезов отображаются остистые отростки на всем их протяжении просвет позвоночного канала и центральные отделы тел позвонков, на двух остальных - соответствующие верхние и нижние суставные отростки и боковые отделы дуг и тел позвонков.

Стандартное рентгейоанатомическое исследование, хотя и обладает достаточно высокими информативными возможностями, не обеспечивает всей полноты диагностики нерезко выраженных патологических состояний межпозвоночных дисков и нарушений функций позвоночного столба. Решение этих вопросов требует применения методов искусственного контрастирования и прямого и косвенного рентгенофункционального исследований.

Искусственное контрастирование межпозвонковых дисков - дискография - нашло применение, в основном, в диагностике и определении тяжести остеохондроза межпозвонковых дисков. В качестве контрастирующих веществ используются йодсодержащие соединения на жировой или водной основе в количестве 0,5-1 см3 на один межпозвоночный диск. Рентгенография позвоночника после контрастирования дисков производится в двух стандартных проекциях. Некоторые авторы рекомендуют, кроме того, выполнять рентгенограммы и в различных функциональных положениях.

В неизмененном или нерезко измененном межпозвонковом диске контрастируется только желатинозное ядро, отображающееся на задних рентгенограммах у взрослых и подростков в виде двух горизонтальных полос, у детей - в виде тени овальной или округлой формы. На боковой рентгенограмме желатинозное ядро межпозвонкового диска у взрослых имеет С-образную форму, у детей -треугольную.

Типичная для выраженного остеохондроза фрагментация межпозвонковых дискоз проявляется на дискограммах затеканием контрастирующего вещества в промежутки между фрагментами фиброзного кольца, а также уменьшением размеров и неправильностью формы желатинозного ядра. Используется дискография и для определения стадий перемещения желатинозного ядра у детей, страдающих структуральным сколи-

При наличии целого ряда диагностических достоинств контрастная дискография в детской клинике имеет ограниченные показания. Прежде всего, прижизненно и вне оперативного вмешательства введение контрастирующего вещества возможно только в диски шейного и средне- и нижнепоясничного отделов позвоночника. (Искусственное контрастирование межпозвонковых дисков грудного отдела исследователями производилось во время операции спондилодеза). Далее, остеохондроз межпозвонковых дисков у детей развивается относительно редко, и, наконец, по данным наших исследований, достоверная информация о состоянии дисков может быть получена на основании более простого в техническом отношении и атравматичного прямого рентгенофункционального исследования.

Информация о состоянии статико-динамических функций опорно-двигательного аппарата средствами рентгенологического исследования достигается двумя путями - на основании анализа на стандартных рентгенограммах деталей анатомического строения костей, отражающих величину функциональных нагрузок, приходящихся на тот или иной отдел костно-суставной системы, и путем рентгенографии суставов или позвоночника в процессе осуществления ими опорной или двигательной функций. Первый из этих способов называется методом косвенного рентгенофункционального исследования, второй - прямого.

Исследование состояния функций позвоночника на основании косвенных показателей включает в себя оценку архитектоники костной структуры и степени минерализации костной ткани. Последняя входит в комплекс косвенного рентгенофункционального исследования на том основании, что изменения ее являются следствием нарушения функций либо самой костной ткани, либо функций опорно-двигательного аппарата в целом. Основным объектом исследований при анализе костной структуры являются так называемые силовые линии, представляющие собой скопления одинаково ориентированных, интенсивных костных пластинок. Одинаково направленные силовые линии группируются в системы, количество и характер которых были описаны в гл. I. Архитектоника костной структуры, как это установлено многими исследователями, является функциональной системой высокой реактивности, оперативно отзывающейся изменением выраженности силовых линий или их переориентацией на любые, даже незначительные, изменения статико-динамических условий.

Наиболее легкая степень нарушения нормальной архитектоники костной структуры тел и дужек позвонков заключается в частичном или полном рассасывании силовых линий в тех отделах, нагрузка на которые уменьшилась, и в усилении их в отделах, испытывающих повышенную нагрузку. Более выраженные биомеханические нарушения, особенно расстройства нервной трофики, сопровождаются так называемым дедифференцированием костной структуры - полным рассасыванием всех силовых линий. Показателем резко выраженных изменений в характере распределения статико-динамических нагрузок в пределах позвоночного столба или одного из его отделов является переориентация силовых линий - вертикальная их направленность в телах позвонков и дугообразная - в дужках сменяется на горизонтальную.

Рутинным рентгеноанатомическим приемом выявления изменений степени минерализации костной ткани является визуальная сравнительная оценка оптических плотностей рентгеновского изображения пораженных и здоровых позвонков. Субъективность и приблизительность данного способа вряд ли требуют особых доказательств. Объективным способом рентгенологической оценки степени минерализации костей является фотоденситометрия, сущность которой заключается в проведении фотометрии оптической плотности рентгеновского изображения позвонков и сравнения полученных показателей с показателями фотометрии эталона нормы. Для обеспечения достоверности фотоденситометрической диагностики остеопороза или остеосклероза эталон нормы должен удовлетворять трем требованиям: 1) оптическая плотность его рентгеновского изображения должна быть соотносима с оптической плотностью рентгеновского изображения позвонков; 2) эталон должен содержать в себе образцы оптической плотности нормальной кости различной толщины (для обеспечения количественной характеристики изменений минеральной насыщенности); 3) эталон должен иметь толщину, позволяющую помещать его во время рентгенографии под мягкие ткани туловища без нарушения этим правильности укладки и причинения неприятных ощущений ребенку. В наибольшей степени удовлетворяют этим условием эталоны из искусственных материалов.

Создание градаций оптической плотности эталона достигается путем придания ему клиновидной или ступенчатой формы. Рентгенограммы позвоночника в случае предполагающегося фотоденситометрического исследования производятся с подкладкой эталона под мягкие ткани поясничной области для обеспечения идентичности условий экспозиции позвонков и эталона и условий проявления рентгеновской пленки. Качественная оценка минерализации костной ткани позвонков производится путем сравнения показателей фотометрии оптической плотности их рентгеновского изображения и рентгеновского изображения участка эталона, содержащего образец оптической плотности нормальной костной ткани той же толщины. При выявлении разности показателей, свидетельствующей об отклонениях от нормы в степени минерализации позвонков, проводится дополнительная фотометрия эталона с целью определения больше или меньше должной оптическая плотность исследуемого позвонка (или позвонков) и какой конкретно толщине нормальной костной ткани она соответствует.

Наиболее удобным видом количественной характеристики изменений минеральной насыщенности позвонков (но не ее абсолютной величины) является выраженное в процентах отношение ее к должной. Толщина тела позвонка, измеренная по рентгенограмме, произведенной в противоположной проекции, принимается за 100%, толщина нормальной кости, которой соответствует оптическая плотность рентгеновского изображения позвонка,- за х %.

Предположим, оптическая плотность тела позвонка на боковой рентгенограмме, имеющего фролтальный размер, равный 5 см, соответствует оптической плотности нормальной кости толщиной 3 см. Составляется следующая пропорция: 5 см - 100%, 3 см - х%

Отсюда степень минеральной насыщенности костной ткани позвонка составляет от должной = 60%

Наиболее технически совершенным средством получения информации о процессе осуществления двигательной функции является кинорентгенография, т.е. киносъемка с экрана рентгеновского изображения движущегося позвоночника. Однако для целей рентгенодиагностики нарушения функций дискосвязочного аппарата позвоночного столба кинорентгенография с успехом может быть заменена обычной рентгенографией, произведенной в нескольких, рационально выбранных фазах движения. Киносъемка, как известно, производится со скоростью 24 кадра в секунду, а при использовании "лупы времени" - с еще большей скоростью. Это означает, что промежуток времени, проходящий между экспозицией двух соседних кадров, равняется минимум,54 с. За столь короткое время соотношения между телами и дужками позвонков не успевают заметно измениться, и на нескольких соседних кадрах получаются практически идентичные изображения. Таким образом, нет необходимости изучать все полученные кадры, достаточно провести анализ только некоторых из них. Более того, количество кадров, необходимых для характеристики двигательной функции, относительно невелико. Кинорентгенография применялась преимущественно с целью определения нормального объема подвижности позвоночника. Полученные при этом данные практически не отличались от данных, полученных авторами, применявшими для той же цели обычную рентгенографию в двух крайних положениях движения позвоночника - сгибания и разгибания или боковых наклонов.

По данным наших исследований, необходимый и достаточный объем информации о состоянии межпозвоночных дисков и двигательной функции позвоночника или его отделов может быть получен на основании анализа рентгенограмм, произведенных в трех функциональных положениях: при физиологической разгрузке, т.е. в положении больного лежа при стандартной укладке, при статической нагрузке, т.е. в положении больного стоя, и в крайних фазах свойственных позвоночнику движений. Выбор проекций для рентгенографии (задняя или боковая), а также количество снимков в третьем функциональном положении (в обоих крайних положениях того или иного движения или только в одном из них) определяются ведущей направленностью исследования (выявление нарушений функций межпозвоночных дисков, нарушения стабилизирующих функций дискосвязочного аппарата, определение объема подвижности позвоночника или его отделов), а также плоскостью максимального проявления -исследуемых патологических изменений.

