Открытие элементов и происхождение их названий. Хронология открытия химических элементов Какой химический элемент открыли последним

    Памятник Д. И. Менделееву в Санкт Петербурге … Википедия

    Периодическая система химических элементов (таблица Менделеева) классификация химических элементов, устанавливающая зависимость различных свойств элементов от заряда атомного ядра. Система является графическим выражением периодического закона,… … Википедия

    Хронология науки химии это список различных работ, исследований, идей, изобретений и экспериментов, которые в значительной мере изменили взгляды человечества на строение вещества и материи и процессы происходящие с ними, которые в данный… … Википедия

    См. также: Хронология изобретений человечества История науки … Википедия

    Содержание 1 Эпоха палеолита 2 10 е тысячелетие до н. э. 3 9 е тысячелетие до н. э … Википедия

    Периодическая система химических элементов (таблица Менделеева) классификация химических элементов, устанавливающая зависимость различных свойств элементов от заряда атомного ядра. Система является графическим выражением периодического закона,… … Википедия

    Д. И. Менделеева, естественная классификация химических элементов, являющаяся табличным (или др. графическим) выражением периодического закона Менделеева (См. Периодический закон Менделеева). П. с. э. разработана Д. И. Менделеевым в 1869… … Большая советская энциклопедия

    История технологий По периодам и регионам: Неолитическая революция Древние технологии Египта Наука и технологии древней Индии Наука и технологии древнего Китая Технологии Древней Греции Технологии Древнего Рима Технологии исламского мира… … Википедия

    Памятник на территории Словацкого технологического университета (Братислава), посвященный Д. И. Менделееву Периодический закон фундаментальный закон природы, открытый Д. И. Ме … Википедия

В справочной таблице, кроме порядкового номера элементов, их символа, названия и атомного веса, даны еще краткие исторические справки: кто и когда открыл тот или другой элемент. Указанные в таблице даты отвечают преимущественно тем годам, когда элементы были получены в чистом виде, т. е. в металлическом или свободном состоянии, а не в виде химических соединений; приводится также имя ученого, который впервые этого достиг. Дополнительные указания по этим вопросам для некоторых элементов даны в примечаниях к таблице. Введенное в таблице сокращение «Изв. с др.» означает «известны с древнего времени», остальные сокращения понятны.

Атомный номер Z

Название

Атомный вес A

Кто открыл

Год открытия элемента

Кавендиш

Рамзай и Клив

Арфведсон

Бериллий

Велер и Бюсси

Гей-Люссак и Тенар

Изв. с др.

Д. Резерфорд

Кислород

Пристли и Шееле

Рамзай и Траверс

Либих и Бюсси

Алюминий

Берцелиус

Изв. с др.

Рэлей и Рамзай

Деви (Берцелиус)

Зефштрем

Марганец

Изв. с др.

Кронстедт

Изв. с др.

Маркграф

Лекок де Буабодрант

Германий

Альберт Великий

Берцелиус

Рамзай и Траверс

Бунзен и Кирхгоф

Стронций

Цирконий

Берцелиус

Молибден

Технеций

Перрье и Сегре

Волластон

Палладий

Волластон

Изв. с др.

Герман и Штромберг

Рейх и Рихтер

Изв. с др.

В. Валентин

Рихенштейн

Рамзай и Траверс

Бунзен и Кирхгофф

Мозандер

Гяльдербранд и Нортон

Празеодим

Прометий

Марянский и Гленденев

Лекок де Буабодран

Демарсей

Гадолиний

Мариньяк и Лекок де Буабодран

Мозандер

Диспрозий

Лекок де Буабодран

Мозандер

Иттербий

Мариньяк

Костер и Хевеши

Вольфрам

Бр. д’Эльюар

Ноддак и Таске

Платина 9)

Упом. в XVI в.

Изв. с др.

Упом. за III в. до н. в.

Упом. Плинием

Упом. В. Валентин в XV в.

Корзон и Мэккензи

Берцелиус

Протактиний

Мейтнер и Ган

Нептуний

Мэкмиллан и Абельсон

Плутоний

Сиборг и Мэкмиллан

Америций

Сиборг и Джемс

Сиборг и Джемс

Беркелий

Сиборг и Томпсон

Калифорний

Сиборг и Томпсон

Эйнштейний

Менделевий

Примечания к таблице:

1) Жансен и независимо от него Локьер в 1868 г. обнаружили в спектре солнца неизвестные до того времени линии; этот новый элемент был назван гелием, так как предполагалось, что он находится только на солнце. Через 27 лет Рамзаи и Клив обнаружили те же линии в спектре нового газа, полученного ими при анализе минерала клевеита; название гелий для этого элемента было сохранено.

2) Еще в конце XVIII в. было известно, что при действии серной кислоты на плавиковый шпат выделяется особая кислота, которая разъедает стекло. В 1810 г. Ампер показал, что эта кислота подобна соляной и является соединением с водородом некоторого неизвестного элемента, который он назвал фтором. В чистом виде фтор удалось получить Муассану только в 1886 г.

3) Окись магния была известна давно, ее исследовал Блэк еще в 1775 г. Деви в 1808 г. пытался получить металлический магний, но в чистом виде металл получить ему не удалось.

4) Двуокись титана была получена лабораторным путем еще в конце XVIII в., Берцелиус получал титан, но не вполне чистый. Более чистый металлический титан был получен Грегор, затем Муассаном.

5) Сернистые соединения мышьяка былп известны в древнее время.

6) В начале XIX в. была получена смесь ниобия и тантала, которая рассматривалась как новый элемент; ему было присвоено название колумбий. В Америке и Англии ниобий до сих пор носит название колумбий.

7) В виде окиси церий был получен в 1803 г.

8) Долгое время смесь празеодима и неодима считалась отдельным элементом, который назывался дидием (Di).

9) Как особый металл платина была описана в 1750 г.; до 1810 г. единственным местом добычи платины была Колумбия. Затем платина была найдена в других местах, в том числе на Урале, который до настоящего времени является наиболее богатым источником ее получения.

10) Двуокись урана, полученная впервые еще в 1789 г., была принята вначале за новый элемент. Металлический уран был получен впервые в 1842 г., его радиоактивные свойства были открыты только в 1896 г.

_______________

Источник информации: КРАТКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ СПРАВОЧНИК/ Том 1, - М.: 1960.

Водород, Hydrogenium, Н (1)

Как горючий (воспламеняемый) воздух водород известен довольно давно. Его получали действием кислот на металлы, наблюдали горение и взрывы гремучего газа Парацельс, Бойль, Лемери и другие ученые XVI - XVIII вв. С распространением теории флогистона некоторые химики пытались получить водород в качестве "свободного флогистона". В диссертации Ломоносова "О металлическом блеске" описано получение водорода действием "кислотных спиртов" (например, "соляного спирта", т. е. соляной кислоты) на железо и другие металлы; русский ученый первым (1745) выдвинул гипотезу о том, что водород ("горючий пар" - vapor inflammabilis) представляет собой флогистон. Кавендиш, подробно исследовавший свойства водорода, выдвинул подобную же гипотезу в 1766 г. Он называл водород "воспламеняемым воздухом", полученным из "металлов" (inflammable air from metals), и полагал, как и все флогистики, что при растворении в кислотах металл теряет свой флогистон. Лавуазье, занимавшийся в 1779 г. исследованием состава воды путем ее синтеза и разложения, назвал водород Hydrogine (гидроген), или Hydrogene (гидрожен), от греч. гидро - вода и гайноме - произвожу, рождаю.

Номенклатурная комиссия 1787 г. приняла словопроизводство Hydrogene от геннао - рождаю. В "Таблице простых тел" Лавуазье водород (Hydrogene) упомянут в числе пяти (свет, теплота, кислород, азот, водород) "простых тел, относящихся ко всем трем царствам природы и которые следует рассматривать как элементы тел"; в качестве старых синонимов названия Hydrogene Лавуазье называет горючий газ (gaz inflammable), основание горючего газа. В русской химической литературе конца XVIII и начала XIX в. встречаются два рода названий водорода: флогистические (горючий газ, горючий воздух, воспламенительный воздух, загораемый воздух) и антифлогистические (водотвор, водотворное существо, водотворный газ, водородный газ, водород). Обе группы слов представляют собой переводы французских названий водорода.

