Что является важнейшей характеристикой математической модели. Пример математической модели

Для теории математического моделирования необходимо знать цель моделирования и представить в математическом виде объект моделирования. Слово «модель» происходит от латинского modus (копия, образ, очертание). Наиболее про­стым и наглядным примером моделирования являются гео­графические и топографические карты. Моделями являются структурные формулы в химии. Модель как средство позна­ния стоит между логическим мышлением и изучаемым про­цессом, явлением.

Моделирование - это замещение некоторого объекта А другим объектом В. Замещаемый объект называется ориги­налом, замещающий - моделью. Таким образом, модель - это заместитель оригинала. В зависимости от цели замеще­ния модель одного и того же оригинала может быть различ­ной. В науке и технике основной целью моделирования яв­ляется изучение оригинала при помощи более простой его модели. Замещение одного объекта другим имеет смысл только в случае их определенного сходства, аналогии.

Математическая модель является приближенным, выраженным в математических терминах, представлением объектов, концепций, систем или процессов. Объекты, кон­цепции, системы или процессы, подлежащие моделирова­нию, называют объектами моделирования (ОМ).

Все объекты и явления в большей или меньшей степени взаимосвязаны, но при моделировании пренебрегают боль­шинством взаимосвязей и объект моделирования рассматри­вают как отдельную систему. Если объект моделирования определен как отдельная система, то необходимо ввести принцип селективности, обеспечивающий выбор требуемых связей с внешней средой. Например, при моделировании электронных схем пренебрегают тепловым, акустическим, оптическим и механическим взаимодействием с внешней средой и рассматривают только электрические переменные. Принцип селективности вводит в систему ошибку, т. е. раз­ницу в поведении модели и объекта моделирования. Сле­дующим важным фактором моделирования является прин­цип причинности, связывающий в системе входные и вы­ходные переменные.

Для количественной оценки системы вводят понятие «состояния». Например, под состоянием электронной схемы понимают значения напряжений и токов в электронной схе­ме в данный момент времени.

При выводе математической модели аналитически чаще всего используются широко известные категории: законы, структуры и параметры.

Если какая-либо переменная величина у зависит от другой переменной х, то первая величина является функцией второй. Эта зависимость записывается в виде у = f(x) или у = у(х). В такой записи переменная х называется аргументом. Важной характеристикой функции является ее производная, процесс нахождения которой называется дифференцированием. Урав­нения, которые по математическим правилам связывают неиз­вестную функцию, ее производные и аргументы, называются дифференциальными. Процесс, обратный дифференцирова­нию, позволяющий по заданной производной найти саму фун­кцию, называется интегрированием.


Рассмотрим частный случай, когда функцией является путь, зависящий от аргумента - времени. Тогда производ­ная пути по времени - это скорость, а производная от ско­рости (или вторая производная от пути) - ускорение. Если йзвестна, например, скорость, то интегрированием находят путь, пройденный телом при движении за определенное вре­мя. Если известно только ускорение, то для нахождения пути операцию интегрирования производят дважды. При этом после вычисления первого интеграла становится изве­стной скорость.

Конечная цель создания математических моделей - установление функциональных зависимостей между пере­менными. Функциональная зависимость для каждой конк­ретной модели может принимать строго определенный вид. Когда моделируется устройство, на вход которого поступает сигнал х у а на выходе появляется сигнал у, то связь можно записать в виде таблицы. Для этого весь диапазон измене­ния входного и выходного сигналов разбивается на некото­рое число участков. Каждому участку диапазона изменения входного сигнала будет соответствовать определенный учас­ток диапазона изменения выходного сигнала. В сложных си­стемах, где имеется несколько входов и несколько выходов, аналитические зависимости выражаются системами диффе­ренциальных уравнений.

* Законы обычно формулируются для частных областей, Как, например, законы Кирхгофа, Ньютона. Применение этих законов к системе обычно фокусирует наше внимание на единственной области науки и техники. Используя зако­ны Кирхгофа и уравнения Максвелла для анализа электри­ческой системы, исследователь игнорирует другие (напри­мер, тепловые) процессы в системе.

Создание математической модели требует знания присут­ствующих в системе элементов и их взаимосвязей. Парамет­рами математической модели (ММ) являются входящие в системы уравнений различные коэффициенты. Эти ко­эффициенты вместе с уравнениями и граничными условия­ми образуют законченную ММ.

Любую математическую модель можно получить в результате: 1) прямого наблюдения явления, прямого его изучения и осмысливания (модели являются феноменоло­гическими); 2) некоторого процесса дедукции, когда новая модель получается как частный случай из некоторой более общей модели (такие модели называются асимптотически­ми); 3) некоторого процесса индукции, когда новая модель является естественным обобщением элементарных моделей (такие модели называются составными, или моделями ан­самблей).

Все системы существуют во времени и в пространстве. Математически это значит, что время и три пространствен­ные переменные могут рассматриваться в качестве незави­симых переменных.

Существует много признаков классификации математи­ческих моделей по признаку использования тех или иных переменных в качестве независимых, представленных в не­прерывной или дискретной форме; ММ классифицируют следующим образом:

1) модели с распределенными параметрами (все независи­мые переменные берутся в непрерывной форме);

2) модели с сосредоточенными параметрами (все независи­мые пространственные переменные дискретные, а вре­менная переменная непрерывна);

3) модели с дискретными параметрами (все независимые переменные берутся в дискретной форме).

На рис. 3.10, а...ж показана примерная классификация моделей. Все модели можно разделить на вещественные и идеальные (рис. 3.10, а). В данной главе рассматриваются только идеальные модели, которые объективны по своему содержанию (отражая реальную действительность), но субъ­ективны по форме и не могут существовать вне ее. Идеаль­ные модели существуют лишь в познании людей и функцио­нируют по законам логики. К логическим моделям относят­ся различные знаковые модели. Существенным моментом создания любой знаковой модели является процедура фор­мализации (формулы, алфавит, системы счислений).

В настоящее время в ряде областей науки и техники по­нятие модели трактуется не в духе классической физики, как наглядная, например, механическая система, а в духе современного этапа познания как абстрактная логико-мате­матическая структура.

В современном моделировании наряду с возрастанием в познании роли абстрактно-логических моделей существует другая тенденция, связанная с широким применением ки­бернетических функционально-информационных моделей.

Своеобразие кибернетического моделирования состоит в том, что объективное сходство модели и моделируемого объ­екта касается только их функций, областей применения, связи с внешней средой. Основа информационного подхода к изучению кибернетических процессов - абстрагирование.

Рассмотрим модели, которые имеют место в САПР БИС: структурные, функциональные, геометрические, знаковые, мысленные, аналитические, численные и имитационные.

Структурные модели воспроизводят состав элементов объекта или системы, их расположение в пространстве и взаимосвязи, т. е. структуру системы. Структурные модели могут быть и вещественными (макеты), и идеальными (на- | пример, машиностроительные чертежи, топология печатной | платы и топология ИС).

Функциональные модели имитируют только способ пове­дения оригинала, его функциональную зависимость от внешней среды. Наиболее характерным примером служат модели, построенные на концепции «черного ящика».

В этих моделях удается воспроизвести функционирование £ оригинала, полностью отвлекаясь от его содержимого и структуры, связывая с помощью математического соотношения различные входные и выходные величины.

Рис. 3.10. Общая классификация моделей (а), а также моделей натурных (б), физических (в), вещественных математических (г), наглядных (д), знаковых (е), идеальных математических (ж)

Геометрические модели отражают только структуру объ­екта и имеют большое значение в связи с проектированием электронных систем. Эти модели, построенные на основе геометрического подобия, позволяют решать задачи, связан­ные с оптимальным размещением объектов, прокладкой трасс на печатных платах и интегральных схемах.