Обязательным условием выполнения рентгенограмм при проведении прямого рентгенофункционального исследования является соблюдение идентичности кожно-фокусного расстояния, положения фронтальной или сагиттальной плоскости тела больного по отношению к поверхности снимочного стола и идентичности центрации центрального пучка рентгеновских лучей. Необходимость соблюдения этих условий вызвана тем, что интерпретация данных прямого рентгенофункционального исследования включает в себя сравнительный анализ ряда линейных величин и местоположения ряда рентгеноанатомических ориентиров, находящихся в прямой зависимости от условий осуществления рентгенографии.

Рентгенофункциональная диагностика состояния межпозвоночных дисков основывается на оценке их эластических свойств, состояния двигательной и стабилизирующей функций. Оценка первых двух показателей производится путем сравнительного анализа результатов рентгенометрии высоты парных краевых отделов межпозвоночных пространств (правого и левого или переднего и заднего) при различных условиях статико-динамических нагрузок. Состояние стабилизирующей функции определяется на основании анализа соотношений между телами позвонков в различных функциональных положениях.

Показателями нормальных эластических свойств диска являются равномерное увеличение их высоты на рентгенограммах, произведенных в положении больного лежа, по сравнению с высотой на рентгенограммах, произведенных при статической нагрузке, не менее чем на 1 мм и амплитуда колебаний высоты краевых отделов диска от максимального сжатия до максимального расправления (при активных движениях туловища), равная 3-4 мм в грудном отделе позвоночника и 4-5 мм - в поясничном.

Рентгенофункциональным признаком нормальной двигательной функции диска является одинаковая величина увеличения и уменьшения высоты его краевых отделов при переходе тела из одного крайнего положения движения в какой-либо плоскости в другое, или, иными словами, возникновение на рентгенограммах, произведенных, например, при боковых наклонах вправо и влево, клиновидной деформации Дисков, совершенно идентичной по количественным показателям, но противоположной направленности.

Общеизвестно, что, помимо обеспечения движений позвоночника, межпозвонковые Диски обладают также стабилизирующей функцией, полностью исключая смещения тел позвонков относительно друг друга по ширине. Отсюда рентгенофункциональным признаком нарушения стабилизирующей функции диска является стабильное или появляющееся только при движении позвоночника смещение тела одного или нескольких позвонков по отношению к нижележащему. Степень этого смещения ввиду наличия костных ограничителей (почти вертикально расположенных суставных отростков) невелика (не более 2-2,5 мм) и выявляется только при тщательном рентгеноанатомическом анализе.

Каждому из видов патологической перестройки межпозвонковых дисков (остеохондроз, фиброз, дислокация желатинозного ядра, избыточная растяжимость) присущ свой комплекс нарушений функций, что позволяет осуществлять их рентгенодиагностику без применения контрастной дискографии методом прямого рентгенофункционального исследования.

Остеохондроз межпозвонковых дисков

Рентгенофункциональный синдром ранних его стадий складывается из снижения эластичности межпозвонкового диска и одностороннего нарушения двигательной функции, поскольку патологи ческий процесс вначале носит чаще всего сегментарный характер. Под влиянием физиологической разгрузки величина пораженного диска увеличивается на меньшую величину, чем непораженного. На рентгенограммах, произведенных при наклоне тела в сторону, противоположную расположению пораженного сегмента диска (например, вправо при поражении левой части диска), высота этого сегмента увеличивается на меньшую величину, чем симметричного ему, в данном случае правого, при обратной направленности наклона. Выраженный, тотальный остеохондроз проявляется рентгенофункциональными признаками. Помимо отсутствия реакций на физиологическую разгрузку, уменьшенной амплитуды колебаний краевых отделов, выявляются признаки патологической подвижности между телами и суставными отростками позвонков.

Фиброз межпозвонковых дисков

Рентгенофункциональный синдром этого вида патологической перестройки диска складывается из рентгенофункциональн ых признаков резкого снижения эластичности и почти полного отсутствия двигательной функции (форма диска при движениях туловища практически не меняется). Стабилизирующая функция диска сохраняется полностью, что отличает рентгенофункциональный синдром фиброза от рентгенофункциональных проявлений выраженного остехондроза.

Дислокация желатинозного ядра

Процесс перестройки межпозвонкового диска проходит три основные стадии: частичное перемещение желатинозного ядра, характеризующееся вначале незначительным, а затем и выраженным изменением его формы при сохранении нормального расположения; полное перемещение желатинозного ядра из центральных отделов к одному из краев диска; дегенеративно-дистрофическое поражение по типу фиброза или остеохондроза. Частичное перемещение желатинозного ядра характеризуется клиновидностью межпозвонкового пространства на рентгенограмме, произведенной в положении стоя, за счет увеличения по сравнению с должной высоты его на стороне, в которую направлена дислокация ядра. Эластические свойства диска не нарушены. При наклоне тела в сторону основания клина высота этой части диска хотя несколько и уменьшается, но остается больше должной. Двигательная функция противоположной части диска не нарушена, под влиянием наклона высота ее превышает должную.

Полное перемещение желатинозного ядра

Клиновидность диска выражена в большей степени (на рентгенограмме, произведенной при статической нагрузке) и обусловлена не только увеличением высоты его со стороны основания клина, но и уменьшением по сравнению с должной со стороны его вершины. Эластичность отделов диска, расположенных у вершины клина, снижена - при наклоне в сторону основания клина высота сниженных отделов диска увеличивается незначительно и не достигает должной. Реакция на этот наклон расширенной части диска такая же, как и при частичном перемещении желатинозного ядра, однако сопротивление к сжатию выражено в еще большей степени.

Избыточная растяжимость межпозвонковых дисков

Рентгенофункциональный синдром этого вида патологии межпозвонковых дисков складывается из рентгенофункциональных признаков патологической подвижности между телами позвонков, сочетающейся с превышающей нормальные значения амплитудой колебания высоты краевых отделов диска от максимального сжатия до максимального растяжения в крайних фазах того или иного движения позвоночника, что отличает рентгенофункциональный синдром повышенной растяжимости диска от рентгенофункциональных проявлений выраженного остеохондроза.

Объем подвижности позвоночника во фронтальной плоскости определяется по суммарной величине образующихся при наклонах вправо и влево дугообразных искривлений, измеренных по методике Кобба или Фергюссона. Нормальный объем боковой подвижности грудного отдела позвоночника у детей равняется, по данным наших исследований, 20-25° (по 10-12° в каждую сторону), поясничного - 40-50° (по 20-25° вправо и влево).

Объем подвижности в сагиттальной плоскости характеризуется разницей величин грудного кифоза и поясничного лордоза на рентгенограммах, произведенных в крайних положениях сгибания и разгибания позвоночника. Величина его в норме в грудном отделе позвоночника составляет 20-25°, в поясничном - 40°.

Объем ротационной подвижности (при вращении тела впрат во и влево) определяется как сумма углов поворота, измеренных на рентгенограммах, произведенных при повороте тела вокруг вертикальной оси вправо и влево. Нормальный объем этого вида подвижности двигательных сегментов позвоночника равен 30° (по 15° в каждую из сторон).

Нарушения функций мышечно-связочного аппарата позвоночника имеют три основных варианта: нарушение стабилизирующей функции, фиброзное перерождение мышц и связок и нарушение мышечного равновесия.

Рентгенофункциональными признаками нарушения стабилизирующей функции связочного аппарата являются стабильные или возникающие только в процессе осуществления движений нарушения соотношений между телами позвонков и в межпозвонковых суставах. Основная причина патологической подвижности между телами позвонков заключается в нарушении стабилизирующей функции межпозвоночных дисков, но поскольку в ограничении смещений тел позвонков по ширине принимают участие и связки, появление патологической подвижности свидетельствует о нарушении и их функций. Нарушения соотношений в межпозвонковых суставах из-за особенностей пространственного расположения их в грудном отделе позвоночника и вариабельности расположения в поясничном достоверно диагностируются на рентгенограммах, произведенных в стандартных проекциях, только при значительной степени выраженности. Рентгенологическим признаком выраженных подвывихов является соприкосновение верхушки нижнего суставного отростка вышележащего позвонка с верхней поверхностью дуги нижележащего. Выявление более тонких нарушений стабильности межпозвонковых суставов достигается проведением прямого рентгенофункционального исследования в косых проекциях.

Нарушение мышечного равновесия и фиброзное перерождение связок могут быть определе ны средствами прямого рентгенофункционального исследования только на основании учета комплекса показателей. Ведущим рентгенофункциональным признаком этих изменений является ограничение подвижности позвоночника в одной или нескольких плоскостях. Вместе с тем признак этот не является патогномоничным, поскольку объем подвижности позвоночника определяется состоянием функций не только мышц и связок, но и межпозвонковых дисков. Исходя из этого, ограничение подвижности позвоночника или отдельных его сегментов может рассматриваться как рентгенофункциональный показатель мышечно-связочных контрактур только при условии сочетания с рентгенофункциональными признаками нормальной эластичности межпозвонковых дисков.

Мышечно-связочные контрактуры, ограничивая двигательную функцию позвоночника, создают тем самым препятствия для проявления в полной мере эластических свойств дисков, особенно для расправления краевых его отделов при осуществлении движений. Учитывая это обстоятельство, достаточным основанием для заключения об отсутствии выраженной перестройки межпозвонковых дисков по типу фиброза, врожденной гипоплазии или полной дислокации желатинозного ядра являются увеличение их высоты при физиологической нагрузке (по сравнению с высотой на рентгенограммах, произведенных в положении больного стоя) и симметричность сжатия и расправления краевых отделов диска при боковых наклонах или сгибании и разгибании. Остеохондроз межпозвонковых дисков ограничения подвижности не вызывает.

