Профессиональные и научные знания в древности. Научные знания на древнем востоке

Научные аспекты античной мысли. Систематизация и развитие Аристотелем древнегреческой философии и науки. Теория познания и логика Аристотеля

Наши представления о сущности науки не будут полными, если мы не рассмотрим вопрос о причинах, ее породивших. Здесь мы сразу сталкиваемся с дискуссией о времени возникновения науки.

Когда и почему возникла наука? Существуют две крайние точки зрения по этому вопросу. Сторонники одной объявляют научным всякое обобщенное абстрактное знание и относят возникновение науки к той седой древности, когда человек стал делать первые орудия труда. Другая крайность - отнесение генезиса (происхождения) науки к тому сравнительно позднему этапу истории (XV - XVII вв.), когда появляется опытное естествознание.

Современное науковедение пока не дает однозначного ответа на этот вопрос, так как рассматривает саму науку в нескольких аспектах. Согласно основным точкам зрения наука - это совокупность знаний и деятельность по производству этих знаний; форма общественного сознания; социальный институт; непосредственная производительная сила общества; система профессиональной (академической) подготовки и воспроизводства кадров. Мы уже называли и довольно подробно говорили об этих сторонах науки. В зависимости от того, какой аспект мы будем принимать во внимание, мы получим разные точки отсчета развития науки:

Наука как система подготовки кадров существует с середины XIX в.;

Как непосредственная производительная сила - со второй половины XX в.;

Как социальный институт - в Новое время;

Как форма общественного сознания - в Древней Греции;

Как знания и деятельность по производству этих знаний - с начала человеческой культуры.

Разное время рождения имеют и различные конкретные науки. Так, античность дала миру математику, Новое время - современное естествознание, в XIX в. появляется обществознание.

Для того чтобы понять этот процесс, нам следует обратиться к истории.

Наука - это сложное многогранное общественное явление: вне общества наука не может ни возникнуть, ни развиваться. Но наука появляется тогда, когда для этого создаются особые объективные условия: более или менее четкий социальный запрос на объективные знания; социальная возможность выделения особой группы людей, чьей главной задачей становится ответ на этот запрос; начавшееся разделение труда внутри этой группы; накопление знаний, навыков, познавательных приемов, способов символического выражения и передачи информации (наличие письменности), которые и подготавливают революционный процесс возникновения и распространения нового вида знания - объективных общезначимых истин науки.

Совокупность таких условий, а также появление в культуре человеческого общества самостоятельной сферы, отвечающей критериям научности, складывается в Древней Греции в VII-VI вв. до н.э.

Чтобы доказать это, необходимо соотнести критерии научности с ходом реального исторического процесса и выяснить, с какого момента начинается их соответствие. Напомним критерии научности: наука - это не просто совокупность знаний, но и деятельность по получению новых знаний, что предполагает существование особой группы людей, специализирующейся на этом, соответствующих организаций, координирующих исследования, а также наличие необходимых материалов, технологий, средств фиксации информации (1); теоретичность - постижение истины ради самой истины (2); рациональность (3); системность (4).

Прежде чем говорить о великом перевороте в духовной жизни общества - появлении науки, происшедшем в Древней Греции, необходимо изучить ситуацию на Древнем Востоке, традиционно считающемся историческим центром рождения цивилизации и культуры.

НАУЧНЫЕ ЗНАНИЯ НА ДРЕВНЕМ ВОСТОКЕ

Если мы рассмотрим науку по критерию (1), то увидим, что традиционные цивилизации (египетская, шумерская), обладавшие налаженным механизмом для хранения информации и ее передачи, не имели столь же хорошего механизма по получению новых знаний. Эти цивилизации вырабатывали конкретные знания в области математики, астрономии на базе определенного практического опыта, которые передавались по принципу наследственного профессионализма, от старшего к младшему внутри касты жрецов. При этом знание квалифицировалось как идущее от Бога, покровителя этой касты, отсюда - стихийность этого знания, отсутствие критической позиции по отношению к нему, принятие его практически без доказательства, невозможность подвергнуть его существенным изменениям. Такое знание функционирует как набор готовых рецептов. Процесс обучения сводился к пассивному усвоению этих рецептов и правил, при этом вопрос, как были получены эти рецепты и можно ли заменить их более совершенными, даже не вставал. Это - профессионально-именной способ трансляции знаний, характеризующийся передачей знаний членам единой ассоциации людей, сгруппированных по признаку общности социальных ролей, где на место индивида заступает коллективный хранитель, накопитель и транслятор группового знания. Так передаются знания-проблемы, жестко привязанные к конкретным познавательным задачам. Этот способ трансляции и этот тип знаний занимают промежуточное положение между лично-именным и универсально-понятийным способами трансляции информации.