Знаковые модели представляют собой упорядоченную за­пись символов (знаков). Знаки взаимодействуют между со­бой не по физическим законам, а по правилам, установлен­ным в той или иной области знаний, или, как принято гово­рить, согласно природе знаков. Знаковые модели имеют в настоящее время чрезвычайно широкое распространение. Практически каждая область знаний - лингвистика, про­граммирование, электроника и многие другие - выработала свою символику для описания моделей. Таковыми являются программы, схемы и т. п.

Мысленные модели являются продуктом чувственного восприятия и деятельности абстрактного мышления. К мысленным моделям можно отнести известную планетар­ную модель атома Бора. Для передачи этих моделей их пред­ставляют в виде словесного или знакового описания, т. е. мысленные модели могут фиксироваться в виде различных знаковых систем.

Аналитические модели позволяют получить явные зави­симости необходимых величин от параметров и перемен­ных, характеризующих изучаемое явление. Аналитическое решение математического соотношения является обобщен­ным описанием объекта

Численные модели характеризуются тем, что значения необходимых величин можно получить в результате приме­нения соответствующих численных методов. Все численные методы позволяют получить только частную информацию относительно искомых величин, поскольку для своей реали­зации требуют задания конкретных значений всех парамет­ров, входящих в математическое соотношение. Для каждой искомой величины приходится по-своему преобразовывать математическую модель и применять соответствующую чис­ленную процедуру.

Имитационные модели реализуются на ЭВМ в виде мо­делирующих алгоритмов (программ), позволяющих вычис­лять значения выходных переменных и определять новое состояние, в которое переходит модель при заданных значе­ниях входных переменных, параметров и исходного состоя­ния модели. Имитационное моделирование в отличие от численного характеризуется независимостью моделирую­щего алгоритма от типа информации, которую необходимо получить в результате моделирования. Достаточно универ­сальной, гибкой и эффективной является математическая модель, которая представляется в абстрактной математиче­ской форме посредством переменных, параметров, уравне­ний и неравенств.

В ММ входят следующие элементы: переменные (зависи­мые и независимые); константы или фиксированные пара­метры (определяющие степень связи переменных между со­бой); математические выражения (уравнения или/и нера­венства, объединяющие между собой переменные и параметры); логические выражения (определяющие различ­ные ограничения в математической модели); информация (алфавитно-цифровая и графическая).

Математические модели классифицируют по следующим критериям: 1) поведению моделей во времени; 2) видам входной информации, параметров и выражений, составляю­щих математическую модель; 3) структуре математической модели; 4) типу используемого математического аппарата.

Применительно к интегральным схемам можно предло­жить следующую классификацию.

В зависимости от характера свойств интегральной схемы математические модели делятся на функциональные и струк­турные.

Функциональные модели отображают процессы функци­онирования объекта, эти модели имеют форму систем урав­нений.

При решении ряда задач проектирования широкое при­менение находят математические модели, отображающие только структурные свойства проектируемого объекта; та­кие структурные модели могут иметь форму матриц, гра­фов, списков векторов и выражать взаимное расположение элементов в пространстве, наличие непосредственной связи в виде проводников и т. д. Структурные модели используют в том случае, когда задачи структурного синтеза удается формализовать и решать, абстрагируясь от особенности фи­зических процессов в объекте.

Рис. 3.11. Структурная модель инвертора = ит. д.)

По методу получения функциональные математические модели делятся на теоретические и формальные.

Теоретические модели получаются на основе изучения физических закономерностей, причем структура уравнений и параметры моделей имеют четкое физическое обоснование.

Формальные модели получаются при рассмотрении свойств реального объекта как черного ящика.

Теоретический подход позволяет получать более универ­сальные модели справедливые для различных режимов ра­боты и для широких диапазонов изменения внешних пара­метров.

Ряд признаков в классификации связан с особенностями уравнений, составляющих математическую модель; в зави­симости от линейности или нелинейности уравнений модели делят на линейные и нелинейные.

В зависимости от мощности множества значений пере­менных модели делят на непрерывные и дискретные (рис. 3.12).

В непрерывных моделях фигурирующая в них перемен­ная непрерывна или кусочно-непрерывна.

Переменные в дискретных моделях - дискретные вели­чины, множество которых счетно.

Рис. 3.12. Непрерывные и дискретные переменные

По форме связи между выходными, внутренними и внешними параметрами различают модели в виде систем уравнений и модели в виде явной зависимости выходных па­раметров от внутренних и внешних. Первые из них называ­ются алгоритмическими, а вторые - аналитическими.

В зависимости от того, учитывают ли уравнения модели инерционность процессов в объекте проектирования, разли­чают модели динамические и статические.

Модель - это такой материальный или мысленно представляемый объект, который в процессе познания (изучения) замещает объект-оригинал, сохраняя некоторые важные для данного исследования типичные его черты.

Математическая модель - модель, в которой для описания свойств и типичных черт объекта используются математические символы.

Покупая в магазине разные продукты, мы автоматически занимаемся простейшим математическим моделированием. Запомнив цену каждого продукта, мы (или кассир) складываем абстрактные числа, оплачиваем сумму и затем по каждому чеку (числу на чеке) получаем конкретный продукт.

Такую же простейшую схему математического моделирования мы много раз применяли в курсе алгебры при решении текстовых задач. Мы перекладывали практическую задачу на математический язык, решали математическую задачу, а затем интерпретировали математический результат.

Процесс математического моделирования - это процесс построения математической модели. Он состоит из следующих этапов:

Переложение практической задачи на математический язык: составление уравнений, неравенств, системы уравнений и неравенств и т. д.

Решение математической задачи: уравнения, неравенства, системы и т. д.

Интерпретация математического результата: переход от найденных чисел (корней уравнений, решений неравенств) к их практическому смыслу в данной задаче.

Проверка результата практикой.

Первые три этапа мы все применяли при решении текстовых алгебраических задач. И если мы не допустили ошибок, что проверяется непосредственно проверкой или по данным в учебнике ответам, то считается, что задача решена верно. При решении практических задач такого ответа не существует. Представьте себе, что решается сложная задача о конструировании самолета или не менее сложная экономическая задача. В таких случаях необходима проверка математических выводов экспериментом.

Чтобы проверить теоретические выводы о конструкции самолета, строят его модель - единственный (а не серийный) настоящий самолет - и сначала проверяют его испытанием в аэродинамической трубе. Затем проводят испытания в настоящем полете. Во время испытания выявляются недостатки, уточняются условия задачи, уточняются и проверяются все три этапа ее решения. Затем снова эксперимент, и так до получения хорошего для практики результата.

Таким образом, вырисовывается следующая схема математического моделирования:

Рассмотрим пример.

Задача. Два художника купили по одинаковому количеству краски. Первый из них половину всей краски купил по рублей за тюбик, а другую половину - по рублей за тюбик. Второй половину всех денег за покупку истратил на тюбики по рублей, а другую половину денег - на тюбики по рублей. Кто из них заплатил за покупку меньше?

Решение. I. Введем обозначения:

S - число тюбиков, купленных каждым художником;

х рублей - сумма, затраченная на покупку первым художником;

y рублей - сумма, затраченная на покупку вторым художником.

По условию задачи имеем:

S/2 + S/2 = x, (1)

y/ 2 + y/ 2 =S, (2)

Итак, нужно выяснить, какое из чисел, x или y, меньше другого, если положительные числа, x, y, S удовлетворяют равенствам (1), (2). Эта математическая задача и есть математическая модель данной практической задачи.

Приведем некоторые задачи, решаемые методом моделирования

Задача о рекламе. Средства массовой информации дают рекламные объявления для ускорения сбыта некоторой продукции, которая есть в продаже. Последующая информация о продукции распространяется среди покупателей посредством общения друг с другом. По какому закону распространяется известие о наличии этой продукции?

Решение. Пусть N число потенциальных покупателей данной продукции и в момент времени t об ее наличии в продаже знают х (t) покупателей. Хотя на самом деле число покупателей целое, но для абстрактной математической модели можно считать, что функция х (t) может принимать все значения от 0 до N.