Изотопы водорода были открыты в 30-x годах текущего столетия и быстро приобрели большое значение в науке и технике. В конце 1931 г. Юри, Брекуэдд и Мэрфи исследовали остаток после длительного выпаривания жидкого водорода и обнаружили в нем тяжелый водород с атомным весом 2. Этот изотоп назвали дейтерием (Deuterium, D) от греч. - другой, второй. Спустя четыре года в воде, подвергнутой длительному электролизу, был обнаружен еще более тяжелый изотоп водорода 3Н, который назвали тритием (Tritium, Т), от греч. - третий.
Гелий, Helium, Не (2)

В 1868 г. французский астроном Жансен наблюдал в Индии полное солнечное затмение и спектроскопически исследовал хромосферу солнца. Он обнаружил в спектре солнца яркую желтую линию, обозначенную им D3, которая не совпадала с желтой линией D натрия. Одновременно с ним эту же линию в спектре солнца увидел английский астроном Локьер, который понял, что она принадлежит неизвестному элементу. Локьер совместно с Франкландом, у которого он тогда работал, решил назвать новый элемент гелием (от греч. гелиос - солнце). Затем новая желтая линия была обнаружена другими исследователями в спектрах "земных" продуктов; так, в 1881 г. итальянец Пальмиери обнаружил ее при исследовании пробы газа, отобранного в кратере Везувия. Американский химик Гиллебранд, исследуя урановые минералы, установил, что они при действии крепкой серной кислоты выделяют газы. Сам Гиллебранд считал, что это азот. Рамзай, обративший внимание на сообщение Гиллебранда, подверг спектроскопическому анализу газы, выделяемые при обработке кислотой минерала клевеита. Он обнаружил, что в газах содержатся азот, аргон, а также неизвестный газ, дающий яркую желтую линию. Не имея в своем распоряжении достаточно хорошего спектроскопа, Рамзай послал пробы нового газа Круксу и Локьеру, которые вскоре идентифицировали газ как гелий. В том же 1895 г. Рамзай выделил гелий из смеси газов; он оказался химически инертным, подобно аргону. Вскоре после этого Локьер, Рунге и Пашен выступили с заявлением, что гелий состоит из смеси двух газов - ортогелий и парагелий; один из них дает желтую линию спектра, другой - зеленую. Этот второй газ они предложили назвать астерием (Asterium) от греч.- звездный. Совместно с Траверсом Рамзай проверил это утверждение и доказал, что оно ошибочно, так как цвет линии гелия зависит от давления газа.
Литий, Lithium, Li (3)

Когда Дэви производил свои знаменитые опыты по электролизу щелочных земель, о существовании лития никто и не подозревал. Литиевая щелочная земля была открыта лишь в 1817 г. талантливым химиком-аналитиком, одним из учеников Берцелиуса Арфведсоном. В 1800 г. бразильский минералог де Андрада Сильва, совершая научное путешествие по Европе, нашел в Швеции два новых минерала, названных им петалитом и сподуменом, причем первый из них через несколько лет был вновь открыт на острове Уте. Арфведсон заинтересовался петалитом, произвел полный его анализ и обнаружил необъяснимую вначале потерю около 4% вещества. Повторяя анализы более тщательно, он установил, что в петалите содержится "огнепостоянная щелочь до сих пор неизвестной природы". Берцелиус предложил назвать ее литионом (Lithion), поскольку эта щелочь, в отличие от кали и натра, впервые была найдена в "царстве минералов" (камней); название это произведено от греч.- камень. Позднее Арфведсон обнаружил литиевую землю, или литину, и в некоторых других минералах, однако его попытки выделить свободный металл не увенчались успехом. Очень небольшое количество металлического лития было получено Дэви и Бранде путем электролиза щелочи. В 1855 г. Бунзен и Маттессен разработали промышленный способ получения металлического лития электролизом хлорида лития. В русской химической литературе начала XIX в. встречаются названия: литион, литин (Двигубский, 1826) и литий (Гесс); литиевую землю (щелочь) называли иногда литина.
Бериллий, Beryllium, Be (4)

Содержащие бериллий минералы (драгоценные камни) - берилл, смарагд, изумруд, аквамарин и др.- известны с глубокой древности. Некоторые из них добывались на Синайском полуострове еще в XVII в. до н. э. В Стокгольмском папирусе (III в.) описываются способы изготовления поддельных камней. Название берилл встречается у греческих и латинских (Beryll) античных писателей и в древнерусских произведениях, например в "Изборнике Святослава" 1073 г., где берилл фигурирует под названием вируллион. Исследование химического состава драгоценных минералов этой группы началось, однако, лишь в конце XVIII в. с наступлением химико-аналитического периода. Первые анализы (Клапрот, Биндгейм и др.) не обнаружили в берилле ничего особенного. В конце XVIII в. известный минералог аббат Гаюи обратил внимание на полное сходство кристаллического строения берилла из Лиможа и смарагда из Перу. Вокелен произвел химический анализ обоих минералов (1797) и обнаружил в обоих новую землю, отличную от алюмины. Получив соли новой земли, он установил, что некоторые из них обладают сладким вкусом, почему и назвал новую землю глюцина (Glucina) от греч. - сладкий. Новый элемент, содержащийся в этой земле, был назван соответственно глюцинием (Glucinium). Это название употреблялось во Франции в XIX в., существовал даже символ - Gl. Клапрот, будучи противником наименования новых элементов по случайным свойствам их соединений, предложил именовать глюциний бериллием (Beryllium), указав, что сладким вкусом обладают соединения и других элементов. Металлический бериллий был впервые получен Велером и Бусси в 1728 г. путем восстановления хлорида бериллия металлическим калием. Отметим здесь выдающиеся исследования русского химика И. В. Авдеева по атомному весу и составу окисла бериллия (1842). Авдеев установил атомный вес бериллия 9,26 (совр. 9,0122), тогда как Берцелиус принимал его равным 13,5, и правильную формулу окисла.

О происхождении названия минерала берилл, от которого образовано слово бериллий, существует несколько версий. А. М. Васильев (по Диргарту) приводит следующее мнение филологов: латинское и греческое названия берилла могут быть сопоставлены с пракритским veluriya и санскритским vaidurya. Последнее является названием некоторого камня и происходит от слова vidura (очень далеко), что, по-видимому, означает какую-то страну или гору. Мюллер предложил другое объяснение: vaidurya произошло от первоначального vaidarya или vaidalya, а последнее от vidala (кошка). Иначе говоря, vaidurya означает приблизительно "кошачий глаз". Рай указывает, что в санскрите топаз, сапфир и коралл считались кошачьим глазом. Третье объяснение дает Липпман, который считает, что слово берилл обозначало какую-то северную страну (откуда поступали драгоценные камни) или народ. В другом месте Липпман отмечает, что Николай Кузанский писал, что немецкое Brille (очки) происходит от варварско-латинского berillus. Наконец, Лемери, объясняя слово берилл (Beryllus), указывает, что Berillus, или Verillus, означает "мужской камень".

В русской химической литературе начала XIX в. глюцина называлась - сладимая земля, сладозем (Севергин, 1815), сладкозем (Захаров, 1810), глуцина, глицина, основание глицинной земли, а элемент именовался глицинием, глицинитом, глицием, сладимцем и пр. Гизе предложил название бериллий (1814). Гесс, однако, придерживался названия глиций; его употреблял в качестве синонима и Менделеев (1-е изд. "Основ химии").
Бор, Borum, В (5)

Природные соединения бора (англ. Boron, франц. Воrе, нем. Bor), главным образом нечистая бура, известны с раннего средневековья. Под названиями тинкал, тинкар или аттинкар (Tinkal, Tinkar, Attinkar) бура ввозилась в Европу из Тибета; она употреблялась для пайки металлов, особенно золота и серебра. В Европе тинкал назывался чаще боракс (Воrax) от арабского слова bauraq и персидского - burah. Иногда боракс, или борако, обозначал различные вещества, например соду (нитрон). Руланд (1612) называет боракс хризоколлой - смолой, способной "склеивать" золото и серебро. Лемери (1698) тоже называет боракс "клеем золота" (Auricolla, Chrisocolla, Gluten auri). Иногда боракс обозначал нечто вроде "узды золота" (capistrum auri). В Александрийской, эллинистической и византийской химической литературе борахи и борахон, а также в арабской (bauraq) обозначали вообще щелочь, например bauraq arman (армянский борак), или соду, позже так стали называть буру.

