Медиана. Подробная теория с примерами

Медиана треугольника - это отрезок, соединяющий верщину треугольника с серединой противолежащей стороны этого треугольника.

Свойства медиан треугольника

1. Медиана разбивает треугольник на два треугольника одинаковой площади.

2. Медианы треугольника пересекаются в одной точке, которая делит каждую из них в отношении 2:1, считая от вершины. Эта точка называется центром тяжести треугольника (центроидом).

3. Весь треугольник разделяется своими медианами на шесть равновеликих треугольников.

Длина медианы проведенной к стороне: (док-во достроением до параллелограмма и использованием равенства в параллелограмме удвоенной суммы квадратов сторон и суммы квадратов диагоналей )

Т1. Три медианы треугольника пересекаются в одной точке М, которая делит каждую из них в отношении 2:1, считая от вершин треугольника. Дано: ∆ABC, СС 1 , АА 1 , ВВ 1 - медианы
ABC . Доказать: и

Д-во: Пусть М - точка пересечения медиан СС 1 , АА 1 треугольника ABC. Отметим A 2 - середину отрезка AM и С 2 - середину отрезка СМ. Тогда A 2 C 2 - средняя линия треугольника АМС. Значит,А 2 С 2 || АС

и A 2 C 2 = 0,5*АС. С 1 А 1 - средняя линия треугольника ABC. Значит, А 1 С 1 || АС и А 1 С 1 = 0,5*АС.

Четырехугольник А 2 С 1 А 1 С 2 - параллелограмм, так как его противо­положные стороны А 1 С 1 и А 2 С 2 равны и параллельны. Следовательно, А 2 М = МА 1 и С 2 М = МC 1 . Это означает, что точки А 2 и M делят медиану АА 2 на три равные части, т. е. AM = 2МА 2 . Аналогично СМ = 2MC 1 . Итак, точка М пересечения двух медиан АА 2 и CC 2 треугольника ABC делит каждую из них в отношении 2:1, считая от вершин треу­гольника. Совершенно аналогично доказывается, что точка пересечения меди­ан АА 1 и BB 1 делит каждую из них в отношении 2:1, считая от вер­шин треугольника.

На медиане АА 1 такой точкой является точка М, следовательно, точка М и есть точка пересечения медиан АА 1 иBB 1.

Таким образом, n

T2. Докажите, что отрезки, которые соединяют центроид с вер­шинами треугольника, делят его на три равновеликие части. Дано: ∆ABC , - его медианы.

Доказать:S AMB =S BMC =S AMC . Доказательство. В, у них общая. т.к. равны их основания и высота, проведенная из вершины М, у них общая. Тогда

Аналогичным образом доказывается, чтоS AMB = S AMC . Таким образом,S AMB = S AMC = S CMB . n

Биссектриса треугольника.Теоремы связанные с биссектрисами треугольника. Формулы для нахождения биссектрис

Биссектриса угла - луч с началом в вершине угла, делящий угол на два равных угла.

Биссектриса угла есть геометрическое место точек внутри угла, равноудалённых от сторон угла.

Свойства

1. Теорема о биссектрисе: Биссектриса внутреннего угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон

2. Биссектрисы внутренних углов треугольника пересекаются в одной точке - инцентре - центре вписанной в этот треугольник окружности.

3. Если в треугольнике две биссектрисы равны, то треугольник - равнобедренный (теорема Штейнера - Лемуса).

Вычисление длины биссектрисы

l c - длина биссектрисы, проведённой к стороне c,

a,b,c - стороны треугольника против вершин A,B,C соответственно,

p - полупериметр треугольника,

a l ,b l - длины отрезков, на которые биссектриса l c делит сторону c,

α,β,γ - внутренние углы треугольника при вершинах A,B,C соответственно,

h c - высота треугольника, опущенная на сторону c.


Метод площадей.