Статистика показывает, что с большой степенью достоверности скорость изменения функции х (t) прямо пропорциональна как числу знающих о продукции, так и числу не знающих. Если условится, что время отсчитывается после рекламных объявлений, когда о товаре узнало N / человек, то приходим к дифференциальному уравнению

x (t) = kx(t)(N x(t)) (3)

с начальными условиями х = N / при t = 0. В уравнении (3) коэффициент k это положительный коэффициент пропорциональности, который определяется экспериментально и зависит от интенсивности рекламы и скорости распространения слухов.

Интегрируя уравнение (1), находим, что

1 / N ln (x /(N x)) = kt + С.

Полагая NC = C1, приходим к равенству

x / (N x) = AеNk t , где А = еC1 .

Если последнее уравнение разрешить относительно х, то получим соотношение

х (t) = N Aе Nkt / AеNkt + 1 = N / 1 + Ре Nkt , (4)

где Р = 1/ A.

Если учесть теперь начальные условия, то уравнение (4) перепишется в виде

х (t) = N / (1 + (1)Nkt

Задача (химия и технология производства). Через сосуд ёмкостью а литров, наполненный водным раствором некоторой соли, непрерывно протекает жидкость, причем в единицу времени втекает b литров чистой воды и вытекает такое же количество раствора.

Найти закон, по которому изменяется содержание соли в сосуде в зависимости от времени протекания жидкости через сосуд.

Решение: в данный момент времени t в сосуде содержится некоторое число x кг соли, а в b литрах кг.

Если бы в течение единицы времени, начиная с момента t , концентрация раствора оставалась неизменной, т.е. такой, какой она была в момент времени t, то количество соли в сосуде за эту единицу времени уменьшилось бы на кг; такова скорость уменьшения количества соли в сосуде для момента t.

С другой стороны, производная равна скорости прироста количества соли в момент t; значит, скорость уменьшения количества соли в момент t будет равна. Итак, имеем:

Разделим переменные: , откуда, или потенцируя,

(5), где - произвольная постоянная.

Предположим для определенности, что при t=0 количество соли в сосуде было равно c кг.

Полагая в формуле (5) t=0, найдем, что и получим окончательно, т.е. количество соли убывает с течением времени по «показательному» закону.

Задача (биология, процессы прироста). В культуре пивных дрожжей быстрота прироста действующего фермента пропорциональна наличному его количеству x. Первоначальное количество фермента было a. Через час оно удвоилось. Во сколько раз оно увеличится через 3 часа?

По условию дифференциальное уравнение процесса,

где k - коэффициент пропорциональности.

Разделяя переменные, получим: .

Отсюда, общее решение.

Найдем с из начального условия: при t=0, x=a. Отсюда, или c = a.

Подставляя в общее решение, получим частное решение задачи: .

Коэффициент пропорциональности определяем из данных дополнительных условий: при t=1час; x=2a.

Отсюда: , или. Подставляя в частное решение, получим закон рассматриваемого процесса: .

При t = 3часа, x = 8a. Следовательно, количество фермента спустя три часа увеличится в 8 раз.

Ответ: за три часа количество фермента увеличится в 8 раз.

Математическое моделирование

1. Что такое математическое моделирование?

С середины XX в. в самых различных областях человеческой деятельности стали широко применять математические методы и ЭВМ. Возникли такие новые дисциплины, как «математическая экономика», «математическая химия», «математическая лингвистика» и т. д., изучающие математические модели соответствующих объектов и явлений, а также методы исследования этих моделей.

Математическая модель - это приближенное описание какого-либо класса явлений или объектов реального мира на языке математики. Основная цель моделирования - исследовать эти объекты и предсказать результаты будущих наблюдений. Однако моделирование - это еще и метод познания окружающего мира, дающий возможность управлять им.

Математическое моделирование и связанный с ним компьютерный эксперимент незаменимы в тех случаях, когда натурный эксперимент невозможен или затруднен по тем или иным причинам. Например, нельзя поставить натурный эксперимент в истории, чтобы проверить, «что было бы, если бы...» Невозможно проверить правильность той или иной космологической теории. В принципе возможно, но вряд ли разумно, поставить эксперимент по распространению какой-либо болезни, например чумы, или осуществить ядерный взрыв, чтобы изучить его последствия. Однако все это вполне можно сделать на компьютере, построив предварительно математические модели изучаемых явлений.

2. Основные этапы математического моделирования

1) Построение модели . На этом этапе задается некоторый «нематематический» объект - явление природы, конструкция, экономический план, производственный процесс и т. д. При этом, как правило, четкое описание ситуации затруднено. Сначала выявляются основные особенности явления и связи между ними на качественном уровне. Затем найденные качественные зависимости формулируются на языке математики, то есть строится математическая модель. Это самая трудная стадия моделирования.

2) Решение математической задачи, к которой приводит модель . На этом этапе большое внимание уделяется разработке алгоритмов и численных методов решения задачи на ЭВМ, при помощи которых результат может быть найден с необходимой точностью и за допустимое время.

3) Интерпретация полученных следствий из математической модели. Следствия, выведенные из модели на языке математики, интерпретируются на языке, принятом в данной области.

4) Проверка адекватности модели. На этом этапе выясняется, согласуются ли результаты эксперимента с теоретическими следствиями из модели в пределах определенной точности.

5) Модификация модели. На этом этапе происходит либо усложнение модели, чтобы она была более адекватной действительности, либо ее упрощение ради достижения практически приемлемого решения.

3. Классификация моделей

Классифицировать модели можно по разным критериям. Например, по характеру решаемых проблем модели могут быть разделены на функциональные и структурные. В первом случае все величины, характеризующие явление или объект, выражаются количественно. При этом одни из них рассматриваются как независимые переменные, а другие - как функции от этих величин. Математическая модель обычно представляет собой систему уравнений разного типа (дифференциальных, алгебраических и т. д.), устанавливающих количественные зависимости между рассматриваемыми величинами. Во втором случае модель характеризует структуру сложного объекта, состоящего из отдельных частей, между которыми существуют определенные связи. Как правило, эти связи не поддаются количественному измерению. Для построения таких моделей удобно использовать теорию графов. Граф - это математический объект, представляющий собой некоторое множество точек (вершин) на плоскости или в пространстве, некоторые из которых соединены линиями (ребрами).

По характеру исходных данных и результатов предсказания модели могут быть разделены на детерминистические и вероятностно-статистические. Модели первого типа дают определенные, однозначные предсказания. Модели второго типа основаны на статистической информации, а предсказания, полученные с их помощью, имеют вероятностный характер.

4. Примеры математических моделей

1) Задачи о движении снаряда.

Рассмотрим следующую задачу механики.

Снаряд пущен с Земли с начальной скоростью v 0 = 30 м/с под углом a = 45° к ее поверхности; требуется найти траекторию его движения и расстояние S между начальной и конечной точкой этой траектории.

Тогда, как это известно из школьного курса физики, движение снаряда описывается формулами:

где t - время, g = 10 м/с 2 - ускорение свободного падения. Эти формулы и дают математическую модель поставленной задачи. Выражая t через x из первого уравнения и подставляя во второе, получим уравнение траектории движения снаряда:

Эта кривая (парабола) пересекает ось x в двух точках: x 1 = 0 (начало траектории) и (место падения снаряда). Подставляя в полученные формулы заданные значения v0 и a, получим

ответ: y = x – 90x 2 , S = 90 м.

Отметим, что при построении этой модели использован ряд предположений: например, считается, что Земля плоская, а воздух и вращение Земли не влияют на движение снаряда.

2) Задача о баке с наименьшей площадью поверхности.

Требуется найти высоту h 0 и радиус r 0 жестяного бака объема V = 30 м 3 , имеющего форму закрытого кругового цилиндра, при которых площадь его поверхности S минимальна (в этом случае на его изготовление пойдет наименьшее количество жести).

Запишем следующие формулы для объема и площади поверхности цилиндра высоты h и радиуса r:

V = p r 2 h, S = 2p r(r + h).