Повреждения и заболевания позвоночника могут оказывать патологическое воздействие на оболочки и корешки спинного мозга, а в отдельных случаях - и на сам спинной мозг вследствие распространения в соответствующем направлении опухолевых масс, образования краевых костных разрастаний при остеохондрозе межпозвонковых дисков, смещения в дорсальном направлении свободных задних полупозвонков или фрагментов поврежденных тел и дужек. Данные о наличии предпосылок для возникновения неврологических расстройств могут быть получены при анализе обычных рентгенограмм на основании определенной направленности краевых костных разрастаний, локального уменьшения расстояния от задней поверхности тел позвонков до основания остистых отростков (на боковой рентгенограмме) или проецирования на фоне спинномозгового канала костных фрагментов, однако достоверное заключение может быть вынесено только на основании интерпретации данных контрастной миелографии или перидурографии.

При производстве миелографии контрастирующее вещество вводится в межоболочечное пространство путем спинномозговой пункции на уровне нижнепоясничных позвонков (после предварительного удаления 5 мл спинномозговой жидкости). При производстве перидурографии контрастное вещество вводят в периоболочечное пространство заднекрестцовым доступом. Каждый из названных способов рентгенологического исследования имеет свои достоинства и недостатки.

Миелография создает хорошие условия для изучения формы и фронтального и сагиттального размеров спинного мозга и тем самым для выявления его сдавлений, смещений внутри позвоночного канала, объемных процессов и т. д. С помощью этого метода достигается контрастирование корешков спинномозговых нервов (Ahu Н., Rosenbaum А., 1981). Вместе с тем процессы, вызывающие раздражающее, а не сдавливающее воздействие на спинной мозг, выявляются на миелограммах менее отчетливо. Кроме того, введение контрастирующего вещества в межоболочечное пространство спинного мозга может вызывать ряд нежелательных побочных явлений (тошноту, головную боль и даже спинальную эпилепсию). Подобные осложнения отмечаются у 22-40% больных (Langlotz М. et al., 1981). Производство миелографии при вертикальном положении тела больного снижает число этих осложнений, но не устраняет их полностью.

Перидурография, наоборот, имеет несомненные преимущества перед миелографией в диагностике задних грыж межпозвонкового диска, нерезко выраженных краевых костных разрастаний, неоссифицированных хрящевых экзостозов, направленных в сторону позвоночного канала или корешков спинных нервов; не дает нежелательных побочных явлений, но значительно менее информативна в отношении состояния спинного мозга.

Выявление в рентгеновском изображении не обладающих естественной контрастностью структур позвоночного канала достигается введением контрастирующих веществ, имеющих как более высокую, так и более низкую молекулярную массу, чем мягкие ткани. Несомненным преимуществом первых из них является обеспечение высокой контрастности получаемого изображения, однако введение необходимого для заполнения межоболочечного или периоболочечного пространства количества "непрозрачного" контрастирующего вещества может привести к перекрыванию его тенью изображения небольших по размерам мягкотканных образований. Введение же малых количеств таит в себе опасность неравномерного распределения контрастного вещества и создания ложного впечатления наличия патологических изменений. Контрастирующие вещества с более низкой молекулярной массой (газы) вследствие их "прозрачности" для рентгеновского излучения не вызывают перекрывания спаек, хрящевых фрагментов; равномерное выполнение контрастируемых пространств происходит при введении даже небольших количеств газа. Недостатком этого способа контрастирования является малая контрастность получаемого изображения.

Количество контрастирующего вещества колеблется в зависимости от возраста ребенка от 5 до 10 мл. Введение его и следующая за этим рентгенография позвоночника производятся на снимочном столе с приподнятым головным концом - при пневмоперидурографии для лучшего распространения газа в краниальном направлении, при применении жидких контрастирующих веществ, оказывающих раздражающее действие на головной мозг - с обратной целью, т.е. с целью депонирования контрастного вещества на ограниченном протяжении.

Рентгенограммы позвоночника после контрастирования спинномозгового канала производятся, как правило, в двух стандартных проекциях - переднезадней и боковой, однако при необходимости рентгенографию выполняют в боковой проекции в положении максимального разгибания позвоночника.

Рентгенологическое исследование - применение рентгеновского излучения в медицине для изучения строения и функции различных органов и систем и распознавания заболеваний. Рентгенологическое исследование основано на неодинаковом поглощении рентгеновского излучения разными органами и тканями в зависимости от их объема и химического состава. Чем сильнее поглощает данный орган рентгеновское излучение, тем интенсивнее отбрасываемая им тень на экране или пленке. Для рентгенологического исследования многих органов прибегают к методике искусственного контрастирования. В полость органа, в его паренхиму или в окружающие его пространства вводят вещество, которое поглощает рентгеновское излучение в большей или меньшей степени, чем исследуемый орган (см. Контраст теневой).

Принцип рентгенологического исследования может быть представлен в виде простой схемы:
источник рентгеновского излучения → объект исследования → приемник излучения → врач.

Источником излучения служит рентгеновская трубка (см.). Объектом исследования является больной, направленный для выявления патологических изменений в его организме. Кроме того, обследуют и здоровых людей для выявления скрыто протекающих заболеваний. В качестве приемника излучения применяют флюороскопический экран или кассету с пленкой. При помощи экрана производят рентгеноскопию (см.), а при помощи пленки - рентгенографию (см.).

Рентгенологическое исследование позволяет изучать морфологию и функцию различных систем и органов в целостном организме без нарушения его жизнедеятельности. Оно дает возможность рассматривать органы и системы в различные возрастные периоды, позволяет выявлять даже небольшие отклонения от нормальной картины и тем самым ставить своевременный и точный диагноз ряда заболеваний.

Рентгенологическое исследование всегда должно проводиться по определенной системе. Вначале знакомятся с жалобами и историей заболевания обследуемого, затем с данными других клинических и лабораторных исследований. Это необходимо, поскольку рентгенологическое исследование, несмотря на всю его важность, есть лишь звено в цепи других клинических исследований. Далее составляют план рентгенологического исследования, т. е. определяют последовательность применения тех или иных приемов для получения требуемых данных. Выполнив рентгенологическое исследование, приступают к изучению полученных материалов (рентгеноморфологический и рентгенофункциональный анализ и синтез). Следующим этапом служит сопоставление рентгеновских данных с результатами других клинических исследований (клинико-рентгенологический анализ и синтез). Далее полученные данные сопоставляются с результатами предыдущих рентгенологических исследований. Повторные рентгенологическое исследование играют большую роль в диагностике болезней, а также в изучении их динамики, в контроле за эффективностью лечения.

Итогом рентгенологического исследования является формулировка заключения, в котором указывают диагноз болезни или при недостаточности полученных данных наиболее вероятные диагностические возможности.

При соблюдении правильной техники и методики рентгенологическое исследование является безопасным и не может причинить вреда обследуемым. Но даже сравнительно небольшие дозы рентгеновского излучения потенциально способны вызвать изменения в хромосомном аппарате половых клеток, что может проявиться в последующих поколениях вредными для потомства изменениями (аномалиями развития, снижением общей сопротивляемости и т. д.). Хотя каждое рентгенологическое исследование сопровождается поглощением некоторого количества рентгеновского излучения в теле больного, в том числе и его половых железах, вероятность наступления подобного рода генетических повреждений в каждом конкретном случае ничтожна. Однако ввиду очень большой распространенности рентгенологических исследований проблема безопасности в целом заслуживает внимания. Поэтому специальными постановлениями предусмотрена система мер по обеспечению безопасности рентгенологического исследования.

К числу таких мер относятся: 1) проведение рентгенологического исследования по строгим клиническим показаниям и особая осторожность при обследовании детей и беременных женщин; 2) применение совершенной рентгеновской аппаратуры, которая позволяет до минимума сократить лучевую нагрузку на больного (в частности, использование электронно-оптических усилителей и телевизионных устройств); 3) применение разнообразных средств защиты больных и персонала от действия рентгеновского излучения (усиленная фильтрация излучения, использование оптимальных технических условий съемки, дополнительных защитных экранов и диафрагм, защитной одежды и протекторов половых желез и пр.); 4) сокращение продолжительности рентгенологического исследования и времени пребывания персонала в сфере действия рентгеновского излучения; 5) систематический дозиметрический контроль за лучевыми нагрузками больных и персонала рентгеновских кабинетов. Данные дозиметрии рекомендуется заносить в специальную графу бланка, на котором дается письменное заключение по произведенному рентгенологическому исследованию.

Рентгенологическое исследование может проводиться только врачом, имеющим специальную подготовку. Высокая квалификация врача-рентгенолога обеспечивает эффективность рентгенодиагностики и максимальную безопасность всех рентгеновских процедур. См. также Рентгенодиагностика.

Рентгенологическое исследование (рентгенодиагностика) - это применение в медицине для изучения строения и функции различных органов и систем и распознавания заболеваний.

Рентгенологическое исследование широко применяется не только в клинической практике, но и в анатомии, где оно используется для целей нормальной, патологической и сравнительной анатомии, а также в физиологии, где рентгенологическое исследование дает возможность наблюдать за естественным течением физиологических процессов, таких как сокращение сердечной мышцы, дыхательные движения диафрагмы, перистальтика желудка и кишечника и т. п. Примером применения рентгенологического исследования в профилактических целях является (см.) как метод массового обследования больших людских контингентов.