В 1702 г. Гомберг, прокаливая буру с железным купоросом, получил "соль" (борную кислоту), которую стали называть "успокоительной солью Гомберга" (Sal sedativum Hombergii); эта соль нашла широкое применение в медицине. В 1747 г. Барон синтезировал буру из "успокоительной соли" и натрона (соды). Однако состав буры и "соли" оставался неизвестным до начала XIX в. В "Химической номенклатуре" 1787 г. фигурирует название horacique асid (борная кислота). Лавуазье в "Таблице простых тел" приводит radical boracique. В 1808 г. Гей-Люссаку и Тенару удалось выделить свободный бор из борного ангидрида, нагревая последний с металлическим калием в медной трубке; они предложили назвать элемент бора (Воrа) или бор (Воrе). Дэви, повторивший опыты Гей-Люссака и Тенара, тоже получил свободный бор и назвал его бораций (Boracium). В дальнейшем у англичан это название было сокращено до Boron. В русской литературе слово бура встречается в рецептурных сборниках XVII - XVIII вв. В начале XIX в. русские химики называли бор буротвором (Захаров, 1810), буроном (Страхов,1825), основанием буровой кислоты, бурацином (Севергин, 1815), борием (Двигубский, 1824). Переводчик книги Гизе называл бор бурием (1813). Кроме того, встречаются названия бурит, борон, буронит и др.
Углерод, Carboneum, С (6)

Углерод (англ. Carbon, франц. Carbone, нем. Kohlenstoff) в виде угля, копоти и сажи известен человечеству с незапамятных времен; около 100 тыс. лет назад, когда наши предки овладели огнем, они каждодневно имели дело с углем и сажей. Вероятно, очень рано люди познакомились и с аллотропическими видоизменениями углерода - алмазом и графитом, а также с ископаемым каменным углем. Не удивительно, что горение углеродсодержащих веществ было одним из первых химических процессов, заинтересовавших человека. Так как горящее вещество исчезало, пожираемое огнем, горение рассматривали как процесс разложения вещества, и поэтому уголь (или углерод) не считали элементом. Элементом был огонь - явление, сопровождающее горение; в учениях об элементах древности огонь обычно фигурирует в качестве одного из элементов. На рубеже XVII - XVIII вв. возникла теория флогистона, выдвинутая Бехером и Шталем. Эта теория признавала наличие в каждом горючем теле особого элементарного вещества - невесомого флюида - флогистона, улетучивающегося в процессе горения. Так как при сгорании большого количества угля остается лишь немного золы, флогистики полагали, что уголь - это почти чистый флогистон. Именно этим объясняли, в частности, "флогистирующее" действие угля, - его способность восстанавливать металлы из "известей" и руд. Позднейшие флогистики - Реомюр, Бергман и др. - уже начали понимать, что уголь представляет собой элементарное вещество. Однако впервые таковым "чистый уголь" был признан Лавуазье, исследовавшим процесс сжигания в воздухе и кислороде угля и других веществ. В книге Гитона де Морво, Лавуазье, Бертолле и Фуркруа "Метод химической номенклатуры" (1787) появилось название "углерода" (carbone) вместо французского "чистый уголь" (charbone pur). Под этим же названием углерод фигурирует в "Таблице простых тел" в "Элементарном учебнике химии" Лавуазье. В 1791 г. английский химик Теннант первым получил свободный углерод; он пропускал пары фосфора над прокаленным мелом, в результате чего образовывался фосфат кальция и углерод. То, что алмаз при сильном нагревании сгорает без остатка, было известно давно. Еще в 1751 г. французский король Франц I согласился дать алмаз и рубин для опытов по сжиганию, после чего эти опыты даже вошли в моду. Оказалось, что сгорает лишь алмаз, а рубин (окись алюминия с примесью хрома) выдерживает без повреждения длительное нагревание в фокусе зажигательной линзы. Лавуазье поставил новый опыт по сжиганию алмаза с помощью большой зажигательной машины, и пришел к выводу, что алмаз представляет собой кристаллический углерод. Второй аллотроп углерода - графит - в алхимическом периоде считался видоизмененным свинцовым блеском и назывался plumbago; только в 1740 г. Потт обнаружил отсутствие в графите какой-либо примеси свинца. Шееле исследовал графит (1779) и, будучи флогистиком, счел его сернистым телом особого рода, особым минеральным углем, содержащим связанную "воздушную кислоту" (СО2) и большое количество флогистона.

Двадцать лет спустя Гитон де Морво путем осторожного нагревания превратил алмаз в графит, а затем в угольную кислоту.

Международное название Carboneum происходит от лат. carbo (уголь). Слово это очень древнего происхождения. Его сопоставляют с cremare - гореть; корень саr, cal, русское гар, гал, гол, санскритское ста означает кипятить, варить. Со словом "carbo" связаны названия углерода и на других европейских языках (carbon, charbone и др.). Немецкое Kohlenstoff происходит от Kohle - уголь (старогерманское kolo, шведское kylla - нагревать). Древнерусское угорати, или угарати (обжигать, опалять) имеет корень гар, или гор, с возможным переходом в гол; уголь по-древнерусски югъль, или угъль, того же происхождения. Слово алмаз (Diamante) происходит от древнегреческого - несокрушимый, непреклонный, твердый, а графит от греческого - пишу.

В начале XIX в. старое слово уголь в русской химической литературе иногда заменялось словом "углетвор" (Шерер, 1807; Севергин, 1815); с 1824 г. Соловьев ввел название углерод.

Азот, Nitrogenium, N (7)

Азот (англ. Nitrogen, франц. Azote, нем. Stickstoff) был открыт почти одновременно несколькими исследователями. Кавендиш получил азот из воздуха (1772), пропуская последний через раскаленный уголь, а затем через раствор щелочи для поглощения углекислоты. Кавендиш не дал специального названия новому газу, упоминая о нем как о мефитическом воздухе (Air mephitic от латинского mephitis - удушливое или вредное испарение земли). Вскоре Пристли установил, что если в воздухе долгое время горит свеча или находится животное (мышь), то такой воздух становится непригодным для дыхания. Официально открытие азота обычно приписывается ученику Блэка - Рутерфорду, опубликовавшему в 1772 г. диссертацию (на степень доктора медицины) - "О фиксируемом воздухе, называемом иначе удушливым", где впервые описаны некоторые химические свойства азота. В эти же годы Шееле получил азот из атмосферного воздуха тем же путем, что и Кавендиш. Он назвал новый газ "испорченным воздухом" (Verdorbene Luft). Поскольку пропускание воздуха через раскаленный уголь рассматривалось химиками-флогистиками как его флогистирование, Пристли (1775) назвал азот флогистированным воздухом (Air phlogisticated). О флогистировании воздуха в своем опыте говорил ранее и Кавендиш. Лавуазье в 1776 - 1777 гг. подробно исследовал состав атмосферного воздуха и установил, что 4/5 его объема состоят из удушливого газа (Аir mofette - атмосферный мофетт, или просто Mofett). Названия азота - флогистированный воздух, мефитический воздух, атмосферный мофетт, испорченный воздух и некоторые другие - употреблялись до признания в европейских странах новой химической номенклатуры, т. е. до выхода в свет известной книги "Метод химической номенклатуры" (1787).

Составители этой книги - члены номенклатурной комиссии Парижской академии наук - Гитон де Морво, Лавуазье, Бертолле и Фуркруа - приняли лишь несколько новых названий простых веществ, в частности, предложенные Лавуазье названия "кислород" и "водород". При выборе нового названия для азота комиссия, исходившая из принципов кислородной теории, оказалась в затруднении. Как известно, Лавуазье предлагал давать простым веществам такие названия, которые отражали бы их основные химические свойства. Соответственно, этому азоту следовало бы дать название "радикал нитрик" или "радикал селитряной кислоты". Такие названия, пишет Лавуазье в своей книге "Начала элементарной химии" (1789), основаны на старых терминах нитр или селитра, принятых в искусствах, в химии и в обществе. Они были бы весьма подходящими, но известно, что азот является также основанием летучей щелочи (аммиака), как это было незадолго до этого установлено Бертолле. Поэтому название радикал, или основание селитряной кислоты, не отражает основных химических свойств азота. Не лучше ли остановиться на слове азот, которое, по мнению членов номенклатурной комиссии, отражает основное свойство элемента - его непригодность для дыхания и жизни. Авторы химической номенклатуры предложили производить слово азот от греческой отрицательной приставки "а" и слова жизнь. Таким образом, название азот, по их мнению, отражало его нежизненность, или безжизненность.

