Нейромедиаторы - биогенные амины: ацетилхолин. Механизм действия ферментов (на примере фермента холинэстеразы) Фармакология учебник для студентов стоматолог

Ацетилхолинэстераза — фермент, который разрушает нейромедиатор ацетилхолин .

Ацетилхолин высвобождается из пресинапса в синаптическую щель и связывается с рецептором на постсинапсе, таким образом осуществляя передачу сигнала между нервными клетками. Для передачи нового сигнала необходимо удалить "отработавший" ацетилхолин из синаптической щели. Ацетилхолинэстераза катализирует гидролиз ацетилхолина до холина и уксусной кислоты. Из холина впоследствии синтезируется новый ацетилхолин.

Нарушение работы холинергических систем связывают с различными нейродегенеративными заболеваниями. Блокирование ацетилхолинэстеразы приводит к накоплению ацетилхолина и, следовательно, усилению передачи возбуждения, что делает этот фермент перспективной терапевтической мишенью в разработке лекарствнных препаратов. Ингибитор ацетилхолинэстеразы донепезил , применяемый в терапии болезни Альцгеймера, способствует ослаблению симптомов заболевания.

Необратимое блокирование ацетилхолинэстеразы лежит в основе механизма действия смертельных отравляющих веществ: зарин, некоторые змеиные яды, фосфорорганические инсектициды, V-газы.

Модели молекулы ацетилхолинэстеразы и её ингибитора донепезила

Необратимое ингибирование холинэстеразы вызывает смерть. Ингибиторами холинэстеразы являются фосфорорганические соединения (хлорофос, дихлофос, табун, зарин, зоман, бинарные яды). Эти вещества связываются ковалентно с серином в активном центре фермента. Некоторые из них синтезированы в качестве инсектицидов, а некоторые - в качестве БОВ (нервно-паралитические яды). Смерть наступает в результате остановки дыхания.

Обратимые ингибиторы холинэстеразы используются как лечебные препараты. Например, при лечении глаукомы и атонии кишечника.

КАТЕХОЛАМИНЫ: норадреналин и дофамин.

Адренэргические синапсы встречаются в постганглионарных волокнах, в волокнах симпатической нервной системы, в различных отделах головного мозга. Катехоламины в нервной ткани синтезируются по общему механизму из тирозина. Ключевой фермент синтеза - тирозингидроксилаза, ингибируемая конечными продуктами.

НОРАДРЕНАЛИН - медиатор в постганглионарных волокнах симпатической и в различных отделах ЦНС.

ДОФАМИН - медиатор проводящих путей, тела нейронов которого расположены в отделе мозга, который отвечает за контроль произвольных движений. Поэтому при нарушении дофаминэргической передачи возникает заболевание паркинсонизм.

Катехоламины, как и ацетилхолин, накапливаются в синаптических пузырьках и тоже выделяется в синаптическую щель при поступлении нервного импульса. Но регуляция в адренэргическом рецепторе происходит иначе. В пресинаптической мембране здесь имеется специальный регуляторный белок - альфа-ахромогранин (Мм=77 кДа), который в ответ на повышение концентрации медиатора в синаптической щели связывает уже выделившийся медиатор и прекращает его дальнейший экзоцитоз. Фермента, разрушающего медиатор, в адренэргических синапсах нет. После передачи импульса молекулы медиатора перекачивается специальной транспортной системой путем активного транспорта с участием АТФ обратно через пресинаптическую мембрану и включается вновь в везикулы. В пресинаптическом нервном окончании излишек медиатора может быть инактивирован МАО, а также катехоламин-О-метилтрансферазой путем метилирования по оксигруппе. Кокаин тормозит активный транспорт катехоламинов.

Передача сигнала в адренэргических синапсах протекает по механизму, известному Вам из лекций по теме “Биохимия гормонов” с участием аденилатциклазной системы. Связывание медиатора с постсинаптическим рецептором почти мгновенно вызывает повышение концентрации ц-АМФ, что приводит к быстрому фосфорилированию белков постсинаптической мембраны. В результате изменяется генерация нервных импульсов постсинаптической мембраной (тормозится). В некторых случаях непосредственной причиной этого является повышение проницаемости постсинаптической мембраны для калия, либо снижением проводимости для натрия (эти события приводят к гиперполяризации).