Основными методами рентгенологического исследования являются (см.) и (см.). Рентгеноскопия является наиболее простым, дешевым и легко выполнимым методом рентгенологического исследования. Существенное достоинство рентгеноскопии заключается в возможности производить исследование в различных произвольных проекциях путем изменения положения тела исследуемого по отношению к и просвечивающему экрану. Такое многоосевое (полипозиционное) исследование позволяет установить в ходе просвечивания наиболее выгодное положение исследуемого органа, в котором при этом выявляются с наибольшей наглядностью и полнотой те или иные изменения. При этом в ряде случаев представляется возможным не только наблюдать, но и ощупывать исследуемый орган, например желудок, желчный пузырь, петли кишечника, путем так называемой рентгеновской пальпации, осуществляемой в из просвинцованной резины или с помощью специального приспособления, так называемого дистинктора. Такая целенаправленная (и компрессия) под контролем просвечивающего экрана дает ценные сведения о смещаемости (или несмещаемости) исследуемого органа, его физиологической или патологической подвижности, болевой чувствительности и пр.

Наряду с этим рентгеноскопия значительно уступает рентгенографии в отношении так называемые разрешающей способности, т. е. выявляемость деталей, поскольку по сравнению с изображением на просвечивающем экране более полно и точно воспроизводит структурные особенности и детали исследуемых органов (легких, костей, внутреннего рельефа желудка и кишечника и т. п.). Кроме того, рентгеноскопия по сравнению с рентгенографией сопровождается более высокими дозами рентгеновского излучения, т. е. повышенными лучевыми нагрузками на больных и персонал, а это требует, несмотря на быстро преходящий характер наблюдаемых на экране явлений, по возможности ограничивать время просвечивания. Между тем хорошо выполненная рентгенограмма, отражающая структурные и другие особенности исследуемого органа, доступна для многократного изучения разными лицами в разное время и является, таким образом, объективным документом, имеющим не только клиническое или научное, но и экспертное, а иногда и судебно-медицинское значение.

Рентгенография, производимая повторно, является объективным методом динамического наблюдения за течением различных физиологических и патологических процессов в исследуемом органе. Серия рентгенограмм определенной части одного и того же ребенка, произведенных в разное время, позволяет детально проследить процесс развития окостенения у этого ребенка. Серия рентгенограмм, произведенная за длительный период течения ряда хронически текущих заболеваний ( желудка и двенадцатиперстной кишки, и другие хронические заболевания костей), дает возможность наблюдать все тонкости эволюции патологического процесса. Описанная особенность серийной рентгенографии позволяет использовать этот метод рентгенологического исследования также в качестве метода контроля за эффективностью лечебных мероприятий.

Лекция № 2.

Перед врачом любой специальности, после обращения больного, стоят следующие задачи:

Определить норма это или патология,

Затем установить предварительный диагноз и

Определить порядок обследования,

После чего поставить окончательный диагноз и

Назначить лечение, а по завершении которого обязательно

Проконтролировать результаты лечения.

Наличие патологического очага искусный врач устанавливает уже на основании анамнеза и осмотра больного, для подтверждения он использует лабораторные, инструментальные и лучевые методы обследования. Знания возможностей и основ интерпретации различных методов визуализации позволяют врачу правильно определить порядок обследования. В конечном результате – это назначение наиболее информативного обследования и верно установленный диагноз. В настоящее время до 70% информации о патологическом очаге выдает лучевая диагностика.

Лучевая диагностика - это наука о применении различных видов излучений для изучения строения и функции нормальных и патологически измененных органов и систем человека.

Основная цель лучевой диагностики: ранее выявление патологических состояний, правильная их интерпретация, а также, контроль за процессом, восстановления морфологических структур и функций организма в ходе лечения.

В основе данной науки лежит шкала электромагнитных и звуковых волн, которые расположены в следующем порядке - звуковые волны (в том числе УЗ-волны), видимый свет, инфракрасное, ультрафиолетовое, рентгеновское и гамма-излучение. Необходимо отметить, что звуковые волны относятся к механическим колебаниям, для передачи которых необходима какая-либо среда.

При помощи данных лучей решаются следующие диагностические задачи: уточнение наличия и распространенности патологического очага; изучение размеров, структуры, плотности и контуров образования; определение взаимоотношения выявленных изменений с окружающими морфологическими структурами и уточнение возможного происхождения образования.

Выделяют две разновидности лучей: ионизирующие и неионизирующие. К первой группе относят электромагнитные волны, с короткой длиной волны, способные вызывать ионизацию тканей они лежат в основе рентгеновской и радионуклидной диагностики. Вторая группа лучей считается безвредной и формирует МР-томографию, УЗ-диагностику и термографию.

Более 100 лет человечество знакомо с физическим явлением – лучами особого рода, обладающими проникающей способностью и названными в честь ученого, открывшего их, рентгеновскими

Эти лучи открыли новую эпоху в развитии физики и всего естествознания, помогли проникнуть в тайны природы и строение материи, оказали существенное влияние на развитие техники, привели к революционным преобразованиям в медицине.



8 ноября 1895 г. профессор физики Вюрцбургского университета Вильгельм Конрад Рентген (1845-1923) обратил внимание на удивительное явление. Изучая в своей лаборатории работу электровакуумной (катодной) трубки, он заметил, что при подаче электрического тока высокого напряжения на ее электроды, появилось зеленоватое свечение находящегося рядом платино-синеродистого бария. Такое свечение люминофоров было к тому времени уже известно. Подобные трубки изучались во многих лабораториях мира. Но на столе Рентгена во время опыта трубка была плотно завернута в черную бумагу, и, хотя платино-синеродистый барий находился на значительном расстоянии от трубки, его свечение возобновлялось при каждой подаче электрического тока в трубку. Он пришел к выводу, что в трубке возникают какие-то неизвестные науке лучи, обладающие способностью проникать через твердые тела и распространяющиеся в воздухе на расстояние, измеряемое метрами.

Рентген закрылся в своей лаборатории и, не выходя из нее на протяжении 50 суток, изучал свойства открытых им лучей.

Первое сообщение Рентгена «О новом виде лучей» было опубликовано в январе 1896 года в виде кратких тезисов, из которых стало известно, что открытые лучи способны:

Проникать в той или иной степени через все тела;

Вызывать свечение флюоресцирующих веществ (люминофоров);

Вызывать почернение фотопластинок;

Снижать свою интенсивность обратно пропорционально квадрату расстояния от их источника;

Распространяться прямолинейно;

Не изменять своего направления под воздействием магнита.

Весь мир был потрясен и взволнован этим событием. В короткий срок сведения об открытии Рентгена стали публиковать не только научные, но и общие журналы и газеты. Людей поражало то, что появилась возможность с помощью этих лучей заглянуть внутрь живого человека.

С этого времени для врачей наступила новая эра. Многое из того, что раньше они могли увидеть только на трупе, теперь они наблюдали на снимках и флюоресцирующих экранах. Появилась возможность изучать работу сердца, легких, желудка и других органов живого человека. У больных людей стали выявлять те или иные изменения по сравнению со здоровыми. Уже в течение первого года после открытия икс-лучей в печати появились сотни научных сообщений, посвященных исследованию органов человека с их помощью.

Во многих странах появились специалисты - рентгенологи. Новая наука - рентгенология шагнула далеко вперед, были разработаны сотни различных методик рентгенологического исследования органов и систем человека. За сравнительно короткий период рентгенология сделала столько, сколько не сделала ни одна другая наука в медицине.

Рентген первым среди физиков был удостоен Нобелевской премии, которая была вручена ему в 1909 г. Но ни сам Рентген, ни первые рентгенологи не подозревали о том, что эти лучи могут быть смертельно опасны. И только когда врачи, начали болеть лучевой болезнью в различных ее проявлениях, встал вопрос о защите больных и персонала.

Современные рентгеновские комплексы, предусматривают максимальную защиту: трубка расположена в кожухе со строгим ограничением рентгеновского пучка (диафрагмирование) и множество дополнительных защитных мер (фартуки, юбочки и воротники). В качестве контроля «невидимого и неосязаемого» излучения используют различные контролирующие методы, сроки проведения контрольных обследований строго регламентированы Приказами МЗ.

Методы измерения излучения: ионизационный – ионизационные камеры, фотографический – по степени почернения фотопленки, термолюминесцентный – при помощи люминофоров. Каждый работник рентгеновского кабинета подлежит индивидуальной дозиметрии, которая проводится ежеквартально при помощи дозиметров. Индивидуальная защита пациентов и персонала является неукоснительным правилом при проведении исследований. В состав защитных изделий ранее входил свинец, который из-за своей токсичности в настоящее время заменен на редкоземельные металлы. Эффективность защиты стала выше, а вес приспособлений значительно уменьшился.

Все выше перечисленное позволяет свести к минимуму отрицательное воздействие ионизирующих волн на организм человека, однако вовремя выявленные туберкулез или злокачественная опухоль во много раз перевесят «негативные» последствия, сделанного снимка.

Основными элементами рентгенологического исследования являются: излучатель - электровакуумная трубка; объект исследования - человеческий организм; приемник излучения – экран или пленка и естественно ВРАЧ-РЕНТГЕНОЛОГ, который интерпретирует полученные данные.

Рентгеновское излучение является электромагнитным колебанием, искусственно создаваемое в специальных электровакуумных трубках на анод и катод которой, посредством генераторного устройства подается высокое (60-120 киловольт) напряжение, а защитный кожух, направленный пучок и диафрагма позволяют максимально ограничить поле облучения.