Характеристика метода. Из названия следует, что главным объектом данного метода является площадь. Для ряда фигур, например для треугольника, площадь довольно просто выражается через разнообразные комбинации элементов фигуры (треугольника). Поэтому весьма эффективным оказывается прием, когда сравниваются различные выражения для площади данной фигуры. В этом случае возникает уравнение, содержащее известные и искомые элементы фигуры, разрешая которое мы определяем неизвестное. Здесь и проявляется основная особенность метода площадей – из геометрической задачи он «делает» алгебраическую, сводя все к решению уравнения (а иногда системы уравнений).

1) Метод сравнения: связан с большим кол-вом формул S одних и тех же фигур

2) Метод отношения S: основан на след опорных задачах:



Теорема Чевы

Пусть точки A",B",C" лежат на прямых BC,CA,AB треугольника. Прямые AA",BB",CC" пересекаются в одной точке тогда и только тогда, когда

Доказательство.

Обозначим через точку пересечения отрезков и . Опустим из точек С и А перпендикуляры на прямую ВВ 1 до пересечения с ней в точках Kи L соответственно (см. рисунок).

Поскольку треугольники и имеют общую сторону , то их площади относятся как высоты, проведенные на эту сторону, т.е. AL иCK:

Последнее равенство справедливо, так как прямоугольные треугольники и подобны по острому углу.

Аналогично получаем и

Перемножим эти три равенства:

что и требовалось доказать.

Замечание. Отрезок (или продолжение отрезка), соединяющий вершину треугольника с точкой, лежащей на противоположной стороне или ее продолжении, называется чевианой.

Теорема (обратная теорема Чевы) . Пусть точки A",B",C" лежат на сторонах BC,CA и AB треугольника ABC соответственно. Пусть выполняется соотношение

Тогда отрезки AA",BB",CC" и пересекаются в одной точке.

Теорема Менелая

Теорема Менелая. Пусть прямая пересекает треугольник ABC, причем C 1 – точка ее пересечения со стороной AB, A 1 – точка ее пересечения со стороной BC, и B 1 – точка ее пересечения с продолжением стороны AC. Тогда

Доказательство . Проведем через точку C прямую, параллельную AB. Обозначим через K ее точку пересечения с прямой B 1 C 1 .

ТреугольникиAC 1 B 1 иCKB 1 подобны (∟C 1 AB 1 = ∟KCB 1 , ∟AC 1 B 1 = ∟CKB 1). Следовательно,

ТреугольникиBC 1 A 1 иCKA 1 такжеподобны (∟BA 1 C 1 =∟KA 1 C, ∟BC 1 A 1 =∟CKA 1). Значит,

Из каждого равенства выразим CK:

Откуда что и требовалось доказать.

Теорема (обратная теорема Менелая). Пусть дан треугольник ABC. Пусть точка C 1 лежит на стороне AB, точка A 1 – на стороне BC, а точка B 1 – на продолжении стороны AC, причем выполняется соотношение

Тогда точки A 1 ,B 1 и C 1 лежат на одной прямой.

Данная страница посвящена достаточно распространенному информационному ресурсу - описанию и расчету площади произвольного треугольника. Отличие от других ресурсов, это расчет площади онлайн, непосредственно в процессе прочтения статьи

Площадь через высоту и основание

Это самая простая для запоминания формула. Словами эта формула звучит так - площадь треугольника равна половине произведения основания треугольника на его высоту.

В случае прямоугольного треугольника это выражение приобретает еще более простой смысл: Площадь прямоугольного треугольника равна половине произведения двух катетов

площадь через стороны треугольника

Площадь треугольника выраженная через стороны известна очень давно - она фигурирует в книгах, датированных 1 веком до нашей эры.

Эту формулу можно выразить по разному, благо формул расчета параметров треугольника достаточно.

Но если попытаться мыслить категориями времен до нашей эры, когда не было формул в современном преставлении, не было переменных и знаков корня, то единственной аксимомой, на базе которого, Герон, создал свою формулу, была теорема Пифагора. А так как в те времена, еще не знали иррациональных чисел, да к отрицательным у ученых было достаточно скептическое видение, то для размышлений использовались целые числа.

Самого доказательства здесь не будет, предположив только что Герон, дополнял произвольный пифагоровый треугольник до прямоугольника высчитывал его площадь, и делил на два.