Выражая h через r и V из первой формулы и подставляя полученное выражение во вторую, получим:

Таким образом, с математической точки зрения, задача сводится к определению такого значения r, при котором достигает своего минимума функция S(r). Найдем те значения r 0 , при которых производная

обращается в ноль:Можно проверить, что вторая производная функции S(r) меняет знак с минуса на плюс при переходе аргумента r через точку r 0 . Следовательно, в точке r0 функция S(r) имеет минимум. Соответствующее значение h 0 = 2r 0 . Подставляя в выражение для r 0 и h 0 заданное значение V, получим искомый радиус и высоту

3) Транспортная задача.

В городе имеются два склада муки и два хлебозавода. Ежедневно с первого склада вывозят 50 т муки, а со второго - 70 т на заводы, причем на первый - 40 т, а на второй - 80 т.

Обозначим через a ij стоимость перевозки 1 т муки с i-го склада на j-й завод (i, j = 1,2). Пусть

a 11 = 1,2 р., a 12 = 1,6 р., a 21 = 0,8 р., a 22 = 1 р.

Как нужно спланировать перевозки, чтобы их стоимость была минимальной?

Придадим задаче математическую формулировку. Обозначим через x 1 и x 2 количество муки, которое надо перевезти с первого склада на первый и второй заводы, а через x 3 и x 4 - со второго склада на первый и второй заводы соответственно. Тогда:

x 1 + x 2 = 50, x 3 + x 4 = 70, x 1 + x 3 = 40, x 2 + x 4 = 80. (1)

Общая стоимость всех перевозок определяется формулой

f = 1,2x 1 + 1,6x 2 + 0,8x 3 + x 4 .

С математической точки зрения, задача заключается в том, чтобы найти четыре числа x 1 , x 2 , x 3 и x 4 , удовлетворяющие всем заданным условиям и дающим минимум функции f. Решим систему уравнений (1) относительно xi (i = 1, 2, 3, 4) методом исключения неизвестных. Получим, что

x 1 = x 4 – 30, x 2 = 80 – x 4 , x 3 = 70 – x 4 , (2)

а x 4 не может быть определено однозначно. Так как x i і 0 (i = 1, 2, 3, 4), то из уравнений (2) следует, что 30Ј x 4 Ј 70. Подставляя выражение для x 1 , x 2 , x 3 в формулу для f, получим

f = 148 – 0,2x 4 .

Легко видеть, что минимум этой функции достигается при максимально возможном значении x 4 , то есть при x 4 = 70. Соответствующие значения других неизвестных определяются по формулам (2): x 1 = 40, x 2 = 10, x 3 = 0.

4) Задача о радиоактивном распаде.

Пусть N(0) - исходное количество атомов радиоактивного вещества, а N(t) - количество нераспавшихся атомов в момент времени t. Экспериментально установлено, что скорость изменения количества этих атомов N"(t) пропорциональна N(t), то есть N"(t)=–l N(t), l >0 - константа радиоактивности данного вещества. В школьном курсе математического анализа показано, что решение этого дифференциального уравнения имеет вид N(t) = N(0)e –l t . Время T, за которое число исходных атомов уменьшилось вдвое, называется периодом полураспада, и является важной характеристикой радиоактивности вещества. Для определения T надо положить в формуле Тогда Например, для радона l = 2,084 · 10 –6 , и следовательно, T = 3,15 сут.

5) Задача о коммивояжере.

Коммивояжеру, живущему в городе A 1 , надо посетить города A 2 , A 3 и A 4 , причем каждый город точно один раз, и затем вернуться обратно в A 1 . Известно, что все города попарно соединены между собой дорогами, причем длины дорог b ij между городами A i и A j (i, j = 1, 2, 3, 4) таковы:

b 12 = 30, b 14 = 20, b 23 = 50, b 24 = 40, b 13 = 70, b 34 = 60.

Надо определить порядок посещения городов, при котором длина соответствующего пути минимальна.

Изобразим каждый город точкой на плоскости и пометим ее соответствующей меткой Ai (i = 1, 2, 3, 4). Соединим эти точки отрезками прямых: они будут изображать дороги между городами. Для каждой «дороги» укажем ее протяженность в километрах (рис. 2). Получился граф - математический объект, состоящий из некоторого множества точек на плоскости (называемых вершинами) и некоторого множества линий, соединяющих эти точки (называемых ребрами). Более того, этот граф меченый, так как его вершинам и ребрам приписаны некоторые метки - числа (ребрам) или символы (вершинам). Циклом на графе называется последовательность вершин V 1 , V 2 , ..., V k , V 1 такая, что вершины V 1 , ..., V k - различны, а любая пара вершин V i , V i+1 (i = 1, ..., k – 1) и пара V 1 , V k соединены ребром. Таким образом, рассматриваемая задача заключается в отыскании такого цикла на графе, проходящего через все четыре вершины, для которого сумма всех весов ребер минимальна. Найдем перебором все различные циклы, проходящие через четыре вершины и начинающиеся в A 1:

1) A 1 , A 4 , A 3 , A 2 , A 1 ;
2) A 1 , A 3 , A 2 , A 4 , A 1 ;
3) A 1 , A 3 , A 4 , A 2 , A 1 .

Найдем теперь длины этих циклов (в км): L 1 = 160, L 2 = 180, L 3 = 200. Итак, маршрут наименьшей длины - это первый.

Заметим, что если в графе n вершин и все вершины попарно соединены между собой ребрами (такой граф называется полным), то число циклов, проходящих через все вершины, равно Следовательно, в нашем случае имеется ровно три цикла.

6) Задача о нахождении связи между структурой и свойствами веществ.

Рассмотрим несколько химических соединений, называемых нормальными алканами. Они состоят из n атомов углерода и n + 2 атомов водорода (n = 1, 2 ...), связанных между собой так, как показано на рисунке 3 для n = 3. Пусть известны экспериментальные значения температур кипения этих соединений:

y э (3) = – 42°, y э (4) = 0°, y э (5) = 28°, y э (6) = 69°.

Требуется найти приближенную зависимость между температурой кипения и числом n для этих соединений. Предположим, что эта зависимость имеет вид

y » a n + b,

где a , b - константы, подлежащие определению. Для нахождения a и b подставим в эту формулу последовательно n = 3, 4, 5, 6 и соответствующие значения температур кипения. Имеем:

– 42 » 3a + b, 0 » 4a + b, 28 » 5a + b, 69 » 6a + b.

Для определения наилучших a и b существует много разных методов. Воспользуемся наиболее простым из них. Выразим b через a из этих уравнений:

b » – 42 – 3a , b » – 4a , b » 28 – 5a , b » 69 – 6a .

Возьмем в качестве искомого b среднее арифметическое этих значений, то есть положим b » 16 – 4,5a . Подставим в исходную систему уравнений это значение b и, вычисляя a , получим для a следующие значения: a » 37, a » 28, a » 28, a » 36. Возьмем в качестве искомого a среднее значение этих чисел, то есть положим a » 34. Итак, искомое уравнение имеет вид

y » 34n – 139.

Проверим точность модели на исходных четырех соединениях, для чего вычислим температуры кипения по полученной формуле:

y р (3) = – 37°, y р (4) = – 3°, y р (5) = 31°, y р (6) = 65°.

Таким образом, ошибка расчетов данного свойства для этих соединений не превышает 5°. Используем полученное уравнение для расчета температуры кипения соединения с n = 7, не входящего в исходное множество, для чего подставим в это уравнение n = 7: y р (7) = 99°. Результат получился довольно точный: известно, что экспериментальное значение температуры кипения y э (7) = 98°.

7) Задача об определении надежности электрической цепи.