Рентгеновские лучи относятся к невидимому спектру электромагнитных волн с длиной волны от 15 до 0,03 ангстрем. Энергия квантов в зависимости от мощности аппаратуры колеблется от 10 до 300 и более Кэв. Скорость распространения квантов рентгеновского излучения 300 000 км/сек.

Рентгеновские лучи обладают определенными свойствами, которые обуславливают применение их в медицине для диагностики и лечения различных заболеваний.

  • Первое свойство – проникающая способность, способность проникать сквозь твердые и непрозрачные тела.
  • Второе свойство – их поглощение в тканях и органах, которое зависит от удельного веса и объема тканей. Чем плотнее и объемнее ткань, тем большее поглощение лучей. Так, удельный вес воздуха равен 0,001, жира 0,9, мягких тканей 1,0, костной ткани – 1,9. Естественно, в костях будет наибольшее поглощение рентгеновского излучения.
  • Третье свойство рентгеновых лучей – способность их вызывать свечение флюоресцирующих веществ, используемое при проведении просвечивания за экраном рентгенодиагностического аппарата.
  • Четвертое свойство – фотохимическое, благодаря чему на рентгеновской фотопленке получается изображение.
  • Последнее, пятое свойство – биологическое (отрицательное) действие рентгеновых лучей на организм человека, которое используется в благих целях, т.н. лучевая терапия.

Рентгенологические методы исследования выполняются с помощью рентгеновского аппарата, в устройство которого входит 5 основных частей:

Рентгеновский излучатель (рентгеновская трубка с системой охлаждения);

Питающее устройство (трансформатор с выпрямителем электрического тока);

Приемник излучения (флюоресцирующий экран, кассеты с пленкой, полупроводниковые датчики);

Штативное устройство и стол для укладки пациента;

Пульт управления.

Основной частью любого рентгенодиагностического аппарата является рентгеновская трубка, которая состоит из двух электродов: катода и анода. На катод подается постоянный электрический ток, который накаливает нить катода. При подаче высокого напряжения на анод электроны в результате разности потенциалов с большой кинетической энергией летят с катода и тормозятся на аноде. При торможении электронов и происходит образование рентгеновских – тормозных лучей, выходящих под определенным углом из рентгеновской трубки. Современные рентгеновские трубки имеют вращающийся анод, скорость которого достигает 3000 оборотов в минуту, что значительно снижает разогрев анода и повышает мощность и срок службы трубки.

Регистрация ослабленного рентгеновского излучения и лежит в основе рентгенодиагностики.

Рентгеновский метод включает следующие методики:

  • рентгеноскопию, то есть получение изображения на флюоресцирующем экране (усилители рентгеновского изображения – посредством телевизионного тракта);
  • рентгенографию – получение изображения на рентгеновской пленке, помещенной в рентгенопрозрачную кассету, где она защищена от обычного света.
  • дополнительные методики включают: линейную томографию, флюорографию, рентгеноденситометрию и др.

Линейная томография – получение послойного изображения на рентгеновской пленке.

Объект исследования, как правило, какая либо область человеческого организма, которые имеют различную плотность. Это и воздухосодержащиие ткани (легочная паренхима), и мягкотканые (мышцы, паренхиматозные органы и ЖКТ), и костные структуры с высоким содержанием кальция. Что и обуславливает возможность обследования в условиях как естественного контрастирования, так и с применением искусственного контрастирования, для чего имеются различные виды контрастных препаратов.

Для ангиографии и визуализации полых органов в рентгенологии широко применяются контрастные вещества, задерживающие рентгеновские лучи: при исследованиях ЖКТ – сульфат бария (per os) нерастворим в воде, водорастворимые – для внутрисосудистых исследований, мочеполовой системы и фистулографии (урографин, ультравист и омнипак), а также жирорастворимые для бронхографии - (йодлипол).

Вот краткий обзор сложной электронной системы рентгеновского аппарата. В настоящее время разработаны десятки разновидностей рентгеновского оборудования от аппаратов общего профиля до узкоспециализированных. Условно их можно подразделить на: стационарные рентгенодиагностические комплексы; передвижные аппараты (для травматологии, реанимации) и флюорографические установки.

Туберкулез в России принял к настоящему времени размах эпидемии, неуклонно растет и онкологическая патология, для выявления этих заболеваний осуществляется скрининговая ФЛГ.

Все взрослое население РФ обязано один раз в 2 года проходить флюорографическое обследование, а декретированные группы должны обследоваться ежегодно. Ранее данное исследование почему-то называлось «профилактическим» обследованием. Выполненный снимок не может предотвратить развитие болезни, он лишь констатирует наличие или отсутствие заболевания легких, а цель его - выявление ранних, бессимптомных стадий туберкулеза и рака легкого.

Выделяют средне-, крупноформатную и цифровую флюорографию. Флюорографические установки выпускаются промышленностью в виде стационарных, и передвижных (установленные на автомобиль) кабинетов.

Особый раздел - обследование больных, которых невозможно доставить в диагностический кабинет. Это преимущественно реанимационные и травматологические пациенты, находящиеся либо на искусственной вентиляции легких, либо на скелетном вытяжении. Специально для этого выпускаются передвижные (мобильные) рентгеновские аппараты, состоящие из генератора и излучателя небольшой мощности (для уменьшения веса), которые можно доставить непосредственно к постели больного.

Стационарные аппараты, предназначены для исследования различных областей в различных проекциях с использованием дополнительных приспособлений (томографические приставки, компрессионные пояса и т.д.). Рентгенодиагностический кабинет состоит из: процедурного кабинета (место проведения исследования); пультовой комнаты, где осуществляется управление аппаратом и фотолаборатории для обработки рентгеновской пленки.

Носителем полученной информации является радиографическая пленка, именуемая рентгеновской, с высокой разрешающей способностью. Она выражается обычно числом раздельно воспринимаемых параллельных линий на 1 мм. Выпускается различных форматов от 35х43см., для исследования грудной клетки или брюшной полости, до 3х4см., для выполнения снимка зуба. Перед выполнением исследования пленка помещается в рентгеновские кассеты с усиливающими экранами, которые позволяют значительно снизить рентгеновскую дозу.

Существуют следующие разновидности рентгенографии:

Обзорные и прицельные снимки;

Линейная томография;

Специальные укладки;

С применением контрастных препаратов.

Рентгенография позволяет изучить морфологическое состояние какого либо органа или части организма на момент исследования.

Для изучения функции применяется рентгеноскопия – осмотр в режиме реального времени при просвечивании рентгеновскими лучами. Используется в основном при исследованиях ЖКТ с контрастированием просвета кишечника, реже как уточняющее дополнение при заболеваниях легких.

При обследовании органов грудной клетки рентгеновский метод является «золотым стандартом» диагностики. На рентгенограмме органов грудной клетки выделяют легочные поля, срединную тень, костные структуры и мягкотканный компонент. В норме легкие должны быть одинаковой прозрачности.

Классификация рентгенологических симптомов:

1. Нарушение анатомических соотношений (сколиоз, кифоз, аномалии развития); изменения площади легочных полей; расширение или смещение срединной тени (гидроперикард, опухоль средостения, изменение высоты стояния купола диафрагмы).

2. Следующий симптом – «затемнение или снижение пневматизации», обусловленные уплотнением легочной ткани (воспалительная инфильтрация, ателектаз, периферический рак) либо скоплением жидкости.

3. Симптом просветления характерен для эмфиземы легких и пневмоторакса.

Костно-суставная система обследуется в условиях естественной контрастности и позволяет выявлять множество изменений. Необходимо помнить о возрастных особенностях:

до 4 недель – костных структур нет;

до 3 месяцев – формирование хрящевого скелета;

4-5 месяцев до 20 лет формирование костного скелета.

Разновидности костей – плоские и трубчатые (короткие и длинные).

Каждая кость состоит из компактного и губчатого вещества. Компактное костное вещество, или кортикальный слой, в различных костях имеет разную толщину. Толщина кортикального слоя длинных трубчатых костей убывает от диафиза к метафизу и наиболее истончена в эпифизах. В норме кортикальный слой дает интенсивное, гомогенное затемнение и имеет четкие, гладкие контуры, определяемые же неровности строго соответствуют анатомическим буграм, гребням.

Под компактным слоем кости находится губчатое вещество, состоящее из сложного переплета костных трабекул, расположенных по направлению действия на кость сил сжатия, растяжения и кручения. В отделе диафиза, имеется полость - костномозговой канал. Таким образом, губчатое вещество остается лишь в эпифизах и метафизах. Эпифизы у растущих костей отделяются от метафизов светлой поперечной полоской росткового хряща, который иногда принимают за линию перелома.

Суставные поверхности костей покрыты суставным хрящом. Суставной хрящ на рентгенограмме не дает тени. Поэтому между суставными концами костей имеется светлая полоса - рентгеновская суставная щель.

С поверхности кость покрыта надкостницей, представляющей соединительнотканую оболочку. Надкостница в норме на рентгенограмме не дает тени, но в патологических условиях она нередко обызвествляется и окостеневает. Тогда вдоль поверхности кости обнаруживают линейные или другой формы тени периостальных реакций.