Площадь через координаты вершин

Когда известны координаты вершин треугольника, формула площади может быть выражена вот такой формулой

Определитель третьего порядка легко раскладывается, и поэтому расчет площади даже в ручном режиме не вызовет никаких затруднений.

Площадь через две стороны и угол между ними

Площадь через сторону и два угла

Редко встречающаяся задача, но и для таких исходных данных высчитали формулу. Внимательный читатаель сразу видит "ошибку". Заголовок гласит, что площадь узнается через сторону и два угла, то есть через три переменных, а в формуле присутствут все четыре. Как же так?

На самом деле ошибки никакой нет, зная одну из основных аксиом треугольника, гласящая, что сумма внутренних углов треугольника всегда(!!) равна 180 градусов

Поэтому нет ничего сложного, зная два угла треугольника, узнать третий.

Площадь через медианы треугольника

Медиана на сторону а
Медиана на сторону b
Медиана на сторону с

Красивая формула не правда ли?

Медианой именуется отрезок, проведенный из вершины треугольника на середину противоположной стороны, то есть делит ее точкой пересечения пополам. Точка, в которой медиана пересекает противоположную вершине, из которой она выходит, сторону, именуется основанием. Через одну точку, называемую точкой пересечения, проходит каждая медиана треугольника. Формула длины ее может выражаться несколькими способами.

Формулы для выражения длины медианы

  • Зачастую в задачах по геометрии ученикам приходится иметь дело с таким отрезком, как медиана треугольника. Формула ее длины выражается через стороны:

где a, b и c - стороны. Причем с является стороной, на которую медиана опускается. Таким образом выглядит самая простая формула. Медианы треугольника иногда требуется проводить для вспомогательных расчетов. Есть и другие формулы.

  • Если при расчете известны две стороны треугольника и определенный угол α, находящийся между ними, то длина медианы треугольника, опущенной к третьей стороне, будет выражаться так.

Основные свойства

  • Все медианы имеют одну общую точку пересечения O и ею же делятся в отношении два к одному, если вести отсчет от вершины. Такая точка носит название центра тяжести треугольника.
  • Медиана разделяет треугольник на два других, площади которых равны. Такие треугольники называются равновеликими.
  • Если провести все медианы, то треугольник будет разделен на 6 равновеликих фигур, которые также будут треугольниками.
  • Если в треугольнике все три стороны равны, то в нем каждая из медиан будет также высотой и биссектрисой, то есть перпендикулярна той стороне, к которой она проведена, и делит надвое угол, из которого она выходит.
  • В равнобедренном треугольнике медиана, опущенная из вершины, которая находится напротив стороны, не равной никакой другой, будет также высотой и биссектрисой. Медианы, опущенные из других вершин, равны. Это также является необходимым и достаточным условием равнобедренности.
  • Если треугольник является основанием правильной пирамиды, то высота, опущенная на данное основание, проецируется в точку пересечения всех медиан.

  • В прямоугольном треугольнике медиана, проведенная к наибольшей стороне, равняется половине ее длины.
  • Пусть O - точка пересечения медиан треугольника. Формула, приведенная ниже, будет верная для любой точки M.

  • Еще одним свойством обладает медиана треугольника. Формула квадрата ее длины через квадраты сторон представлена ниже.

Свойства сторон, к которым проведена медиана

  • Если соединить любые две точки пересечения медиан со сторонами, на которые они опущены, то полученный отрезок будет являться средней линией треугольника и составлять одну вторую от стороны треугольника, с которой она не имеет общих точек.
  • Основания высот и медиан в треугольнике, а также середины отрезков, соединяющих вершины треугольника с точкой пересечения высот, лежат на одной окружности.

В заключение логично сказать, что одним из самых важных отрезков является именно медиана треугольника. Формула ее может использоваться при нахождении длин других его сторон.

Урок 3

Медиана делит площадь треугольника пополам

Два треугольника называются равновеликими . Если они имеют одинаковую площадь.

Теорема 1. Медиана делит треугольник на два равновеликих треугольника.