Образующийся в организме (эндогенный) ацетилхолин играет важную роль в процессах жизнедеятельности: он способствует передаче нервного возбуждения в ЦНС, вегетативных ганглиях, окончаниях парасимпатических (двигательных) нервов. Ацетилхолин является химическим передатчиком (медиатором) нервного возбуждения; окончания нервных волокон, для которых он служит медиатором, называются холинергическими, а рецепторы, взаимодействующие с ним, - холинорецепторами. Холинорецепторы - сложные белковые молекулы (нуклеопротеиды) тетрамерной структуры, локализованные на внешней стороне постсинаптической (плазматической) мембраны. По природе они неоднородны. Холинорецепторы, расположенные в области постганглионарных холинергических нервов (сердца, гладких мышц, желез) обозначают как м-холинорецепторы (мускариночувствительные), а находящиеся в области ганглионарных синапсов и в соматических нервно-мышечных синапсах - как н-холинорецепторы (никотиночувствительные) (С. В. Аничков). Такое деление связано с особенностями реакций, возникающих при взаимодействии ацетилхолина с этими биохимическими системами, мускариноподобных (снижение артериального давления, брадикардия, усиленная секреция слюнных, слезных, желудочных и других экзогенных желез, сужение зрачков и т. д.) в первом случае и никотиноподобных (сокращение скелетной мускулатуры и т. п.) во втором. М- и н-холинорецепторы локализованы в разных органах и системах организма, включая ЦНС. Мускариновые рецепторы стали делить в последние годы на ряд подгрупп (м1, м2, м3, м4, м5). Наиболее изучена в настоящее время локализация и роль м1- и м2-рецепторов. Ацетилхолин не оказывает строго избирательного действия на различные холинорецепторы. В той или другой степени он влияет на м- и н-холинорецепторы и на подгруппы м-холинорецепторов. Периферическое мускариноподобное действие ацетилхолина проявляется в замедлении сердечных сокращений, расширении периферических кровеносных сосудов и снижении артериального давления, активизации перистальтики желудка и кишечника, сокращении мускулатуры бронхов, матки, желчного и мочевого пузыря, увеличении секреции пищеварительных, бронхиальных, потовых и слезных желез, сужении зрачков (миоз). Последний эффект связан с усилением сокращения круговой мышцы радужной оболочки, которая иннервируется постганглионарными холинергическими волокнами глазодвительного нерва (n. oculomotorius). Одновременно в результате сокращения ресничной мышцы и расслабления цинновой связки ресничного пояска наступает спазм аккомодации. Сужение зрачка, обусловленное действием ацетилхолина, сопровождается обычно снижением внутриглазного давления. Этот эффект частично объясняется расширением при сужении зрачка и уплощении радужной оболочки шлеммова канала (венозный синус склеры) и фонтановых пространств (пространства радужно-роговичного угла), за счет чего улучшается отток жидкости из внутренних сред глаза. Не исключено, однако, что в снижении внутриглазного давления принимают участие и другие механизмы. Благодаря способности снижать внутриглазное давление вещества, действующие подобно ацетилхолину (холиномиметики, антихолинэстеразные препараты), широко применяются для лечения глаукомы1. Периферическое никотиноподобное действие ацетилхолина связано с его участием в передаче нервных импульсов с преганглионарных волокон на постганглионарные в вегетативных узлах, а также с двигательных нервов на поперечнополосатую мускулатуру. В малых дозах он является физиологическим передатчиком нервного возбуждения, в больших - может вызывать стойкую деполяризацию в области синапсов и блокировать передачу возбуждения. Ацетилхолину принадлежит также важная роль как медиатору в ЦНС. Он участвует в передаче импульсов в разных отделах мозга, при этом в малых концентрациях облегчает, а в больших - тормозит синаптическую передачу. Изменения в обмене ацетилхолина могут привести к нарушению функций мозга. Некоторые центральнодействующие его антагонисты являются психотропными препаратами. Передозировка антагонистов ацетилхолина может вызвать нарушения высшей нервной деятельности (галлюциногенный эффект и др.). Для применения в медицинской практике и экспериментальных исследований выпускается ацетилхолина хлорид (Acetylcholini chloridum).

Механизм действия ферментов (на примере фермента холинэстеразы)

В ответ на выделение окончанием нервного волокна ацетилхолина, следует ответная реакция возбуждения нервной клетки. Чтобы этот процесс протекал непрерывно, после каждого акта передачи

нервного импульса вызвавшая возбуждение порция ацетилхолина должна быть гидролизована. Скорость гидролиза: 1-2 мкг (порция) за 0,1-0,2 мс.


Активный центр фермента состоит из двух функционально важных и пространственно разделенных участков:

связывающего , куда входит карбоксильная группа -COO - , электростатически взаимодействующая с заряженным азотом N + субстрата;

каталитического , ответственного за эстеразную активность фермента, в состав которого входят остатки Ser, His,Tir.