Выделяют следующие рентгенологические симптомы:

Остеопороз - патологическая перестройка костной структуры, которая сопровождается равномерным уменьшением количества костного вещества в единице объема кости. Для остеопороза типичны следующие рентгенологические признаки: уменьшение количества трабекул в метфизах и эпифизах, истончение кортикального слоя и расширение костномозгового канала.

Остеосклероз отличается признаками, противоположными остеопорозу. Для остеосклероза характерно увеличение количества обызвествленных и окостеневших элементов кости, число костных трабекул увеличивается, и их на единицу объема приходится больше, чем в нормальной кости, а тем самым костномозговые пространства уменьшаются. Все это ведет и к рентгенологическим симптомам, противоположным остеопорозу: кость на рентгенограмме более уплотнена, кортикальный слой утолщен, контуры его как со стороны надкостницы, так и со стороны костномозгового канала неровные. Костномозговой канал сужен, а иногда совсем не просматривается.

Деструкция или остеонекроз - медленно протекающий процесс с нарушением структуры целых участков кости и заменой ее гноем, грануляциями или опухолевой тканью.

На рентгенограмме очаг деструкции выглядит как дефект в кости. Контуры свежих деструктивных очагов неровные, контуры же старых очагов становятся ровными и уплотненными.

Экзостозы - патологические костные образования. Экзостозы возникают или в результате доброкачественного опухолевого процесса, или в результате аномалии остеогенеза.

Травматические повреждения (переломы и вывихи) костей возникают при резком механическом воздействии, превышающем эластическую возможность кости: сжатии, растяжении, сгибании и сдвиге.

Рентгенологическое исследование органов брюшной полости в условиях естественной контрастности применяется, в основном, в неотложной диагностике – это свободный газ в брюшной полости, кишечная непроходимость и рентгенконтрастные конкременты.

Ведущую роль занимает исследования желудочно-кишечного тракта, которое позволяет выявлять разнообразные опухолевые и язвенные процессы, поражающие слизистую ЖКТ. В качестве контрастного препарата применяется водная взвесь сульфата бария.

Разновидности обследования следующие: рентгеноскопия пищевода; рентгеноскопия желудка; пассаж бария по кишечнику и ретроградное исследование толстой кишки (ирригоскопия).

Основные рентгенологические симптомы: симптом локального (диффузного) расширения или сужения просвета; симптом язвенной ниши – в случае, когда контрастное вещество распространяется за границу контура органа; и так называемый дефект наполнения, который определяется в случаях, когда контрастное вещество не заполняет анатомические контуры органа.

Необходимо помнить, что ФГС и ФКС в настоящее время занимают главенствующее место в обследованиях ЖКТ, их недостатком является невозможность выявления образований расположенных в подслизистом, мышечном и далее слоях.

Большинство врачей обследуют больного по принципу от простого к сложному – выполняя на первом этапе «рутинные» методики, а затем дополняют более сложными исследованиями, вплоть до высокотехнологичных КТ и МР-томографии. Однако сейчас преобладает мнение о выборе наиболее информативного метода, например при подозрении на опухоль мозга нужно делать МРТ, а не снимок черепа на котором будут видны кости черепа. В тоже время паренхиматозные органы брюшной полости прекрасно визуализируются УЗ-методом. Клиницист должен знать основные принципы комплексного лучевого обследования для частных клинических синдромов, а врач диагност будет Ваш консультант и помощник!

Это исследования органов грудной клетки, преимущественно легких, костно-суставной системы, желудочно-кишечного тракта и сосудистой системы, при условии констрастирования последних.

Исходя из возможностей будут определены показания и противопоказания. Абсолютных противопоказаний нет!!! Относительными противопоказаниями являются:

Беременность, период лактации.

Во всяком случае, необходимо стремится к максимальному ограничению лучевой нагрузки.

юбой врач практического здравоохранения неоднократно отправляет больных на рентгенологическое обследование, в связи с чем, существуют правила оформления направления на исследование:

1. указывается фамилия и инициалы больного и возраст;

2. назначается вид исследования (ФЛГ, рентгеноскопия или рентгенография);

3. определяется область обследования (органы грудной или брюшной полости, костно-суставной системы);

4. указывается количество проекций (обзорный снимок, две проекции или специальная укладка);

5. необходимо обязательно поставить перед врачом диагностом цель исследования (исключить пневмонию или перелом бедра, например);

6. дата и подпись врача, выписавшего направление.

Современные методы рентгенологических исследований классифицируются, прежде всего, по типу аппаратной визуализации рентгеновских проекционных изображений. То есть основные виды рентгенодиагностики дифференцируются тем, что каждый построен на использовании одного из нескольких существующих типов приемников рентгеновского излучения: рентгеновская пленка, флюоресцирующий экран, электронно-оптический рентгеновский преобразователь, цифровой детектор и др.

Классификация рентгенодиагностических методов

В современной рентгенологии существуют общие методы исследования и специальные или вспомогательные. Практическое применение этих методов возможно лшь с использованием рентген аппаратов К общим методам относятся:

  • рентгенография,
  • рентгеноскопия,
  • телерентгенография,
  • цифровая рентгенография,
  • флюорография,
  • линейная томография,
  • компьютерная томография,
  • контрастная рентгенография.

Специальные исследования включают обширную группу методов, позволяющих решать самые разнообразные диагностические задачи, и бывают инвазивные и неинвазивные. Инвазивные связаны с введением в различные полости (пищеварительный канал, сосуды) инструментов (рентгеноконтрастных катетеров, эндоскопов) для проведения диагностических процедур под контролем рентгеновского излучения. Неинвазивные методы не связаны с введением инструментов.

Каждый из выше перечисленных методов отличается своими достоинствами и недостатками, а значит, и определенными пределами диагностических возможностей. Но все они характеризуются высокой информативностью, простотой выполнения, доступностью, способностью взаимно дополнять друг друга и занимают в целом одно из ведущих мест в медицинской диагностике: более, чем в 50% случаев постановка диагноза невозможна без применения рентгенодиагностики.

Рентгенография

Метод рентгенографии – это получение фиксированных изображений какого-либо объекта в спектре рентгеновского излучения на чувствительном к нему материале (рентгеновская фотопленка, цифровой детектор) по принципу обратного негатива. Преимуществом метода является небольшая лучевая нагрузка, высокое качество изображения с четкой детализацией.

Недостатком рентгенографии является невозможность наблюдения динамических процессов и долгий период обработки (в случае с пленочной рентгенографией). Для изучения динамических процессов существует способ покадровой фиксации изображения – рентгеновская кинематография. Используется для изучения процессов пищеварения, глотания, дыхания, динамики кровообращения: рентгенофазокардиография, рентгенопневмополиграфия.

Рентгеноскопия

Метод рентгеноскопии – это получение рентгеновского изображения на флюоресцирующем (люминесцентном) экране по принципу прямого негатива. Позволяет изучать динамические процессы в реальном времени, оптимизировать положение пациента по отношению к рентгеновскому пучку при исследовании. Рентгеноскопия позволяет оценить как структуру органа, так и его функциональное состояние: сократимость или растяжимость, смещаемость, наполняемость контрастным веществом и его прохождение. Многопроекционность метода позволяет быстро и точно выявить локализацию существующих изменений.


Существенный недостаток рентгеноскопии – большая радиационная нагрузка на пациента и исследующего врача, а так же необходимость проведения процедуры в темном помещении.

Рентгенотелевидение

Телерентгеноскопия – это исследование, использующее преобразование рентгеновского изображения в телесигнал с помощью электронно-оптического преобразователя или усилителя (ЭОП). Позитивное рентгеновское изображение воспроизводится на телемониторе. Преимущество методики в том, что она существенно нивелирует недостатки обычной рентгеноскопии: снижается лучевая нагрузка на пациента и персонал, можно управлять качеством изображения (контрастность, яркость, высокое разрешение, возможность увеличения изображения), процедура проводится в светлом помещении.

Флюорография

Метод флюорографии основан на фотографировании полномерного теневого рентгеновского изображения с флуоресцентного экрана на фотопленку. В зависимости от формата пленки аналоговая флюорография бывает мелко-, средне- и крупнокадровая (100х100 мм). Используется для массовых профилактических исследований, в основном органов грудной клетки. В современной медицине используется более информативная крупнокадровая флюорография или цифровая флюорография .


Контрастная рентгенодиагностика

Контрастная рентгенодиагностика основана на применении искусственного контрастирования путем введения в организм рентгеноконтрастных веществ. Последние разделяются на рентгенопозитивные и рентгенонегативные. Рентгенопозитивные вещества в своей основе содержат тяжелые металлы – йод или барий, поэтому поглощают излучение сильнее, чем мягкие ткани. Рентгенонегативные вещества – это газы: кислород, закись азота, воздух. Они поглощают рентгеновское излучение меньше, чем мягкие ткани, создавая тем самым контраст по отношению к обследуемому органу.

Искусственное контрастирование используется в гастроэнтерологии, кардиологии и ангиологии, пульмонологии, в урологии и гинекологии, применяется в ЛОР-практике и при исследовании костных структур.

Как работает рентгеновский аппарат

Введение

диагностика медицинский обследование эндоскопический

Последнее десятилетие XX века характеризуется бурным развитием лучевой диагностики. Основная причина этого - появление целой серии так называемых «новых технологий», позволивших резко расширить диагностический потенциал «старой» традиционной рентгенологии. С их помощью по существу было «закрыто» понятие так называемых белых пятен в классической рентгенологии (например, патология всей группы паренхиматозных органов брюшной полости и забрюшинного пространства). Для большой группы болезней внедрение этих технологий резко изменило существовавшие возможности их рентгенологической диагностики.