Однако слово азот придумано не Лавуазье и не его коллегами по комиссии. Оно известно с древности и употреблялось философами и алхимиками средневековья для обозначения "первичной материи (основы) металлов", так называемого меркурия философов, или двойного меркурия алхимиков. Слово азот вошло в литературу, вероятно, в первые столетия средневековья, как и многие другие зашифрованные и имевшие мистический смысл названия. Оно встречается в сочинениях многих алхимиков, начиная с Бэкона (ХIII в.) - у Парацельса, Либавия, Валентина и др. Либавий указывает даже, что слово азот (azoth) происходит от старинного испано-арабского слова азок (azoque или azoc), обозначавшего ртуть. Но более вероятно, что эти слова появились в результате искажений переписчиками коренного слова азот (azot или azoth). Теперь происхождение слова азот установлено более точно. Древние философы и алхимики считали "первичную материю металлов" альфой и омегой всего существующего. В свою очередь, это выражение заимствовано из Апокалипсиса - последней книги Библии: "я - альфа и омега, начало и конец, первый и последний". В древности и в средние века христианские философы считали приличным употреблять при написании своих трактатов только три языка, признававшихся "священными", - латинский, греческий и древнееврейский (надпись на кресте при распятии Христа по евангельскому рассказу была сделана на этих трех языках). Для образования слова азот были взяты начальные и конечные буквы алфавитов этих трех языков (а, альфа, алеф и зэт, омега, тов - АААZОТ).

Составители новой химической номенклатуры 1787 г., и прежде всего инициатор ее создания Гитон де Морво, хорошо знали о существовании с древних времен слова азот. Морво отметил в "Методической энциклопедии" (1786) алхимическое значение этого термина. После опубликования "Метода химической номенклатуры" противники кислородной теории - флогистики - выступили с резкой критикой новой номенклатуры. Особенно, как отмечает сам Лавуазье в своем учебнике химии, критиковалось принятие "древних наименований". В частности, Ламетри - издатель журнала "Observations sur la Physique" - оплота противников кислородной теории, указывал на то, что слово азот употреблялось алхимиками в другом смысле.

Несмотря на это, новое название было принято во Франции, а также и в России, заменив собою ранее принятые названия "флогистированный газ", "мофетт", "основание мофетта" и т. д.

Словообразование азот от греческого тоже вызвало справедливые замечания. Д. Н. Прянишников в своей книге "Азот в жизни растений и в земледелии СССР" (1945) совершенно правильно заметил, что словообразование от греческого "вызывает сомнения". Очевидно, эти сомнения имелись и у современников Лавуазье. Сам Лавуазье в своем учебнике химии (1789) употребляет слово азот наряду с названием "радикал нитрик" (radical nitrique).

Интересно отметить, что более поздние авторы, пытаясь, видимо, как-то оправдать неточность, допущенную членами номенклатурной комиссии, производили слово азот от греческого - дающий жизнь, животворный, создав искусственное слово "азотикос", отсутствующее в греческом языке (Диргарт, Реми и др.). Однако этот путь образования слова азот едва ли может быть признан правильным, так как производное слово для названия азот должно было бы звучать "азотикон".

Неудачность названия азот была очевидной для многих современников Лавуазье, вполне сочувствовавших его кислородной теории. Так, Шапталь в своем учебнике химии "Элементы химии" (1790) предложил заменить слово азот словом нитроген (нитрожен) и называл газ, соответственно воззрениям своего времени (каждая молекула газа представлялась окруженной атмосферой теплорода), "газ нитрожен" (Gas nitrogene). Свое предложение Шапталь подробно мотивировал. Одним из доводов послужило указание, что название, означающее безжизненный, могло бы с большими основаниями быть дано другим простым телам (обладающим, например, сильными ядовитыми свойствами). Название нитроген, принятое в Англии и в Америке, стало в дальнейшем основой международного названия элемента (Nitrogenium) и символа азота - N. Во Франции в начале ХIХ в. вместо символа N употребляли символ Az. В 1800 г. один из соавторов химической номенклатуры - Фуркруа предложил еще одно название - алкалиген (алкалижен - alcaligene), исходя из того, что азот является "основанием" летучей щелочи (Alcali volatil) - аммиака. Но это название не было принято химиками. Упомянем, наконец, название азота, которое употребляли химики-флогистики и, в частности, Пристли, в конце ХVIII в. - септон (Septon от французского Septique - гнилостный). Это название предложено, по-видимому, Митчелом - учеником Блэка, впоследствии работавшим в Америке. Дэви отверг это название. В Германии с конца ХVIII в. и до настоящего времени азот называют Stickstoff, что означает "удушливое вещество".

Что касается старых русских названий азота, фигурировавших в разнообразных сочинениях конца XVIII - начала ХIХ в., то они таковы: удушливый гас, нечистый гас; мофетический воздух (все это переводы французского названия Gas mofette), удушливое вещество (перевод немецкого Stickstoff), флогистированный воздух, гас огорюченный, огорюченный воздух (флогистические названия - перевод термина, предложенного Пристли - Рlogisticated air). Употреблялись также названия; испорченный воздух (перевод термина Шееле Verdorbene Luft), селитротвор, селитротворный гас, нитроген (перевод названия, предложенного Шапталем - Nitrogene), алкалиген, щелочетвор (термины Фуркруа, переведенные на русский язык в 1799 и 1812 гг.), септон, гнилотвор (Septon) и др. Наряду с этими многочисленными названиями употреблялись и слова азот и азотический гас, особенно с начала ХIХ в.

В.Севергин в своем "Руководстве к удобнейшему разумению химических книг иностранных" (1815) объясняет слово азот следующим образом: "Azoticum, Azotum, Azotozum - азот, удушливое вещество"; "Azote - Азот, селитротвор"; "селитротворный газ, азотовый газ". Окончательно слово азот вошло в русскую химическую номенклатуру и вытеснило все другие названия после выхода в свет "Оснований чистой химии" Г. Гесса (1831).
Производные названия соединений, содержащих азот, образованы на русском и других языках либо от слова азот (азотная кислота, азосоединения и др.), либо от международного названия нитрогениум (нитраты, нитросоединения и др.). Последний термин происходит от древних названий нитр, нитрум, нитрон, обозначавших обычно селитру, иногда - природную соду. В словаре Руланда (1612) сказано: "Нитрум, борах (baurach), селитра (Sal petrosum), нитрум, у немцев - Salpeter, Веrgsalz - то же, что и Sal реtrae".



Кислород, Oxygenium, O (8)

Открытие кислорода (англ. Oxygen, франц. Oxygene, нем. Sauerstoff) ознаменовало начало современного периода развития химии. С глубокой древности было известно, что для горения необходим воздух, однако многие века процесс горения оставался непонятным. Лишь в XVII в. Майов и Бойль независимо друг от друга высказали мысль, что в воздухе содержится некоторая субстанция, которая поддерживает горение, но эта вполне рациональная гипотеза не получила тогда развития, так как представление о горении, как о процессе соединения горящего тела с некой составной частью воздуха, казалось в то время противоречащим столь очевидному факту, как то, что при горении имеет место разложение горящего тела на элементарные составные части. Именно на этой основе на рубеже XVII в. возникла теория флогистона, созданная Бехером и Шталем. С наступлением химико-аналитического периода развития химии (вторая половина XVIII в.) и возникновением "пневматической химии" - одной из главных ветвей химико-аналитического направления - горение, а также дыхание вновь привлекли к себе внимание исследователей. Открытие различных газов и установление их важной роли в химических процессах явилось одним из главных стимулов для систематических исследований процессов горения веществ, предпринятых Лавуазье. Кислород был открыт в начале 70-х годов XVIII в. Первое сообщение об этом открытии было сделано Пристли на заседании Английского королевского общества в 1775 г. Пристли, нагревая красную окись ртути большим зажигательным стеклом, получил газ, в котором свеча горела более ярко, чем в обычном воздухе, а тлеющая лучина вспыхивала. Пристли определил некоторые свойства нового газа и назвал его дефлогистированным воздухом (daphlogisticated air). Однако двумя годами ранее Пристли (1772) Шееле тоже получал кислород разложением окиси ртути и другими способами. Шееле назвал этот газ огненным воздухом (Feuerluft). Сообщение же о своем открытии Шееле смог сделать лишь в 1777 г. Между тем в 1775 г. Лавуазье выступил перед Парижской академией наук с сообщением, что ему удалось получить "наиболее чистую часть воздуха, который нас окружает", и описал свойства этой части воздуха. Вначале Лавуазье называл этот "воздух" эмпирейным, жизненным (Air empireal, Air vital), основанием жизненного воздуха (Base dе l"air vital). Почти одновременное открытие кислорода несколькими учеными в разных странах вызвало споры о приоритете. Особенно настойчиво признания себя первооткрывателем добивался Пристли. По существу споры эти не окончились до сих пор. Подробное изучение свойств кислорода и его роли в процессах горения и образования окислов привело Лавуазье к неправильному выводу о том, что этот газ представляет собой кислотообразующее начало. В 1779 г. Лавуазье в соответствии с этим выводом ввел для кислорода новое название - кислотообразующий принцип (principe acidifiant ou principe oxygine). Фигурирующее в этом сложном названии слово oxygine Лавуазье произвел от греч. - кислота и "я произвожу".
Фтор, Fluorum, F (9)