Здесь мы рассмотрим пример вероятностной модели. Сначала приведем некоторые сведения из теории вероятностей - математической дисциплины, изучающей закономерности случайных явлений, наблюдаемых при многократном повторении опыта. Назовем случайным событием A возможный исход некоторого опыта. События A 1 , ..., A k образуют полную группу, если в результате опыта обязательно происходит одно из них. События называются несовместными, если они не могут произойти одновременно в одном опыте. Пусть при n-кратном повторении опыта событие A произошло m раз. Частотой события A называется число W = . Очевидно, что значение W нельзя предсказать точно до проведения серии из n опытов. Однако природа случайных событий такова, что на практике иногда наблюдается следующий эффект: при увеличении числа опытов значение практически перестает быть случайным и стабилизируется около некоторого неслучайного числа P(A), называемого вероятностью события A. Для невозможного события (которое никогда не происходит в опыте) P(A)=0, а для достоверного события (которое всегда происходит в опыте) P(A)=1. Если события A 1 , ..., A k образуют полную группу несовместимых событий, то P(A 1)+...+P(A k)=1.

Пусть, например, опыт состоит в подбрасывании игральной кости и наблюдении числа выпавших очков X. Тогда можно ввести следующие случайные события A i ={X = i}, i = 1, ..., 6. Они образуют полную группу несовместных равновероятных событий, поэтому P(A i) = (i = 1, ..., 6).

Суммой событий A и B называется событие A + B, состоящее в том, что в опыте происходит хотя бы одно из них. Произведением событий A и B называется событие AB, состоящее в одновременном появлении этих событий. Для независимых событий A и B верны формулы

P(AB) = P(A) P(B), P(A + B) = P(A) + P(B).

8) Рассмотрим теперь следующую задачу . Предположим, что в электрическую цепь последовательно включены три элемента, работающие независимо друг от друга. Вероятности отказов 1-го, 2-го и 3-го элементов соответственно равны P 1 = 0,1, P 2 = 0,15, P 3 = 0,2. Будем считать цепь надежной, если вероятность того, что в цепи не будет тока, не более 0,4. Требуется определить, является ли данная цепь надежной.

Так как элементы включены последовательно, то тока в цепи не будет (событие A), если откажет хотя бы один из элементов. Пусть A i - событие, заключающееся в том, что i-й элемент работает (i = 1, 2, 3). Тогда P(A1) = 0,9, P(A2) = 0,85, P(A3) = 0,8. Очевидно, что A 1 A 2 A 3 - событие, заключающееся в том, что одновременно работают все три элемента, и

P(A 1 A 2 A 3) = P(A 1) P(A 2) P(A 3) = 0,612.

Тогда P(A) + P(A 1 A 2 A 3) = 1, поэтому P(A) = 0,388 < 0,4. Следовательно, цепь является надежной.

В заключение отметим, что приведенные примеры математических моделей (среди которых есть функциональные и структурные, детерминистические и вероятностные) носят иллюстративный характер и, очевидно, не исчерпывают всего разнообразия математических моделей, возникающих в естественных и гуманитарных науках.

Математическая модель является упрощением реальной ситуации и представляет собой абстрактный, формально описанный объект, изучение которого возможно различными математическими методами .

Рассмотрим классификацию математических моделей.

Математические модели делятся:

1. В зависимости от характера отображаемых свойств объекта:

· функциональные;

· структурные.

Функциональные математические модели предназначены для отображения информационных, физических, временных процессов, протекающих в работающем оборудовании, в ходе выполнения технологических процессов и т.д.

Таким образом, функциональные модели - отображают процессы функционирования объекта. Они имеют чаще всего форму системы уравнений.

Структурныемодели - могут иметь форму матриц, графов, списков векторов и выражать взаимное расположение элементов в пространстве. Эти модели обычно используют в случаях, когда задачи структурного синтеза удается ставить и решать, абстрагируясь от физических процессов в объекте. Они отражают структурные свойства проектируемого объекта.

Для получения статического представления моделируемого объекта может быть использована группа методов, называемых схематическими моделями - это методы анализа, включающие графическое представление работы системы. Например, технологические карты, диаграммы, многофункциональные диаграммы операций и блок-схемы.

2. По способам получения функциональных математических моделей:

· теоретические;

· формальные;

· эмпирические.

Теоретические получают на основе изучения физических закономерностей. Структура уравнений и параметры моделей имеют определенное физическое толкование.

Формальные получают на основе проявления свойств моделируемого объекта во внешней среде, т.е. рассмотрение объекта как кибернетического «черного ящика».

Теоретический подход позволяет получать модели более универсальные, справедливые для более широких диапазонов изменения внешних параметров.

Формальные - более точны в точке пространства параметров, в которой производились измерения.

Эмпирические математические модели создаются в результате проведения экспериментов (изучения внешних проявлений свойств объекта с помощью измерения его параметров на входе и выходе) и обработки их результатов методами математической статистики.

3. В зависимости от линейности и нелинейности уравнений:

· линейные ;

· нелинейные .

4. В зависимости от множества области определения и значений переменных модели бывают:

· непрерывные

· дискретные (области определения и значений непрерывны);

· непрерывно-дискретные (область определения непрерывна, а область значений дискретна). Эти модели иногда называют квантованными;

· дискретно-непрерывные (область определения дискретна, а область значений непрерывна). Эти модели называют дискретными;

· цифровые (области определения и значений дискретны)

5. По форме связей между выходными, внутренними и внешними параметрами:

· алгоритмические;

· аналитические;

· численные.

Алгоритмическими называют модели, представленных в виде алгоритмов, описывающих последовательность однозначно интерпретируемых операций, выполняемых для получения необходимого результата.

Алгоритмические математические модели выражают связи между выходными параметрами и параметрами входными и внутренними в виде алгоритма.

Аналитическими математическими моделями называется такое формализованное описание объекта (явления, процесса), которое представляют собой явные математические выражения выходных параметров как функций от входных и внутренних параметров.

Аналитическое моделирование основано на косвенном описании моделируемого объекта с помощью набора математических формул. Язык аналитического описания содержит следующие основные группы семантических элементов: критерий (критерии), неизвестные, данные, математические операции, ограничения. Наиболее существенная характеристика аналитических моделей заключается в том, что модель не является структурно подобной объекту моделирования. Под структурным подобием здесь понимается однозначное соответствие элементов и связей модели элементам и связям моделируемого объекта. К аналитическим относятся модели, построенные на основе аппарата математического программирования, корреляционного, регрессионного анализа. Аналитическая модель всегда представляет собой конструкцию, которую можно проанализировать и решить математическими средствами. Так, если используется аппарат математического программирования, то модель состоит в основе своей из целевой функции и системы ограничений на переменные. Целевая функция, как правило, выражает ту характеристику объекта (системы), которую требуется вычислить или оптимизировать. В частности, это может быть производительность технологической системы. Переменные выражают технические характеристики объекта (системы), в том числе варьируемые, ограничения – их допустимые предельные значения.

Аналитические модели являются эффективным инструментом для решения задач оптимизации процессов, протекающих в технологических системах, а также оптимизации и вычисления характеристик самих технологических систем.

Важным моментом является размерность конкретной аналитической модели. Часто для реальных технологических систем (автоматических линий, гибких производственных систем) размерность их аналитических моделей столь велика, что получение оптимального решения оказывается весьма сложным с вычислительной точки зрения. Для повышения вычислительной эффективности в этом случае используют различные приемы. Один из них связан с разбиением задачи большой размерности на подзадачи меньшей размерности так, чтобы автономные решения подзадач в определенной последовательности давали решение основной задачи. При этом возникают проблемы организации взаимодействия подзадач, которые не всегда оказываются простыми. Другой прием предполагает уменьшение точности вычислений, за счет чего удается сократить время решения задачи.

Аналитическая модель может быть исследована следующим методами:

· аналитическим, когда стремятся получить в общем виде зависимости для искомых характеристик;

· численными, когда стремятся получить числовые результаты при конкретных начальных данных;

· качественными, когда, имея решения в явном виде можно найти некоторые свойства решения (оценить устойчивость решения).