Во многом именно за счет успехов лучевой диагностики в ведущих клиниках Америки и Европы срок постановки диагноза не превышает 40-60 минут с момента поступления больного в стационар. Причем речь идет, как правило, о серьезных ургентных ситуациях, где промедление часто приводит к необратимым последствиям. Более того, больничная койка все реже стала использоваться для проведения диагностических мероприятий. Все необходимые предварительные исследования, и первую очередь лучевые, выполняются на догоспитальном этапе.

Радиологические процедуры по частоте своего применения уже давно занимают второе место, уступая лишь самым распространенным и обязательным лабораторным исследованиям. Сводная статистика крупных мировых медицинских центров показывает, что благодаря лучевым методам число ошибочных диагнозов при первичном обращении больного сегодня не превышает 4 %.

Современные средства визуализации отвечают следующим основополагающим принципам: безукоризненное качество изображения, безопасность оборудования, как для пациентов, так и для медицинского персонала, надежность в работе.

Цель работы: получение знаний об инструментальных методах обследования пациентов при рентгенологическом, эндоскопическом и УЗИ исследованиях.

Инструментальные методы при рентгенологическом, эндоскопическом и УЗИ исследованиях

Методы исследования структуры и функций органов человека при помощи спепиальной аппаратуры называют инструментальными. Они применяются с целью врачебной диагностики. Ко многим из них пациента необходимо психологически и физически подготовить. Медицинская сестра обязательно должна владеть технологией подготовки пациентов к инструментальным исследованиям.

Рентгенологические методы исследования

Рентгенологическое (рентгеновское) исследование основано на свойстве рентгеновских лучей в различной степени проникать через ткани организма. Степень поглощения рентгеновского излучения зависит от толщины, плотности и физико-химического состава органов и тканей человека, поэтому более плотные органы и ткани (кости, сердце, печень, крупные сосуды) визуализируются на экране (рентгеновском флюоресцирующем или телевизионном) как тени, а лёгочная ткань вследствие большого количества воздуха представлена областью яркого свечения. Вильгельм Конрад Рентген (1845-1923) - немецкий физик-экспериментатор, основоположник рентгенологии, в 1895 г. открыл Х-лучи (рентгеновские лучи). На рентгеновских снимках кишечника с контрастом можно увидеть - изменение просвета кишки, увеличение длины органа и т.д. (Приложение1).

Рисунок 1. Рентгенодиагностический кабинет.

Различают следующие основные рентгенологические методы исследования:

1. Рентгеноскопия (греч. skopeo - рассматривать, наблюдать) - рентгенологическое исследование в режиме реального времени. На экране появляется динамическое изображение, позволяющее изучать двигательную функцию органов (например, пульсацию сосудов, моторику ЖКТ);также видна структура органов.

2. Рентгенография (греч. grapho - писать) - рентгенологическое исследование с регистрацией неподвижного изображения на специальной рентгеновской плёнке или фотобумаге. При цифровой рентгенографии изображение фиксируется в памяти компьютера. Применяют пять видов рентгенографии.

* Полноформатная рентгенография.

* Флюорография (малоформатная рентгенография) - рентгенография с уменьшенным размером изображения, получаемого на флюоресцирующем экране (лат. fluor - течение, поток); её применяют при профилактических исследованиях органов дыхания.

* Обзорная рентгенография - изображение целой анатомической области.

* Прицельная рентгенография - изображение ограниченного участка исследуемого органа.

* Серийная рентгенография - последовательное получение нескольких рентгенограмм для изучения динамики изучаемого процесса.

3. Томография (греч. tomos - отрезок, пласт, слой) - метод послойной визуализации, обеспечивающий изображение слоя тканей заданной толщины с использованием рентгеновской трубки и кассеты с плёнкой (рентгеновская томография) или же с подключением специальных счётных камер, от которых электрические сигналы подаются на компьютер (компьютерная томография).

4. Контрастная рентгеноскопия (или рентгенография) - рентгенологический метод исследования, основанный на введении в полые органы (бронхи, желудок, почечные лоханки и мочеточники и др.) или сосуды (ангиография) специальных (рентгеноконтрастных) веществ, задерживающих рентгеновское излучение, в результате чего на экране (фотоплёнке) получают чёткое изображение изучаемых органов.

Перед проведением рентгенологического исследования следует освободить область планируемого исследования от одежды, мазевых повязок, наклеек из лейкопластыря, электродов для мониторирования ЭКГ и пр., попросить снять часы, металлические украшения и подвески.

Рентгенологическое исследование органов грудной клетки - важный метод обследования пациентов с заболеваниями органов дыхания и ССС.

Рентгеноскопия и рентгенография - наиболее часто применяемые для исследования органов дыхания методы. Рентгенологическое исследование позволяет оценить состояние лёгочной ткани, появление в ней участков уплотнения и повышенной воздушности, наличие жидкости или воздуха в плевральных полостях. Специальной подготовки больного не требуется. Исследование проводят в положении больного стоя или, при тяжёлом состоянии пациента, - лёжа.

Контрастная рентгенография бронхов (бронхография) применяется для выявления опухолевых процессов в бронхах, расширения бронхов (бронхоэктазов) и полости в лёгочной ткани (абсцесс, каверна). Рентгеноконтрастное вещество вводят в полость бронхов.

Подготовку больного к бронхографии проводят в несколько этапов:

1. Проведение пробы на индивидуальную переносимость йодсодержащих препаратов (йодная проба): в течение 2-3 дней по назначению врача больному предлагают выпивать по 1 ст.л. 3% раствора калия йодида. Другой вариант проведения йодной пробы: накануне исследования кожу внутренней поверхности предплечья больного обрабатывают 5% спиртовым раствором йода. Необходимо расспросить пациента о переносимости им лекарств, в частности - анестетиков (тетракаина, лидокаина, прокаина), при необходимости провести внутрикожные аллергологические пробы. В истории болезни следует отразить дату проведения пробы на переносимость препаратов,подробное описание состояния больного (наличие или отсутствие признаков повышенной чувствительности); обязательна подпись медицинской сестры, наблюдавшей за пациентом в течение 12 часов после проведения пробы.

2. Очищение бронхиального дерева при наличии гнойной мокроты: за 3-4 дня по назначению врача больному назначают дренаж бронхов (путём принятия пациентом соответствующего,оптимального для отхождения мокроты, положения с приподнятым ножным концом кровати), отхаркивающие и бронхорасширяющие средства.

3. Психологическая подготовка: больному следует разъяснить цель и необходимость предстоящего исследования. В ряде случаев у больных перед исследованием может развиться бессонница, повыситься АД. В этом случае по назначению врача пациенту дают успокаивающие и антигипертензивные препараты.

4. Непосредственная подготовка пациента к исследованию: накануне исследования больному дают лёгкий ужин (исключают молоко, капусту, мясо). Необходимо предупредить больного, что исследование проводят натощак; утром в день исследования он не должен также употреблять воду, лекарства и курить. Больному нужно напомнить, что перед исследованием он должен опорожнить мочевой пузырь и кишечник (естественным путём).

5. Премедикация: за 30-60 минут до исследования по назначению врача больному вводят специальные препараты (диазепам, атропин и др.) с целью создания условий для свободного доступа бронхоскопа. Особое внимание нужно уделять пациенту после исследования, так как возможно развитие следующих осложнений:

* появление или усиление кашля с выделением мокроты с большим количеством рентгеноконтрастного вещества (иногда введённое вещество выделяется в течение 1-2 суток); при этом больной должен быть обеспечен специальной банкой (плевательницей) для мокроты;

* повышение температуры тела;

* развитие пневмонии (в редких случаях при плохом выделении контрастного вещества).

При появлении у больного после бронхографии таких симптомов, как повышение температуры тела, ухудшение общего состояния, резкое усиление кашля, появление одышки, медицинская сестра должна немедленно информировать об этом врача.

Рентгеноскопия и рентгенография также часто применяются для исследования ССС (сердца, аорты, лёгочной артерии). Рентгенологическое исследование позволяет определить размеры сердца и его камер, крупных сосудов, наличие смещения сердца и его подвижность при сокращениях, наличие жидкости в полости перикарда. В случае необходимости пациенту предлагают выпить небольшое количество рентгеноконтрастного вещества (взвесь сульфата бария), что даёт возможность контрастировать пищевод и по степени его смещения судить о степени увеличения левого предсердия. Специальной подготовки больного не требуется.

Контрастная рентгенография (ангиокардиография) применяется для определения состояния крупных сосудов и камер сердца. Рентгеноконтрастное вещество вводят в крупные сосуды и полости сердца через специальные зонды. Эта процедура фактически является хирургической операцией, её проводят в специально оборудованной операционной, как правило, в условиях отделения кардиохирургии. Накануне исследования больному необходимо провести пробы на переносимость йодсодержащих препаратов и анестетиков. Исследование проводят натощак. Кроме того, медицинская сестра должна уделять пациенту особое внимание после проведения исследования, так как введение в полость сердца рентгеноконтрастного вещества может вызвать не только ранние, но и поздние осложнения. Рентгенологическое исследование органов пищеварения даёт возможность оценить состояние полых (пищевода, желудка, кишечника, жёлчных путей) и паренхиматозных (печени, поджелудочной железы) органов. Рентгенография и рентгеноскопия органов пищеварения без рентгеноконтрастного вещества применяются с целью выявления кишечной непроходимости или перфорации желудка и кишечника. Использование рентгеноконтрастного вещества (взвеси сульфата бария) позволяет определить моторную функцию и рельеф слизистой оболочки пищеварительного тракта, наличие язв, опухолей, участков сужения или расширения различных отделов пищеварительного тракта.