Фтор (англ. Fluorine, франц. и нем. Fluor) получен в свободном состоянии в 1886 г., но его соединения были известны давно и широко применялись в металлургии и производстве стекла. Первые упоминания о флюорите (CaF2) под названием плавиковый шпат (Fliisspat) относятся к XVI в. В одном из сочинений, приписываемых легендарному Василию Валентину, упоминаются окрашенные в различные цвета камни - флюссе (Fliisse от лат. fluere - течь, литься), которые применялись в качестве плавней при выплавке металлов. Об этом же пишут Агрикола и Либавиус. Последний вводит особые названия для этого плавня - плавиковый шпат (Flusspat) и минеральный плавик. Многие авторы химико-технических сочинений XVII и XVIII вв. описывают разные виды плавикого шпата. В России эти камни именовались плавик, спалт, спат; Ломоносов относил эти камни к разряду селенитов и называл шпатом или флусом (флус хрустальный). Русские мастера, а также собиратели коллекций минералов (например, в XVIII в. князь П. Ф. Голицын) знали, что некоторые виды шпатов при нагревании (например, в горячей воде) светятся в темноте. Впрочем, еще Лейбниц в своей истории фосфора (1710) упоминает в связи с этим о термофосфоре (Thermophosphorus).

По-видимому, химики и химики-ремесленники познакомились с плавиковой кислотой не позднее XVII в. В 1670 г. нюрнбергский ремесленник Шванхард использовал плавиковый шпат в смеси с серной кислотой для вытравливания узоров на стеклянных бокалах. Однако в то время природа плавикового шпата и плавиковой кислоты была совершенно неизвестна. Полагали, например, что протравливающее действие в процессе Шванхарда оказывает кремневая кислота. Это ошибочное мнение устранил Шееле, доказав, что при взаимодействии плавикового шпата с серной кислотой кремневая кислота получается в результате разъедания стеклянной реторты образующейся плавиковой кислотой. Кроме того, Шееле установил (1771), что плавиковый шпат представляет собой соединение известковой земли с особой кислотой, которая получила название "шведская кислота". Лавуазье признал радикал плавиковой кислоты (radical fluorique) простым телом и включил его в свою таблицу простых тел. В более или менее чистом виде плавиковая кислота была получена в 1809 г. Гей-Люссаком и Тенаром путем перегонки плавикового шпата с серной кислотой в свинцовой или серебряной реторте. При этой операции оба исследователя получили отравление. Истинную природу плавиковой кислоты установил в 1810 г. Ампер. Он отверг мнение Лавуазье о том, что в плавиковой кислоте должен содержаться кислород, и доказал аналогию этой кислоты с хлористоводородной кислотой. О своих выводах Ампер сообщил Дэви, который незадолго до этого установил элементарную природу хлора. Дэви полностью согласился с доводами Ампера и затратил немало усилий на получение свободного фтора электролизом плавиковой кислоты и другими путями. Принимая во внимание сильное разъедающее действие плавиковой кислоты на стекло, а также на растительные и животные ткани, Ампер предложил назвать элемент, содержащийся в ней, фтором (греч. - разрушение, гибель, мор, чума и т. д.). Однако Дэви не принял этого названия и предложил другое - флюорин (Fluorine) по аналогии с тогдашним названием хлора - хлорин (Chlorine), оба названия до сих пор употребляются в английском языке. В русском языке сохранилось название, данное Ампером.

Многочисленные попытки выделить свободный фтор в XIX в. не привели к успешным результатам. Лишь в 1886 г. Муассану удалось сделать это и получить свободный фтор в виде газа желто-зеленого цвета. Так как фтор является необычайно агрессивным газом, Муассану пришлось преодолеть множество затруднений, прежде чем он нашел материал, пригодный для аппаратуры в опытах со фтором. U-образная трубка для электролиза фтористоводородной кислоты при минус 55oС (охлаждаемая жидким хлористым метилом) была сделана из платины с пробками из плавикового шпата. После того, как были исследованы химические и физические свойства свободного фтора, он нашел широкое применение. Сейчас фтор - один из важнейших компонентов синтеза фторорганических веществ широкого ассортимента. В русской литературе начала XIX в. фтор именовался по-разному: основание плавиковой кислоты, флуорин (Двигубский, 1824), плавиковость (Иовский), флюор (Щеглов, 1830), флуор, плавик, плавикотвор. Гесс с 1831 г. ввел в употребление название фтор.
Неон, Neon, Nе (10)

Этот элемент открыт Рамзаем и Траверсом в 1898 г., через несколько дней после открытия криптона. Ученые отобрали первые пузырьки газа, образующегося при испарении жидкого аргона, и установили, что спектр этого газа указывает на присутствие нового элемента. Рамзай так рассказывает о выборе названия для этого элемента:

"Когда мы в первый раз рассматривали его спектр, при этом находился мой 12-летний сын.
- Отец,- сказал он, - как называется этот красивый газ?
- Это еще не решено, - ответил я.
- Он новый? - полюбопытствовал сын.
- Новооткрытый, - возразил я.
- Почему бы в таком случае не назвать его Novum, отец?
- Это не подходит, потому что novum не греческое слово, - ответил я. - Мы назовем его неоном, что по-гречески значит новый.
Вот таким то образом газ получил свое название".
Автор: Фигуровский Н.А.
Химия и Химики № 1 2012

Продолжение следует...

Приоритеты открытия химических элементов

Здесь вы найдете сведения о том, кто, где и когда открыл химические элементы (расположены в алфавитном порядке в соответствии с латинским символом). Отмечены звездочкой (*) те элементы, которые в свободном виде, в виде сплавов или соединений известны с древних времен или с эпохи Средневековья.