Однако аналитическое моделирование дает хорошие результаты в случае достаточно простых систем. В случае сложных систем требуется либо существенное упрощение первоначальной модели, чтобы изучить хотя бы общие свойства системы. Это позволяет получить ориентировочные результаты, а для определения более точных оценок использовать другие методы, например, имитационное моделирование.

Численная модель характеризуется зависимостью такого вида, которая допускает только решения, получаемые численными методами, для конкретных начальных условий и количественных параметров моделей.

6. В зависимости от того, учитывают уравнения модели инерционность процессов в объекте или не учитывают:

· динамические илиинерционные модели (записываются в виде дифференциальных или интегро-дифференциальных уравнений или систем уравнений);

· статические или неинерционные модели (записываютсяв виде алгебраических уравнений или систем алгебраических уравнений).

7. В зависимости от наличия или отсутствия неопределенностей и вида неопределенностей модели бывают:

· детерминированны е (неопределенности отсутствуют);

· стохастические (присутствуют неопределенности в виде случайных величин или процессов, описываемых статистическими методами в виде законов или функционалов распределений, а также числовыми характеристиками);

· нечеткие (для описания неопределенностей используется аппарат теории нечетких множеств) ;

· комбинированные (присутствуют неопределенности обоих видов).

В общем случае вид математической модели зависит не только от природы реального объекта, но и от тех задач, ради решения которых она создается, и требуемой точности их решения

Основные виды моделей представленные на рисунке 2.5.

Рассмотрим еще одну классификацию математических моделей. Эта классификация основана на понятии управляемости объекта управления.Все ММ разобьем условно на четыре группы. 1.Модели прогноза (расчетные модели без управления). Их можно разделить на статические и динамические .Основное назначение этих моделей: зная начальное состояние и информацию о поведение на границе, дать прогноз о поведении системы во времени и в пространстве. Такие модели могут быть и стохастическими.Как правило, модели прогнозирования описываются алгебраическими, трансцендентными, дифференциальными, интегральными, интегро-дифференциальными уравнениями и неравенствами. Примерами могут служить модели распределения тепла, электрического поля, химической кинетики, гидродинамики, аэродинамики и т.д. 2.Оптимизационные модели. Эти модели так же можно разделить на статические и динамические. Статические модели используются на уровне проектирования различных технологических систем. Динамические – как на уровне проектирования, так и, главным образом, для оптимального управления различными процессами – технологическими, экономическими и др.В задачах оптимизации имеется два направления. К первому относятся детерминированные задачи . Вся входная информация в них является полностью определяемой.Второе направление относится к стохастическим процессам . В этих задачах некоторые параметры носят случайный характер или содержат элемент неопределенности. Многие задачи оптимизации автоматических устройств, например, содержат параметры в виде случайных помех с некоторыми вероятностными характеристиками.Методы отыскания экстремума функции многих переменных с различными ограничениями часто называются методами математического программирования. Задачи математического программирования – одни из важных оптимизационных задач.В математическом программировании выделяются следующие основные разделы. · Линейное программирование . Целевая функция линейна, а множество, на котором ищется экстремум целевой функции, задается системой линейных равенств и неравенств. · Нелинейное программирование . Целевая функция нелинейная и нелинейные ограничения. · Выпуклое программирование . Целевая функция выпуклая и выпуклое множество, на котором решается экстремальная задача. · Квадратичное программирование . Целевая функция квадратичная, а ограничения – линейные. · Многоэкстремальные задачи. Задачи, в которых целевая функция имеет несколько локальных экстремумов. Такие задачи представляются весьма проблемными. · Целочисленное программирование. В подобных задачах на переменные накладываются условия целочисленности.

Рис. 4.8. Классификация математических моделей

Как правило, к задачам математического программирования неприменимы методы классического анализа для отыскания экстремума функции нескольких переменных.Модели теории оптимального управления – одни из важных в оптимизационных моделях. Математическая теория оптимального управления относится к одной из теорий, имеющих важные практические применения, в основном, для оптимального управления процессами. Различают три вида математических моделей теории оптимального управления. · Дискретные модели оптимального управления. Традиционно такие модели называют моделями динамического программирования, так как основной метод решения таких задач метод динамического программирования Беллмана. · Непрерывные модели оптимального управления системами с сосредоточенными параметрами (описываются уравнениями в обыкновенных производных). · Непрерывные модели оптимального управления системами с распределенными параметрами (описываются уравнениями в частных производных). 3. Кибернетические модели (игровые). Кибернетические модели используются для анализа конфликтных ситуаций. Предполагается, что динамический процесс определяется несколькими субъектами, в распоряжении которых имеется несколько управляющих параметров. С кибернетической системой ассоциируется целая группа субъектов со своими собственными интересами. 4. Имитационное моделирование . Вышеописанные типы моделей не охватывают большого числа различных ситуаций, таких, которые могут быть полностью формализованы. Для изучения таких процессов необходимо включение в математическую модель функционирующего «биологического» звена – человека. В таких ситуациях используется имитационное моделирование, а также методы экспертиз и информационных процедур.

По учебнику Советова и Яковлева : «модель (лат. modulus - мера) - это объект-заместитель объекта-оригинала, обеспечивающий изучение некоторых свойств оригинала.» (с. 6) «Замещение одного объекта другим с целью получения информации о важнейших свойствах объекта-оригинала с помощью объекта-модели называется моделированием.» (с. 6) «Под математическим моделированием будем понимать процесс установления соответствия данному реальному объекту некоторого математического объекта, называемого математической моделью, и исследование этой модели, позволяющее получать характеристики рассматриваемого реального объекта. Вид математической модели зависит как от природы реального объекта, так и задач исследования объекта и требуемой достоверности и точности решения этой задачи.»

Наконец, наиболее лаконичное определение математической модели: "Уравнение , выражающее идею . "

Классификация моделей

Формальная классификация моделей

Формальная классификация моделей основывается на классификации используемых математических средств. Часто строится в форме дихотомий. Например, один из популярных наборов дихотомий :

и так далее. Каждая построенная модель является линейной или нелинейной, детерминированной или стохастической, … Естественно, что возможны и смешанные типы: в одном отношении сосредоточенные (по части параметров), в другом - распределённые модели и т. д.

Классификация по способу представления объекта

Наряду с формальной классификацией, модели различаются по способу представления объекта:

  • Структурные или функциональные модели

Структурные модели представляют объект как систему со своим устройством и механизмом функционирования. Функциональные модели не используют таких представлений и отражают только внешне воспринимаемое поведение (функционирование) объекта. В их предельном выражении они называются также моделями «чёрного ящика» Возможны также комбинированные типы моделей, которые иногда называют моделями «серого ящика».

Содержательные и формальные модели

Практически все авторы, описывающие процесс математического моделирования, указывают, что сначала строится особая идеальная конструкция, содержательная модель . Устоявшейся терминологии здесь нет, и другие авторы называют этот идеальный объект концептуальная модель , умозрительная модель или предмодель . При этом финальная математическая конструкция называется формальной моделью или просто математической моделью, полученной в результате формализации данной содержательной модели (предмодели). Построение содержательной модели может производиться с помощью набора готовых идеализаций, как в механике, где идеальные пружины, твёрдые тела, идеальные маятники, упругие среды и т. п. дают готовые структурные элементы для содержательного моделирования. Однако в областях знания, где не существует полностью завершенных формализованных теорий (передний край физики , биология , экономика , социология , психология , и большинство других областей), создание содержательных моделей резко усложняется.

Содержательная классификация моделей

Никакая гипотеза в науке не бывает доказана раз и навсегда. Очень чётко это сформулировал Ричард Фейнман :

«У нас всегда есть возможность опровергнуть теорию, но, обратите внимание, мы никогда не можем доказать, что она правильна. Предположим, что вы выдвинули удачную гипотезу, рассчитали, к чему это ведет, и выяснили, что все ее следствия подтверждаются экспериментально. Значит ли это, что ваша теория правильна? Нет, просто-напросто это значит, что вам не удалось ее опровергнуть.»