В процессе реакции атом водорода гидроксильной группы Tir активного центра связывается с атомом кислорода ацетилхолина (будущая спиртовая группа продукта реакции – холина). В результате увеличивается положительный заряд на углеродном атоме ацетильной группы субстрата, который атакуется отрицательно заряженным атомом кислорода серина. Отрицательный заряд на атоме кислорода серина возникает в результате образования водородной связи между атомом Н серина и атомом N гистидина. Связь между С (ацетила) и О (холина) разрывается с образованием в качестве промежуточного соединения ацетилсерина. Отщепляющийся от серина протон связывается кислородным атомом тирозина, и первоначальное состояние тирозина восстанавливается. Гидролиз ацетилсерина начинается с диссоциации молекулы воды за счет взаимодействия протона с атомом N гистидина. Освободившийся гидроксил атакует сложноэфирную связь ацетилсерина. Результатом гидролиза является освобождение уксусной кислоты. Ион водорода (Н +), временно связанный с гистидином, освобождается и связывается с кислородом серина. Образовавшиеся холин и уксусная кислота освобождаются из активного центра за счет диффузии.

Все описанные выше процессы более или менее одновременно. Гидролиз ацетилхолина происходит благодаря согласованному действию всех функциональных групп активного центра.

Согласно химической теории, нервный импульс от нейрона к нейрону или на соответствующий орган передается с помощью специальных веществ - медиаторов . Медиаторы синтезируются в теле нервной клетки и ее отростках, связываются с белками и накапливаются в виде синаптических пузырьков.

Ацетилхолин - медиатор в синапсах центральной, парасимпатической и симпатической нервной системы. Синтезируется из ацетил-КоА и холина под влиянием холинацетилтрансферазы и ионов Mg2+, K+, Ca2+. Образуется в эндоплазматической сети нейрона, поступает в синапсы, связывается с белками и накапливается в виде синаптических пузырьков. После возникновения нервного импульса комплекс ацетилхолин - белок расщепляется, медиатор через поры пресинаптической мембраны проникает в синаптическую щель и взаимодействует с холинорецепторами постсинаптической мембраны. Возникает потенциал действия, и возбуждение передается от нейрона к нейрону или к эффекторной клетке. Холин используется для ре-синтеза медиатора и других веществ.

Гидролитический распад ацетилхолина на уксусную кислоту и холин катализируется ферментом, который получил название «ацетилхолинэстера-за»:

(CH3)3N+ – CH2 – CH2 – O – C – CH3 + H2O Ацетилхолинэстераза

Ацетилхолин O

(CH3)3N+ – CH2 – CH2OH + CH3COOH

Холин Уксусная кислота

Катехоламины (симпатины) - медиаторы симпатической нервной системы, хромаффинной ткани мозгового вещества надпочечников и скоплений хромаффинных клеток. К ним относятся дофамин , норадреналин и адреналин . Медиаторы синтезируются в теле нервной клетки и в виде гранул откладываются в нервных окончаниях. После возбуждения нервной клетки медиаторы выделяются в синаптическую щель, где взаимодействуют с α -адрено- и β -адренорецепторами постсинаптической мембраны. Медиаторы инактивируются под воздействием двух ферментов: катехол-метилтрансферазы и МАО. Образующиеся 3-метокси-адреналин и 3-метокси-4-гидроксиминдальная кислота обезвреживаются в печени и в виде парных соединений с глюкуроновой и серной кислотами выделяются с мочой.

Серотонин (5-о кситриптамин) - медиатор нервной системы, образуется из аминокислоты триптофана. После оказания биологического действия в синапсе дезаминируется, образовавшаяся 5-оксииндолилуксусная кислота выделяется из организма с мочой.

Гистамин образуется из гистидина под влиянием гистидиндекарбоксилазы. Принцип действия гистамина такой же, как и остальных медиаторов. После оказания своего действия инактивируется дезаминированием гистаминазой или путем соединения с клеточными белками.

γ-Аминомасляная кислота (ГАМК) - промежуточный продукт обмена веществ в нервной ткани. Образуется из глутаминовой кислоты под влиянием глутаматдекарбоксилазы. Оказывает тормозящее действие на функции дендритов нейронов головного и спинного мозга и деятельность мионевральных бляшек. После оказания биологического действия инактивируется переаминированием с α-кетоглутаровой кислотой.

Связь между отдельными группами нейронов мозга осуществляется и с помощью опиоидных пептидов - эндорфинов и энкефалинов , которые являются нейромедиаторами и нейромодуляторами.