символ и название - год открытия - автор(ы) и страна открытия Ac актиний 1899 А. Дебьерн (Франция) Ag серебро * -- Al алюминий 1825 Х. Эрстед (Дания) Am америций 1945 Г. Сиборг, А. Гиорсо и др. (США) Ar аргон 1894 Д. Рэлей, У. Рамзай (Англия) As мышьяк * -- At астат 1940 Э. Сегре, Д. Корсон, К. Макензи (США) Au золото * -- B бор 1808 Л. Гей-Люссак, Л. Тенар (Франция) Ba барий 1774 К. Шееле, Ю. Ган (Швеция) Be бериллий 1798 Н.-Л. Воклен (Франция) Bh борий 1981 П. Армбрустер и др. (ФРГ) Bi висмут * -- Bk берклий 1949 Г. Сиборг, А. Гиорсо и др. (США) Br бром 1826 А. Балар (Франция) C углерод * -- Ca кальций 1808 Г. Дэви (Англия) Cd кадмий 1817 Ф. Штромейер Ce церий 1803 Й.Берцелиус, В.Хисингер (Швеция), М.Клапрот (Германия) Cf калифорний 1950 Г. Сиборг, А. Гиорсо и др. (США) Cl хлор 1774 К. Шееле (Швеция) Cm кюрий 1944 Г. Сиборг, А. Гиорсо и др. (США) Co кобальт 1735 Г. Брандт (Швеция) Cr хром 1797 Н.-Л. Воклен (Франция) Cs цезий 1860 Р. Бунзен, Г. Кирхгоф (Германия) Cu медь * -- Db дубний 1970 Г.Н.Флёров, И.Звара и др. (СССР), А.Гиорсо и др. (США) Dy диспрозий 1886 Ф. Лекок-де-Буабодран (Франция) Er эрбий 1843 К. Мосандер (Швеция) Es эйнштейний 1952 Г. Сиборг, А. Гиорсо и др. (США) Eu европий 1896-1901 Э.Демарсе (Франция) F фтор 1771 К. Шееле (Швеция) Fe железо * -- Fm фермий 1952 Г. Сиборг, А. Гиорсо и др. (США) Fr франций 1939 М. Пере (Франция) Ga галлий 1875 Ф. Лекок-де-Буабодран (Франция) Gd гадолиний 1886 Ф. Лекок-де-Буабодран (Франция) Ge германий 1886 К. Винклер (Германия) H водород 1766 Г. Кавендиш (Англия) He гелий 1868 П.-Ж.Жансен (Франция), Н.Локьер, Э.Франкленд (Англия) Hf гафний 1923 Д. Костер, Й.-Д. Хевеши (Дания) Hg ртуть * -- Ho гольмий 1879 П. Клеве (Швеция) Hs хассий 1984 Г.Н.Флёров, И.Звара и др. (СССР), П.Армбрустер и др. (ФРГ) I иод 1811 Б. Куртуа (Франция) In индий 1863 Ф. Райх, Х. Рихтер (Германия) Ir иридий 1804 С. Теннант (Англия) K калий 1807 Г. Дэви (Англия) Kr криптон 1898 У. Рамзай, М. Траверс (Англия) La лантан 1839 К. Мосандер (Швеция) Li литий 1817 Й.-А. Арведсон (Швеция) Lr лоуренсий 1961-1971 Г.Н.Флёров и др. (СССР), А.Гиорсо и др. (США) Lu лютеций 1907 Ж.Юрбен (Франция), К.Ауэр фон-Вельсбах (Австрия) Md менделевий 1955 Г. Сиборг, А. Гиорсо и др. (США) Mg магний 1808 Г. Дэви (Англия) Mn марганец 1774 К. Шееле, Т. Бергман, Ю. Ган (Швеция) Mo молибден 1778 К. Шееле (Швеция) Mt мейтнерий 1987 П. Армбрустер и др. (ФРГ) N азот 1772 Д. Резерфорд (Англия) Na натрий 1807 Г. Дэви (Англия) Nb ниобий 1801 Ч. Хатчетт (Англия) Nd неодим 1885 К. Ауэр фон-Вельсбах (Австрия) Ne неон 1898 У. Рамзай, М. Траверс (Англия) Ni никель 1751 А. Кронстедт (Швеция) No нобелий 1965 Г. Н. Флёров и др. (СССР) Np нептуний 1940 Э. Макмиллан, Ф. Эйблсон (США) O кислород 1771-1774 К.Шееле (Швеция), Дж.Пристли (Англия) Os осмий 1804 С. Теннант (Англия) P фосфор 1669 Х. Бранд (Германия) Pa протактиний 1918 Ф. Содди, Д. Крэнстон (Англия), О. Ган, Л.Майтнер (Германия) Pb свинец * -- Pd палладий 1803 У. Вулластон (Англия) Pm прометий 1945 Дж. Марински, Л. Гленденин,Ч. Кориелл (США) Po полоний 1898 М. Склодовская-Кюри, П. Кюри (Франция) Pr празеодим 1885 К. Ауэр фон-Вельсбах (Австрия) Pt платина * -- Pu плутоний 1940 Г. Сиборг, Э. Макмиллан и др. (США) Ra радий 1898 М. Склодовская-Кюри, П. Кюри, Ж. Бемон (Франция) Rb рубидий 1861 Р. Бунзен, Г. Кирхгоф (Германия) Re рений 1925-1928 В. Ноддак, И. Такке (Германия) Rf резерфордий 1968-1969 Г. Н. Флёров, И. Звара и др. (СССР), А.Гиорсо и др. (США) Rh родий 1804 У. Вулластон (Англия) Rn радон 1900 Ф. Дорн (Германия) Ru рутений 1844 К. К. Клаус (Россия) S сера * -- Sb сурьма * -- Sc скандий 1879 Л. Нильсон (Швеция) Se селен 1817 Й. Берцелиус, Ю. Ган (Швеция) Sg сиборгий 1974 Г. Сиборг, А. Гиорсо и др. (США) Si кремний 1823 Й. Берцелиус (Швеция) Sm самарий 1879 Ф. Лекок-де-Буабодран (Франция) Sn олово * -- Sr стронций 1787 А. Крофорд, У. Крукшанк (Англия) Ta тантал 1802 А. Экеберг (Швеция) Tb тербий 1843 К. Мосандер (Швеция) Tc технеций 1937 Э. Сегре, К. Перриер (Италия) Te теллур 1782 Ф. Мюллер фон-Рейхенштейн (Венгрия) Th торий 1828 Й. Берцелиус (Швеция) Ti титан 1795-1797 М. Клапрот (Германия) Tl таллий 1861 У. Крукс (Англия) Tm тулий 1879 П. Клеве (Швеция) U уран 1789 М. Клапрот (Германия) W вольфрам 1781 К. Шееле (Швеция) Xe ксенон 1898 У. Рамзай, М. Траверс (Англия) Y иттрий 1794 Ю. Гадолин (Финляндия) Yb иттербий 1878 Ж.-Ш. Мариньяк (Швейцария) Zn цинк * -- Zr цирконий 1789 М. Клапрот (Германия) 110 ** 1988 Ю.Ц.Оганесян и др. (СССР), П.Армбрустер и др. (ФРГ) 111 ** 1994-1996 П. Армбрустер и др. (ФРГ) 112 ** 1994-1996 П. Армбрустер и др. (ФРГ) 114 ** 1998 Ю.Ц.Оганесян и др. (Россия) ** -- Принято решение пока не присваивать элементу никакого названия, ограничившись только его номером.

» всегда было и ныне остаётся основной категорией химии, так как оно выражает главный объект химической науки. Химия определилась как наука и выделилась в самостоятельную отрасль естествознания только после чёткого установления этого важнейшего понятия, в разработке которого следует специально подчеркнуть роль отца русской науки М. В. Ломоносова. После внедрения в химию научного понятия об элементе, открытие и изолирование новых элементов считалось высшим достижением химиков, к которому стремились многие выдающиеся умы. Вероятность такого открытия со временем уменьшалась и в наше время почти сведена к нулю. Имена лиц, открывших новые химические элементы, навсегда вписываются в историю развития науки. Среди таких учёных представителям России принадлежит почётное место.

Хронологические периоды открытия химических элементов

В истории открытия химических элементов можно отметить два больших периода. В первый, доменделеевский, период открытие элементов происходило эмпирически, без общей идеи, чисто аналитическим путём. Этот период занял наибольший отрезок времени и длился вплоть до последней четверти XIX в., до открытия естественной системы химических элементов. Второй, послеменделеевский, период был тесно связан с периодической системой. Вначале это вылилось в проверку самого периодического закона, предсказаний Менделеева о существовании ещё некоторых элементов. Этот этап заключает и главный триумф периодической системы - открытие Ga, Sc и Ge. Следующий этап связан с электронной интерпретацией системы Менделеева. Закономерности электронного наслоения атомов дали возможность правильно предсказать открытие, например, гафния. Последний этап, длящийся и поныне, состоит в углублении знаний атомов. Здесь речь идёт не столько о поисках естественных химических элементов, сколько об искусственных синтезах их путём осуществления ядерных реакций.

Максимальное количество открытых элементов (две трети общего числа) приходится на первый аналитический период поисков химиков. С именами русских учёных мы встречаемся уже и в доменделеевское время.

Для всех стран эпоха зарождения самостоятельных научных направлений означает начало новой эры в развитии культуры этой страны. Имя русского учёного, сделавшего выдающийся вклад в химию новых элементов, К. К. Клауса, связано именно с эпохой зарождения русских химических школ. Клаус (1796-1864) родился и проработал всю жизнь в России. Он сделал своё выдающееся открытие в период, когда химия была, «собирающей наукой». Открытие нового элемента Клаус смог осуществить благодаря своим исключительным способностям к аналитическим исследованиям. Это открытие настолько поучительно, что некоторые детали его можно напомнить, тем более, что чрезвычайно досадна недостаточная популярность некоторых русских химиков, к которым относится и Клаус.

Карл Карлович Клаус был современником и другом основоположников русских химических школ - Н. Н. Зинина (1812-1880) и А. А. Воскресенского (1809 -1880). Наиболее плодотворная деятельность Клауса относится к периоду, когда он в течение 15 лет возглавлял кафедру химии Казанского университета. Преемником и любимым учеником Клауса был А. М. Бутлеров.