Если модель первого типа построена, то это означает что она временно признаётся за истину и можно сконцентрироваться на других проблемах. Однако это не может быть точкой в исследованиях, но только вре́менной паузой: статус модели первого типа может быть только вре́менным.

Тип 2: Феноменологическая модель (ведем себя так, как если бы …)

Феноменологическая модель содержит механизм для описания явления. Однако этот механизм недостаточно убедителен, не может быть достаточно подтверждён имеющимися данными или плохо согласуется с имеющимися теориями и накопленным знанием об объекте. Поэтому феноменологические модели имеют статус вре́менных решений. Считается, что ответ всё ещё неизвестен и необходимо продолжить поиск «истинных механизмов». Ко второму типу Пайерлс относит, например, модели теплорода и кварковую модель элементарных частиц.

Роль модели в исследовании может меняться со временем, может случиться так, что новые данные и теории подтвердят феноменологические модели и те будут повышены до статуса гипотезы. Аналогично, новое знание может постепенно прийти в противоречие с моделями-гипотезами первого типа и те могут быть переведены во второй. Так, кварковая модель постепенно переходит в разряд гипотез; атомизм в физике возник как временное решение, но с ходом истории перешёл в первый тип. А вот модели эфира , проделали путь от типа 1 к типу 2, а сейчас находятся вне науки.

Идея упрощения очень популярна при построении моделей. Но упрощение бывает разным. Пайерлс выделяет три типа упрощений в моделировании.

Тип 3: Приближение (что-то считаем очень большим или очень малым )

Если можно построить уравнения, описывающие исследуемую систему, то это не значит, что их можно решить даже с помощью компьютера. Общепринятый прием в этом случае - использование приближений (моделей типа 3). Среди них модели линейного отклика . Уравнения заменяются линейными. Стандартный пример - закон Ома .

А вот и тип 8, широко распространенный в математических моделях биологических систем.

Тип 8: Демонстрация возможности (главное - показать внутреннюю непротиворечивость возможности )

Это тоже мысленные эксперименты с воображаемыми сущностями, демонстрирующие, что предполагаемое явление согласуется с базовыми принципам и внутренне непротиворечиво. В этом основное отличие от моделей типа 7, которые вскрывают скрытые противоречия.

Один из самых знаменитых таких экспериментов - геометрия Лобачевского (Лобачевский называл её «воображаемой геометрией»). Другой пример - массовое производство формально - кинетических моделей химических и биологических колебаний, автоволн и др. Парадокс Эйнштейна - Подольского - Розена был задуман как модель 7 типа, для демонстрации противоречивости квантовой механики. Совершенно незапланированным образом он со временем превратился в модель 8 типа - демонстрацию возможности квантовой телепортации информации.

Пример

Рассмотрим механическую систему, состоящую из пружины, закрепленной с одного конца, и груза массой m , прикрепленного к свободному концу пружины. Будем считать, что груз может двигаться только в направлении оси пружины (например, движение происходит вдоль стержня). Построим математическую модель этой системы. Будем описывать состояние системы расстоянием x от центра груза до его положения равновесия. Опишем взаимодействие пружины и груза с помощью закона Гука (F = − k x ) после чего воспользуемся вторым законом Ньютона , чтобы выразить его в форме дифференциального уравнения :

где означает вторую производную от x по времени: .

Полученное уравнение описывает математическую модель рассмотренной физической системы. Эта модель называется «гармоническим осциллятором ».

По формальной классификация эта модель линейная, детерминисткая, динамическая, сосредоточенная, непрерывная. В процессе её построения мы сделали множество допущений (об отсутствии внешних сил, отсутствии трения, малости отклонений и т.~д.), которые в реальности могут не выполняться.

По отношению к реальности это, чаще всего, модель типа 4 упрощение («опустим для ясности некоторые детали»), поскольку опущены некоторые существенные универсальные особенности (например, диссипация). В некотором приближении (скажем, пока отклонение груза от равновесия невелико, при малом трении, в течение не слишком большого времени и при соблюдении некоторых других условий), такая модель достаточно хорошо описывает реальную механическую систему, поскольку отброшенные факторы оказывают пренебрежимо малое влияние на её поведение. Однако модель можно уточнить, приняв во внимание какие-то из этих факторов. Это приведет к новой модели, с более широкой (хотя и снова ограниченной) областью применимости.

Впрочем, при уточнении модели сложность её математического исследования может существенно возрасти и сделать модель фактически бесполезной. Зачастую более простая модель позволяет лучше и глубже исследовать реальную систему, чем более сложная (и, формально, «более правильная»).

Если применять модель гармонического осциллятора к объектам, далёким от физики, её содержательный статус может быть другим. Например, при приложении этой модели к биологическим популяциям, её следует отнести, скорее всего, к типу 6 аналогия («учтём только некоторые особенности»).

Жёсткие и мягкие модели

Гармонический осциллятор - пример так называемой «жёсткой» модели. Она получена в результате сильной идеализации реальной физической системы. Для решения вопроса о её применимости необходимо понять, насколько существенными являются факторы, которыми мы пренебрегли. Иными словами, нужно исследовать «мягкую» модель, получающуюся малым возмущением «жёсткой». Она может задаваться, например, следующим уравнением:

Здесь - некоторая функция, в которой может учитываться сила трения или зависимость коэффициента жёсткости пружины от степени её растяжения, - некоторый малый параметр. Явный вид функции f нас в данный момент не интересует. Если мы докажем, что поведение мягкой модели принципиально не отличается от поведения жёсткой (вне зависимости от явного вида возмущающих факторов, если они достаточно малы), задача сведется к исследованию жёсткой модели. В противном случае применение результатов, полученных при изучении жёсткой модели, потребует дополнительных исследований. Например, решением уравнения гармонического осциллятора являются функции вида , то есть колебания с постоянной амплитудой. Следует ли из этого, что реальный осциллятор будет бесконечно долго колебаться с постоянной амплитудой? Нет, поскольку рассматривая систему со сколь угодно малым трением (всегда присутствующим в реальной системе), мы получим затухающие колебания . Поведение системы качественно изменилось.

Если система сохраняет свое качественное поведение при малом возмущении, говорят, что она структурно устойчива. Гармонический осциллятор - пример структурно-неустойчивой (негрубой) системы. Тем не менее, эту модель можно применять для изучения процессов на ограниченных промежутках времени.

Универсальность моделей

Важнейшие математические модели обычно обладают важным свойством универсальности : принципиально разные реальные явления могут описываться одной и той же математической моделью. Скажем, гармонический осциллятор описывает не только поведение груза на пружине, но и другие колебательные процессы, зачастую имеющие совершенно иную природу: малые колебания маятника, колебания уровня жидкости в U -образном сосуде или изменение силы тока в колебательном контуре. Таким образом, изучая одну математическую модель, мы изучаем сразу целый класс описываемых ею явлений. Именно этот изоморфизм законов, выражаемых математическими моделями в различных сегментах научного знания, подвиг Людвига фон Берталанфи на создание «Общей теории систем ».

Прямая и обратная задачи математического моделирования

Существует множество задач, связанных с математическим моделированием. Во-первых, надо придумать основную схему моделируемого объекта, воспроизвести его в рамках идеализаций данной науки. Так, вагон поезда превращается в систему пластин и более сложных тел из разных материалов, каждый материал задается как его стандартная механическая идеализация (плотность, модули упругости, стандартные прочностные характеристики), после чего составляются уравнения, по дороге какие-то детали отбрасываются, как несущественные, производятся расчёты, сравниваются с измерениями, модель уточняется, и так далее. Однако для разработки технологий математического моделирования полезно разобрать этот процесс на основные составные элементы.

Традиционно выделяют два основных класса задач, связанных с математическими моделями: прямые и обратные.