Исследование пищевода. Подготовка пациента к рентгенологическому исследованию пищевода зависит от показаний.

* Для выявления инородного тела в пищеводе специальной подготовки не требуется.

* Для оценки моторной функции пищевода и его контуров (выявления участков сужения и расширения, опухоли и пр.) проводят рентгеноскопию и/или серийную рентгенографию; при этом больному до исследования дают выпить рентгеноконтрастное вещество (150-200 мл взвеси сульфата бария).

* Если необходимо провести дифференциальную диагностику органического сужения и функционального поражения (спазмов пищевода), за 15 минут до исследования по назначению врача боль ному вводят 1 мл 0,1% раствора атропина. При наличии выраженного органического сужения пищевода по назначению врача с помощью толстого зонда и резиновой груши проводят отсасывание из пищевода скопившейся жидкости.

Исследование желудка и двенадцатиперстной кишки. Подготовка больного к проведению рентгенологического исследования заключается в освобождении этих отделов пищеварительного тракта от пищевых масс и газов и начинается за несколько дней до исследования. Этапы подготовки больного следующие.

1. Назначение за 3 дня до исследования диеты, исключающей пищу, богатую растительной клетчаткой и содержащую другие вещества, способствующие повышенному образованию газов. Необходимо исключить из питания ржаной свежеиспечённый хлеб, картофель, бобовые, молоко, овощи и фрукты, фруктовые соки.

2. Накануне исследования пациенту назначают лёгкий ужин (не позднее 8 ч вечера). Разрешены яйца, сливки, икра, сыр, мясо и рыба без приправ, чай или кофе без сахара, каша, сваренная на воде.

3. Накануне вечером и утром за 2 ч до исследования пациенту ставят очистительную клизму.

4. Необходимо предупредить больного, что за 12 ч до исследования он должен прекратить приём пищи, утром в день исследования он не должен также пить, принимать любые лекарственные средства и курить.

Исследование толстой кишки. Для проведения рентгенологического исследования толстой кишки - ирригоскопии (лат. irrigatio - орошение) - необходима полная очистка кишечника от содержимого и газов. Рентгеноконтрастное вещество - до 1,5 л тёплой (36-37 °С) взвеси сульфата бария - вводят в кишечник с помощью клизмы непосредственно в рентгенологическом кабинете. Противопоказания к проведению ирригоскопии: заболевания прямой кишки и её сфинктеров (воспаление, опухоль, свищ, трещина сфинктера). Возможны ситуации, когда пациент не может удержать введённую ему жидкость в кишечнике (выпадение прямой кишки, слабость сфинктера), что делает эту процедуру невыполнимой.

Этапы подготовки больного к исследованию:

1. Назначение за 2-3 дня до исследования диеты, исключающей пищу, богатую растительной клетчаткой и содержащую другие вещества, способствующие повышенному образованию газов. Необходимо исключить из питания свежий ржаной хлеб, картофель, бобовые, свежее молоко, свежие овощи и фрукты, фруктовые соки.

2. Накануне исследования пациенту назначают лёгкий ужин (не позднее 8 ч вечера). Разрешены омлет, кефир, икра, сыр, отварные мясо и рыба без приправ, чай или кофе без сахара, манная каша, сваренная на воде.

3. Накануне исследования перед обедом больному дают для приёма внутрь 30 г касторового масла (противопоказание к приёму касторового масла - кишечная непроходимость).

4. Накануне вечером (через 30-40 мин после ужина) пациенту ставят очистительные клизмы с промежутком в 1 ч до получения «чистых» промывных вод.

5. Утром за 2 ч до исследования пациенту ставят очистительную клизму также до получения «чистых» промывных вод.

6. Исследование проводят натощак. При необходимости по назначению врача пациенту утром разрешается лёгкий белковый завтрак (нежирный творог, суфле из взбитых белков или белковый омлет, отварная рыба), что позволяет вызвать рефлекторное передвижение содержимого тонкой кишки в толстую и предотвратить накопление газов в кишечнике. В этом случае утреннюю очистительную клизму ставят через 20-30 минут после завтрака.

7. За 30 минут до исследования больному вводят газоотводную трубку.

Другим способом очистки кишечника перед рентгенологическим и эндоскопическим исследованием выступает пероральный лаваж. Для его осуществления применяют изоосмотические растворы, например фортранс. Упаковка фортранса, предназначенная для одного пациента, состоит из четырёх пакетов, содержащих по 64 г полиэтиленгликоля в сочетании с 9 г электролитов -натрия сульфата, натрия бикарбоната, натрия хлорида и калия хлорида. Каждый пакет растворяют в 1 л кипячёной воды. Как правило, приём первых 2 л раствора больному назначают после обеда в день, предшествующий исследованию; вторую порцию в количестве 1,5-2 л дают утром в день исследования. Действие препарата (опорожнение кишечника) не сопровождается болевыми ощущениями и тенезмами, начинается через 50-80 минут после начала приёма раствоpa и продолжается в течение 2-6 ч. Опорожнение кишечника при повторном назначении фортранса утром начинается через 20-30 минут после приёма препарата. Применение фортранса противопоказано при наличии у больного неспецифического язвенного колита, болезни Крона, непроходимости кишечника, болей в области живота неустановленной этиологии.

Рентгенологическое исследование жёлчного пузыря (холецистография) позволяет определить его форму, положение и деформации, наличие в нём камней, степень опорожнения. Рентгеноконтрастное вещество (например, натрия йоподат - «Билимин») дают выпить больному; при этом концентрация контрастного вещества достигает максимума в жёлчном пузыре через 10-15 ч после его приёма. Если рентгеноконтрастное вещество вводят внутривенно, такое исследование называют внутривенной холеграфией. Этот метод позволяет контрастировать внутрипечёночные жёлчные ходы. При этом через 20-25 минут можно получить изображение жёлчных ходов, а через 2-2,5 ч жёлчного пузыря. Подготовка пациента к исследованию зависит от способа введения контрастного вещества.

Этапы подготовки больного к проведению холецистографии следующие:

1. Назначение за 2-3 дня до исследования диеты, исключающей пищу, богатую растительной клетчаткой и содержащую другие вещества, способствующие повышенному образованию газов. Необходимо исключить из питания свежий ржаной хлеб, картофель, бобовые, свежее молоко свежие овощи и фрукты, фруктовые соки.

2. Накануне исследования после лёгкого ужина (с исключением жиров) больному ставят очистительную клизму.

3. За 12 часов до исследования больной принимает рентгеноконтрастное вещество (например,3 г «Билимина»), запивая тёплым чаем. Если пациент тучный, больному дают выпить «Билимин» дважды - по З г в 20 часов и в 22 часа.

4. Необходимо предупредить пациента, что исследование проводят натощак. Непосредственно в рентгенологическом кабинете больной получает желчегонный завтрак (100 г сметаны или 20 г сливочного масла на тонком кусочке белого хлеба).

При внутривенной холеграфии этапы подготовки больного к исследованию включают обязательное проведение пробы на индивидуальную переносимость препарата (за несколько дней до исследования), назначение диеты с исключением продуктов, способствующих повышенному газообразованию, постановку очистительных клизм накануне вечером и утром в день исследования. Внутривенную холеграфию также проводят натощак. Перед исследованием внутривенно медленно (в течение 4-5 мин) вводят рентгеноконтрастное вещество, подогретое до температуры тела человека.

Обзорная рентгенография почек и мочевыводящих путей даёт возможность определить форму и положение почечных лоханок и мочеточников, в ряде случаев - оценить наличие камней (конкрементов).

Контрастная рентгенография. В зависимости от способа введения рентгеноконтрастного вещества различают два вида контрастной рентгенографии почек и мочевыводящих путей.

* Ретроградная урография - метод исследования, когда рентгеноконтрастное вещество вводят через мочевой катетер под контролем цистоскопа в нужный мочеточник. Специальной подготовки пациента при этом не требуется.

* При экскреторной урографии рентгеноконтрастное вещество вводят внутривенно. Этот метод исследования позволяет выявить наличие в почках и мочевыводящих путях конкрементов, аномалий, рубцовых сужений, опухолевых образований. Скорость выделения рентгеноконтрастного вещества характеризует функциональную способность почек.

Этапы подготовки больного к рентгенологическому исследованию почек и мочевыводящих путей следующие:

1. Назначение за 2-3 дня до исследования диеты, исключающей пищу, богатую растительной клетчаткой и содержащей другие вещества, способствующие повышенному образованию газов. Необходимо исключить из питания свежий ржаной хлеб, картофель, бобовые, свежее молоко,свежие овощи и фрукты, фруктовые соки. При метеоризме по назначению врача больному дают активированный уголь.

2. Проведение пробы на индивидуальную переносимость рентгеноконтрастного вещества за 12-24 часов до исследования.

3. Ограничение приёма больным жидкости за 12-18 часов до исследования.

4. Постановка очистительной клизмы (до получения «чистых» промывных вод) накануне вечером и утром за 2 ч до исследования. Исследование проводят строго натощак.

Рентгеноконтрастное вещество вводят пациенту непосредственно в рентгенологическом кабинете.