К началу тонких аналитических исследований Клауса было известно пять платиновых металлов, выделенных преимущественно английскими учёными: платина , палладий, родий, осмий и иридий. В обстановке, когда всё считалось исследованным, появление сообщения об открытии ещё одного платинового элемента, вдобавок из «глухой России», не могло быть принято иначе, как с недоверием.

Русские исследователи начали заниматься платиновыми элементами давно. За границу просочились сведения о том, что в Сибири имеются россыпи платины. Иностранцы - путешественники неоднократно обращали внимание на золотоносные пески Урала. С другой стороны, русские учёные интересовались платиновыми металлами импортного происхождения. Первая публикация о группе платинидов принадлежит харьковскому проф. Ф. Гизе. Известный учёный, почётный член Петербургской и ряда других академий А. Мусин-Пушкин был одним из пионеров исследования русской платины. Ему же принадлежит авторство приготовления новой соли платинохлористоводородной кислоты. Наиболее убедительный химический анализ загадочного сибирского белого нержавеющего металла был произведён В. В. Любарским. Всё это подготовило почву для начала промышленного освоения русской платины. В 1824 г. открылся платиновый рудник. Добыча «белого золота» стала быстро возрастать и в 1829 г. дошла до 45 пудов. К этому времени П. Г. Соболевский открыл способ приготовления ковкой платины (Волластон сделал аналогичное открытие через два года), что дало возможность в 1828 г. начать чеканку платиновых монет и медалей на Петербургском монетном дворе.

Русское платиновое сырьё исследовалось и с целью нахождения в нём новых химических начал. Дважды ошибочно объявлялось об открытии новых элементов (Варвинским и Озанном). Г. В. Озанн даже дал названия трём, якобы им открытым, элементам: плюраниум, рутениум и полониум, но затем снова повторил свои исследования и отказался от ошибочного мнения. Интересно, что два из трёх названий Озанна оказались живучими и были присвоены позже открытым элементам (Ро и Ru).

Клаус начал заниматься платинидами в Казани в 1841 г. и уже в 1844 г. имел возможность письменно доложить Петербургской АН об открытии нового элемента, названного им в честь его родины «рутением» (Ruthenia - древнее название России). Ряд последующих исследований Клауса был посвящён дальнейшей разработке вопроса и получал освещение в русских академических и некоторых зарубежных изданиях. Всего платинидам Клаус посвятил 8 печатных трудов.

Открытие нового элемента наделало много шума. Вначале к нему отнеслись так же скептически, как и к многочисленным неподтверждённым заявлениям этого рода. Ведь платиновыми элементами занимались в течение 40 лет после открытия пятого из них - осмия - крупнейшие химики мира, а тут неизвестный казанский исследователь Клаус осмеливался утверждать, что он открыл новый элемент! Проба рутения была послана в Швецию Берцелиусу. Вскоре был получен ответ, что это не новый элемент, а «проба нечистого иридия». Как будто все обстоятельства складывались не в пользу учёного. Но Клаус был выдающимся химиком-аналитиком и считал, что он не мог так грубо ошибиться. Дополнительными исследованиями Клаус доказал, что был прав именно он, а не Берцелиус , и то, что он назвал рутением, действительно представляет нечто новое среди элементов. Вскоре Берцелиус вынужден был признаться в своей ошибке. За своё открытие Клаус был удостоен Демидовской премии в 1000 рублей золотом. В лаборатории университета тщательно хранятся оригинальные препараты рутения, его соединений, другие платиновые производные, приготовленные самим Клаусом.

Открытие рутения было сделано Клаусом в лаборатории Казанского университета. По оборудованию она не уступала лучшим зарубежным лабораториям. Несомненно, такая обстановка способствовала тому, что этот университет стал колыбелью русских химических школ с мировой славой. Клаусу по праву принадлежит яркая страница в истории химии. Он оказал большое содействие возвеличению своей родины. Факт открытия нового химического элемента Клаусом ещё раз доказывает, что и в прошлом развития русской химической мысли есть великие достижения, в которых проявляется превосходство русских учёных над иностранцами.

Наиболее важный в методологическом отношении период в открытии новых элементов начинается с Менделеева. Именно Дмитрию Ивановичу принадлежит направляющая научная идея в систематических поисках ещё не открытых химических начал. Поразительных результатов в своей многогранной деятельности Менделеев достиг именно в этой области. Гениальное мастерство теоретического обобщения и научной прозорливости, проявленные русским учёным в деле систематизации накопленного в течение веков химиками всех стран фактического материала, открытие важнейшего закона, которому подчиняется вещество, и предсказания на основании анализа и развития периодического закона достойны удивления.

Иногда можно встретить ошибочное мнение, что Менделеев на основании своих периодической системы и таблицы предсказал существование только трёх новых ещё не открытых элементов (речь идёт о галлии, скандии и германии). Этой ошибкой чаще всего грешат учебники, но её можно встретить и в работах авторов, незнакомых с трудами Менделеева в оригинале. Такая постановка вопроса является недооценкой Менделеева и не соответствует действительности.

На самом деле Менделеев определённо предсказал существование 11 неизвестных в то время элементов, оставил для них пустые клетки в таблице, с различной подробностью описал их свойства, наметил вероятные места их нахождения и пути их поисков (методы открытия). Кроме этих элементов, Дмитрий Иванович считал вероятным открытие ещё ряда редкоземельных, допускал существование заурановых элементов. Менделеев настолько глубоко верил в правильность открытого им закона, что решительно исправлял ряд констант многих элементов (до 20!) и требовал проверки своих теоретических выводов опытным путём. Как известно, «поправки» Менделеева были блестяще подтверждены.

Первые выводы о существовании периодической закономерности Менделеев подготовил работая над «Основами химии». Отпечатанная в виде наброска периодическая система была разослана многим химикам в 1869 г.

Эти выводы послужили основными исходными положениями, которые с исключительной плодотворностью Менделеев развивал в течение нескольких последующих лет. Он исправлял константы многих элементов и сделал полностью оправдавшиеся и далеко идущие предсказания. Выдающимся образцом стихийного применения методологии материалистической диалектики к учению о системе элементов является большая работа Менделеева, опубликованная им в 1871 г., «Естественная система элементов и применение её к указанию свойств не открытых элементов». Именно в этой работе Д. И. подробно говорит о предлагаемых им исправлениях констант ряда элементов, описывает свойства ещё никем не наблюдённых простых тел, пишет о вероятных открытиях новых редкоземельных и трансурановых элементов и т. п.


Первое сообщение Менделеева об открытом им фундаментальном законе естественной системы химических элементов было принято безразлично как в России, так и за рубежом. А когда Д. И. стал развивать свои идеи и на основании их предлагать исправления опытных данных в ряде элементов, и тем более предсказывать существование ещё не открытых, то некоторые видные европейские учёные перестали скрывать свой скепсис. В этом отношении показательно высказывание немца Лотара Мейера (одно время претендовавшего на приоритет в открытии периодического закона), который по поводу предсказаний Менделеева воскликнул: «Это уже слишком!». Но по мере подтверждения научных предвидений Менделеева безразличие и скепсис стали сменяться восхищением и изумлением.

Дело началось с поправок констант хорошо известных элементов. Исправления касались атомных весов, ошибочно определённых в связи с неточным установлением эквивалента или валентности. Так, например, у ближайших аналогов платины в то время атомные веса считались возрастающими от Pt к Os, Менделеев же, согласно своей системе, требовал диаметрально противоположного возрастания от Os к Ir и Pt. Урану приписывалась валентность, равная трём; отсюда по эквиваленту вычислялся атомный вес, равный 120. Менделеев же по свойствам увидел, что для урана наиболее естественным оказывается место под вольфрамом в 6 группе. Стало быть, максимальная валентность U по кислороду должна быть равной 6, а прежний атомный вес следует удвоить и принять равным 240. Аналогичные исправления были предложены и для некоторых других элементов. Все эти поправки вскоре подтвердились (за исключением теллура и кобальта). При исправлениях атомного веса бериллия в основу брались точные данные об эквиваленте его, определённом в 1842 г. русским учёным Авдеевым. До оригинальных экспериментов Авдеева бериллий (или глициний, как его называли) не был в должной мере изучен. В результате для Be был определён атомный вес, практически совпавший с современной величиной 9.02.