Доказательство:

Пусть ВМ – медиана треугольника АВС. Докажем, что

https://pandia.ru/text/78/448/images/image002_97.jpg" width="289" height="227">

Проведем высоту BH треугольника АВС. Тогда

,

https://pandia.ru/text/78/448/images/image005_99.gif" width="136" height="34 src=">.

https://pandia.ru/text/78/448/images/image007_80.gif" width="217" height="55 src=">.

Что и требовалось доказать.

Теорема 2 . Медианы треугольника разбивают его на шесть равновеликих треугольников.

Из теоремы, в частности следует, что если точку пересечения медиан треугольника соединить со всеми его вершинами, то треугольник разобьется на три равновеликие части.

Задача 1 Две медианы треугольника взаимно перпендикулярны и равны соответственно 3 и 4. Найти площадь треугольника.

Решение.

Пусть в треугольнике АВС медианы АМ и ВЕ равны 3 и 4 соответственно, , К – точка пересечения медиан.

https://pandia.ru/text/78/448/images/image013_46.gif" width="120" height="47 src=">.

Так как треугольник АВК прямоугольный с прямым углом ВКА, то .

Так как медиан делят треугольник на 6 равновеликих частей, то .

Ответ: 8

Задача 2 Медианы треугольника равны 6, 8 и 10, найти площадь треугольника.

Решение.

Пусть медианы А M , BE и CD данного треугольника соответственно равны 6, 8 и 10, К – точка их пересечения. Отложим на продолжении луча ВЕ за точку Е отрезок EF = KE . Соединим точки С, F и A.

Рассмотрим треугольник KAF .


https://pandia.ru/text/78/448/images/image018_31.gif" width="152" height="41 src=">

https://pandia.ru/text/78/448/images/image020_25.gif" width="67" height="19 src=">, так как CKAE – параллелограмм (по признаку параллелограмма: ели диагонали четырехугольника делятся точкой пересечения пополам, до данный четырехугольник параллелограмм), получаем .

Так как https://pandia.ru/text/78/448/images/image023_26.gif" width="125" height="20 src=">, то по обратной теореме Пифагора (если квадрат одной стороны треугольника равен сумме квадратов двух других его сторон, то треугольник прямоугольный) треугольник KAF – прямоугольный и .

Вычислим площадь треугольника AKF:

https://pandia.ru/text/78/448/images/image026_24.gif" width="104" height="41 src=">.gif" width="104" height="41 src=">.

https://pandia.ru/text/78/448/images/image030_18.gif" width="16 height=41" height="41"> от площади самого треугольника.

Доказательство можно посмотреть, например, в методическом пособии «Опорные задачи по планиметрии».

Вопросы для самопроверки:

1. Какие треугольники называются равновеликими?

2. Площадь треугольника равна S. Чему равна площадь каждого из треугольников, на которые его разбивает медиана, проведенная к какой-либо стороне этого треугольника?

3. На сколько равновеликих частей разбивают треугольник проведенные в нем три медианы?

4. Площадь треугольника равна S. Цент тяжести этого треугольника соединили с его вершинами. Чему равна площадь каждого из получившихся треугольников?

5. Площадь треугольника равна 48, чему равна площадь треугольника, составленного из медиан этого треугольника?

6. Площадь треугольника, составленного из медиан некоторого треугольника равна 24, чему равна площадь треугольника?

Посмотреть ответы.

Задачи для самостоятельного решения:

1. Две медианы треугольника взаимно перпендикулярны и равны соответственно 6 и 8. Найти площадь треугольника.

Посмотреть решение.

2. Медианы треугольника равны 3, 4 и 5 найти площадь треугольника.

Посмотреть решение.

3. Треугольник АВС, стороны которого 13 см, 14 см и 15 см, разбит на три треугольника отрезками, соединяющими точку М пересечения медиан треугольника с вершинами треугольника. Найти площадь треугольника ВМС.

Посмотреть решение.

4. Две стороны треугольника равны 10 и 12, а медиана, проведённая к третьей, равна 5. Найдите площадь треугольника.

Посмотреть решение.