Прямая задача : структура модели и все её параметры считаются известными, главная задача - провести исследование модели для извлечения полезного знания об объекте. Какую статическую нагрузку выдержит мост? Как он будет реагировать на динамическую нагрузку (например, на марш роты солдат, или на прохождение поезда ни различной скорости), как самолёт преодолеет звуковой барьер, не развалится ли он от флаттера , - вот типичные примеры прямой задачи. Постановка правильной прямой задачи (задание правильного вопроса) требует специального мастерства. Если не заданы правильные вопросы, то мост может обрушиться, даже если была построена хорошая модель для его поведения. Так, в 1879 г. в Англии обрушился металлический мост через реку Тей , конструкторы которого построили модель моста, рассчитали его на 20-кратный запас прочности на действие полезной нагрузки, но забыли о постоянно дующих в тех местах ветрах. И через полтора года он рухнул.

В простейшем случае (одно уравнение осциллятора, например) прямая задача очень проста и сводится к явному решению этого уравнения.

Обратная задача : известно множество возможных моделей, надо выбрать конкретную модель на основании дополнительных данных об объекте. Чаще всего, структура модели известна, и необходимо определить некоторые неизвестные параметры. Дополнительная информация может состоять в дополнительных эмпирических данных, или в требованиях к объекту (задача проектирования ). Дополнительные данные могут поступать независимо от процесса решения обратной задачи (пассивное наблюдение ) или быть результатом специально планируемого в ходе решения экперимента (активное наблюдение ).

Одним из первых примеров виртуозного решения обратной задачи с максимально полным использованием доступных данных был построенный И. Ньютоном метод восстановления сил трения по наблюдаемым затухающим колебаниям.

Дополнительные примеры

где x s - «равновесный» размер популяции, при котором рождаемость в точности компенсируется смертностью. Размер популяции в такой модели стремится к равновесному значению x s , причем такое поведение структурно устойчиво.

Эта система имеет равновесное состояние , когда число кроликов и лис постоянно. Отклонение от этого состояния приводит к колебаниям численности кроликов и лис, аналогичным колебаниям гармонического осциллятора . Как и в случае гармонического осциллятора, это поведение не является структурно устойчивым : малое изменение модели (например, учитывающее ограниченность ресурсов, необходимых кроликам) может привести к качественному изменению поведения . Например, равновесное состояние может стать устойчивым, и колебания численности будут затухать . Возможна и противоположная ситуация, когда любое малое отклонение от положения равновесия приведет к катастрофическим последствиям, вплоть до полного вымирания одного из видов. На вопрос о том, какой из этих сценариев реализуется, модель Вольтерра - Лотки ответа не дает: здесь требуются дополнительные исследования.

Примечания

  1. «A mathematical representation of reality»(Encyclopaedia Britanica)
  2. Новик И. Б. , О философских вопросах кибернетического моделирования. М., Знание, 1964.
  3. Советов Б. Я., Яковлев С. А. , Моделирование систем: Учеб. для вузов - 3-е изд., перераб. и доп. - М.: Высш. шк., 2001. - 343 с. ISBN 5-06-003860-2
  4. Самарский А. А. , Михайлов А. П. Математическое моделирование. Идеи. Методы. Примеры. . - 2-е изд., испр.. - М.: Физматлит, 2001. - ISBN 5-9221-0120-X
  5. Мышкис А. Д. , Элементы теории математических моделей. - 3-е изд., испр. - М.: КомКнига, 2007. - 192 с ISBN 978-5-484-00953-4
  6. Wiktionary: mathematical model
  7. CliffsNotes
  8. Model Reduction and Coarse-Graining Approaches for Multiscale Phenomena, Springer, Complexity series, Berlin-Heidelberg-New York, 2006. XII+562 pp. ISBN 3-540-35885-4
  9. «Теория считается линейной или нелинейной в зависимости от того, какой - линейный или нелинейный - математический аппарат, какие - линейные или нелинейные - математические модели она использует. … ез отрицание последней. Современный физик, доведись ему заново создавать определение столь важной сущности, как нелинейность, скорее всего, поступил бы иначе, и, отдав предпочтение нелинейности как более важной и распространенной из двух противоположностей, определил бы линейность как „не нелинейность“.» Данилов Ю. А. , Лекции по нелинейной динамике. Элементарное введение. Серия «Синергетика: от прошлого к будущему». Изд.2. - M.: URSS, 2006. - 208 с. ISBN 5-484-00183-8
  10. «Динамические системы, моделируемые конечным числом обыкновенных дифференциальных уравнений, называют сосредоточенными или точечными системами. Они описываются с помощью конечномерного фазового пространства и характеризуются конечным числом степеней свободы. Одна и та же система в различных условиях может рассматриваться либо как сосредоточенная, либо как распределенная. Математические модели распределенных систем - это дифференциальные уравнения в частных производных, интегральные уравнения или обыкновенные уравнения с запаздывающим аргументом. Число степеней свободы распределенной системы бесконечно, и требуется бесконечное число данных для определения ее состояния.» Анищенко В. С. , Динамические системы, Соросовский образовательный журнал, 1997, № 11, с. 77-84.
  11. «В зависимости от характера изучаемых процессов в системе S все виды моделирования могут быть разделены на детерминированные и стохастические, статические и динамические, дискретные, непрерывные и дискретно-непрерывные. Детерминированное моделирование отображает детерминированные процессы, то есть процессы, в которых предполагается отсутствие всяких случайных воздействий; стохастическое моделирование отображает вероятностные процессы и события. … Статическое моделирование служит для описания поведения объекта в какой-либо момент времени, а динамическое моделирование отражает поведение объекта во времени. Дискретное моделирование служит для описания процессов, которые предполагаются дискретными, соответственно непрерывное моделирование позволяет отразить непрерывные процессы в системах, а дискретно-непрерывное моделирование используется для случаев, когда хотят выделить наличие как дискретных, так и непрерывных процессов.» Советов Б. Я., Яковлев С. А. , Моделирование систем: Учеб. для вузов - 3-е изд., перераб. и доп. - М.: Высш. шк., 2001. - 343 с. ISBN 5-06-003860-2
  12. Обычно в математической модели отражается структура (устройство) моделируемого объекта, существенные для целей исследования свойства и взаимосвязи компонентов этого объекта; такая модель называется структурной. Если же модель отражает только то, как объект функционирует - например, как он реагирует на внешние воздействия,- то она называется функциональной или, образно, черным ящиком. Возможны и модели комбинированного типа. Мышкис А. Д. , Элементы теории математических моделей. - 3-е изд., испр. - М.: КомКнига, 2007. - 192 с ISBN 978-5-484-00953-4
  13. «Очевидный, но важнейший начальный этап построения или выбора математической модели - это получение по возможности более четкого представления о моделируемом объекте и уточнение его содержательной модели, основанное на неформальных обсуждениях. Нельзя жалеть времени и усилий на этот этап, от него в значительной мере зависит успех всего исследования. Не раз бывало, что значительный труд, затраченный на решение математической задачи, оказывался малоэффективным или даже потраченным впустую из-за недостаточного внимания к этой стороне дела.» Мышкис А. Д. , Элементы теории математических моделей. - 3-е изд., испр. - М.: КомКнига, 2007. - 192 с ISBN 978-5-484-00953-4, с. 35.
  14. «Описание концептуальной модели системы. На этом подэтапе построения модели системы: а) описывается концептуальная модель М в абстрактных терминах и понятиях; б) дается описание модели с использованием типовых математических схем; в) принимаются окончательно гипотезы и предположения; г) обосновывается выбор процедуры аппроксимации реальных процессов при построении модели.» Советов Б. Я., Яковлев С. А. , Моделирование систем: Учеб. для вузов - 3-е изд., перераб. и доп. - М.: Высш. шк., 2001. - 343 с. ISBN 5-06-003860-2, с. 93.
  15. Блехман И. И., Мышкис А. Д., Пановко Н. Г. , Прикладная математика: Предмет, логика, особенности подходов. С примерами из механики: Учебное пособие. - 3-е изд., испр. и доп. - М.: УРСС, 2006. - 376 с. ISBN 5-484-00163-3, Глава 2.