Величайший триумф Менделеева начался тогда, когда стали открывать предсказанные им новые элементы. Д. И. при жизни трижды (в 1875, 1879 и 1886 гг.) испытал счастье быть свидетелем претворения своих гениальных пророчеств. Интересно; что после опытного обнаружения предсказанных элементов были случаи, когда авторы этих открытий вначале ошибались в определении некоторых констант для обнаруженных простых тел, но потом исправляли свои ошибки, согласно указаниям Менделеева. Так случилось с удельным весом галлия и атомным весом скандия. Детали в подтверждении предсказаний Д. И. о Ga, Sc и Ge широко известны.

Ещё три элемента, предсказанных Менделеевым, были открыты в конце XIX в. Это элементы, занявшие 88, 89 и 91 клетки. А четвёртый элемент, также предсказанный Менделеевым вместе с этими тремя, был получен в результате альфа-распада актиния в виде бета-радиоактивного изотопа щелочного металла 87 с периодом полураспада в 21 минуту. Наблюдала его впервые в 1939 г. Маргарита Перей и назвала его францием Fr. О четырёх указанных элементах Менделеев писал ещё в 1871 г. Достойно удивления и то, что Менделеев в той же работе считал вероятным существование ещё заурановых элементов. Он считал уран элементом не последним, а только близким к концу периодической системы. При этом Менделеев всегда отмечал, и эта мысль оправдалась, что тяжёлых элементов типа урана, если они и существуют, должно быть немного: «… если в недрах земли и встречаются ещё некоторые неизвестные тяжёлые металлы, то можно думать, что их число и количество будут незначительны».

Достаточно определённо Менделеев высказался о вероятном существовании большой группы сходных элементов, ныне именуемых лантанидами, «редкоземельными элементами». В 70-х годах XIX в. из них знали только о Се, Er и Tb, причём они назывались вместе с иттрием «церитовыми металлами». Предложенная Д. И. поправка для атомного веса церия с изумительной точностью оправдалась: «… ныне ещё с большим, чем прежде, правом можно утверждать, что прежний атомный вес церия должен быть заменён новым: Се = 140, предугадываемым по закону периодичности». Об ожидаемых новых представителях редкоземельных элементов Д. И. писал: «Обращу внимание на тот разительный факт, что в системе элементов ныне не достаёт как раз 17 элементов, имеющих атомный вес от 138 до 182.

Это явление едва ли случайно, потому что как между элементами с меньшим атомным весом, так и между элементами с большим атомным весом нам известны уже многие члены. В это пространство, однако, может быть, будут помещены некоторые церитовые металлы, потому, что придав обыкновенной их окиси состав R2O3 или RO2, мы получим для их атома вес от 140 до 180, если известные ныне определения их эквивалентов достаточно точны». Такая научная прозорливость Менделеева в первые годы создания его гениальной системы (1871), когда его новаторские идеи принимались химической общественностью всего мира с большой сдержанностью или даже враждебно, не может не приводить в изумление.

Менделееву принято приписывать непонимание вопросов сложности атомов, происхождения и превращения элементов и смежных проблем. Авторы, пишущие об этой стороне деятельности Д. И. объясняют консерватизм в мировоззрении учёного ограниченностью его механического взгляда на эволюцию материи. Тем не менее, при внимательном изучении работ Менделеева можно встретить высказывания учёного, в которых определённо говорится о сложности атомов, об «ультиматах», происхождении и возможности превращения элементов, о допустимости существования «дефекта массы» (выражаясь современным языком), о связи законов сохранения массы и энергии и т. п. Рассматривая закон сохранения массы и энергии в обоюдной связи, Менделеев предвосхитил известное соотношение, с одной стороны, избегал упрощённого механистического понимания эволюции элементов в духе Проута, а с другой стороны, отклонением атомных весов элементов от целых чисел пытался выразить энергетический запас различных видов атомов. Здесь можно узреть и зачатки учения об эффекте упаковки и дефекте массы. В другом месте Д. И. ещё более определённо склоняется к мысли о сложности атомов, предвосхищая современное представление об элементарных частицах. Однако в старости он возражал против зарождавшегося электронного учения, не считая ею достаточно обоснованным экспериментальным материалом, возражал также против теории электролитической диссоциации, выдвинул и защищал свою механическую теорию эфира и т. п. Конечно, Менделеев не мог пройти мимо идеи о сложности атома, поскольку периодическая система ясно ставила вопрос не только о строении, но и об эволюции вещества. Стихийная диалектика Менделеева дала ему возможность в общем правильно наметить дальнейшее развитие заложенного им систематического учения об элементах и атомах.

Остановимся на том значении, которое, приписывал Менделеев массе атома, и на внесённых современными представлениями коррективах в этот вопрос. В многочисленных формулировках и комментариях своего закона Д. И. подчёркивал, что атомный вес или масса атома является наиболее фундаментальной характеристикой элементов, что подавляющее большинство других свойств является функцией атомного веса. В этом свете в классической периодической системе наиболее непонятно и досадно выглядели аномалии в нарастании атомных весов в нескольких местах таблицы: аргон Ar (39.944) — калий К(39.096) — кобальт Со (58.94) — никель Ni (58.69) и железо Fe (127.6) — йод J (126.92); позже сюда добавилось четвёртое нарушение самого принципа расположения элементов в порядке увеличения атомного веса: Th (232.12) — Ра (231). Вопрос как будто прояснился после открытия Г. Мозли (1913) и установления понятия заряда ядра и порядкового номера Z. Но теперь было оттеснено значение массы атома, и стали считать, что только Z принадлежит решающее значение в характеристике элементов. Дальнейшее развитие физики и химии показало, что роль массы атома не так второстепенна, как стали думать. Выяснилось, что большое значение имеют понятия «среднего атомного веса» и «практического атомного веса». В то время как практический атомный вес показывает в четырёх местах периодической системы аномалии, среднее арифметическое из масс изотопов элемента нарастает совершенно закономерно, параллельно Z, и никаких ненормальностей не показывает.

Выдвинутая в 1932 г. Д. Д. Иваненко теория строения ядер атомов из нейтронов и протонов, при последующем развитии привела к убеждению, что в процессе эволюции и превращения элементов масса ядра играет не менее существенную роль, чем его заряд, что изменение электрических свойств элемента (заряда ядра и электронной структуры) тесно связано с изменением массы атома.

Таким образом, диалектическое развитие учения об атоме привело исследователей к мысли, что Менделеев и в этом вопросе был не так неправ, как это казалось вначале.

Большой вклад в науку сделали русские химики и в изучении разновидностей элементов - изотопов. Вероятность существования изотопов предсказывал ещё в 1879 г. величайший химик-мыслитель Александр Михайлович Бутлеров, являющийся наряду с Ломоносовым и Менделеевым гордостью русской передовой науки. Как известно, Бутлеров создал научную систему органической химии, но он также высказал ряд ценнейших идей и в области общей неорганической химии.


Георгий Николаевич Антонов

Хотелось бы воскресить в памяти химиков ещё одно имя русского учёного, который внёс очень ценный вклад в изучение изотопов в связи со своими фундаментальными исследованиями по радиоактивности в дореволюционной России. Речь идёт о Георгии Николаевиче Антонове, который пять лет (1910- 1914) подробно изучал радиоактивный распад самого радия и урана, некоторое время, сотрудничая с Э. Резерфордом в Манчестере. Правила сдвига при альфа и бета-распаде в значительной степени выводились с использованием тонких экспериментальных данных Антонова. В 1911 -1913 гг. Антонов опубликовал очень важные работы, в которых сообщалось об открытии им нового радиоактивного элемента урана-игрек. Когда радиоактивные элементы были размещены в последнем десятом ряде периодической системы, UY Антонова, как элемент, имеющий заряд ядра 90, попал в одну клетку с торием. Сводку своих ценных экспериментальных исследований Антонов дал в своей диссертации на учёную степень магистра химии. Позже Антонов переключился на изучение поверхностных явлений.

Таким образом, при изучении одной из основных проблем химической науки - вопроса о выявлении элементарных начал - русские химики, благодаря выдающимся аналитическим работам К. Клауса, непревзойдённым обобщениям и гениальным предвидениям Д. Менделеева и тонким радиохимическим исследованиям Г. Антонова, ещё в дореволюционной России выдвинулись на самое передовое место в мировой науке. Особенно велики заслуги бессмертного Менделеева, который учение об элементах превратил в подлинную научную систему и, благодаря своей диалектико-материалистической методологии, смог исправить ошибки своих предшественников, предсказать большое количество новых химических начал и правильно предначертать дальнейшее развитие учения об элементах.