Лично-именной тип передачи знаний связан с ранними этапами человеческой истории, когда необходимые для жизни сведения передаются каждому человеку через обряды инициации, мифы как описания деяний предков. Так передаются знания-персоналии, являющиеся индивидуальными умениями.

Универсально-понятийный тип трансляции знаний не регламентирует субъекта познания родовыми, профессиональными и прочими рамками, делает знание доступным любому человеку. Этому типу трансляции соответствуют знания-предметы, являющиеся продуктом познавательного освоения субъектом определенного фрагмента реальности, что говорит о появлении науки.

Профессионально-именной тип трансляции знаний характерен для древнеегипетской цивилизации, просуществовавшей четыре тысячи лет почти без изменений. Если там и происходило медленное накопление объема знаний, то совершалось это стихийным образом.

Более динамичной в этом отношении была вавилонская цивилизация. Так, вавилонские жрецы настойчиво исследовали звездное небо и добились в этом больших успехов, но это был не научный, а вполне практический интерес. Именно они создали астрологию, которую считали вполне практическим занятием.

То же самое можно утверждать о развитии знаний в Индии и Китае. Эти цивилизации дали миру множество конкретных знаний, но это были знания, необходимые для практической жизни, для религиозных ритуалов, всегда бывших там важнейшей частью повседневной жизни.

Анализ соответствия знаний древневосточных цивилизаций второму критерию научности позволяет говорить о том, что им не были свойственны ни фундаментальность, ни теоретичность. Все знания имели сугубо прикладной характер. Та же астрология возникла не из чистого интереса к строению мира и движению небесных тел, а потому что нужно было определять время разлива рек, составлять гороскопы. Ведь небесные светила, по представлению вавилонских жрецов, являлись ликами богов, наблюдавшими за всем происходящим на земле и существенно влияющими на все события человеческой жизни. Это же можно сказать о других научных знаниях не только в Вавилоне, но и в Египте, Индии, Китае. Они были нужны для чисто практических целей, среди которых важнейшими считались правильно исполненные религиозные ритуалы, где эти знания прежде всего и использовались.

Даже в математике ни вавилоняне, ни египтяне не проводили различия между точными и приближенными решениями математических задач, при том что они могли решать достаточно сложные задачи. Любое решение, приводившее к практически приемлемому результату, считалось хорошим. Для греков же, подходивших к математике чисто теоретически, имело значение строгое решение, полученное путем логических рассуждений. Это привело к разработке математической дедукции, определившей характер всей последующей математики. Восточная же математика даже в своих высших достижениях, которые для греков были недоступными, так и не дошла до метода дедукции.

Третьим критерием науки является рациональность. Сегодня нам это кажется тривиальным, но ведь вера в возможности разума появилась далеко не сразу и не везде. Восточная цивилизация так и не приняла этого положения, отдавая предпочтение интуиции и сверхчувственному восприятию. Например, вавилонская астрономия (точнее, астрология), вполне рационалистическая по своим методам, основывалась на вере в иррациональную связь небесных светил и человеческих судеб. Там знание было эзотерическим, предметом поклонения, таинством. Рациональность и в Греции появилась не ранее VI в. до н.э. Науке там предшествовали магия, мифология, вера в сверхъестественное. И переход от мифа к логосу был шагом огромной важности в развитии человеческого мышления и человеческой цивилизации вообще.

Не соответствовали научные знания Древнего Востока и критерию системности. Они были просто набором алгоритмов и правил для решения отдельных задач. И не имеет значения, что некоторые из этих задач были достаточно сложными (например, вавилоняне решали квадратные и кубические алгебраические уравнения). Решение частных задач не выводило древних ученых на общие законы, отсутствовала система доказательств (а греческая математика с самого начала пошла путем строгого доказательства математической теоремы, формулируемой в максимально общей форме), что делало способы их решения профессиональной тайной, сводившей, в конечном счете, знание к магии и фокусам.

Таким образом, мы можем сделать вывод об отсутствии подлинной науки на Древнем Востоке и будем говорить только о наличии там разрозненных научных представлений, что существенно отличает эти цивилизации от древнегреческой и сложившейся на ее основе современной европейской цивилизации и делает науку феноменом только этой цивилизации.


Похожая информация.


Ученые о Ведах

Для начала заметим, что мудрость древних Вед признавали многие знаменитые ученые и величайшие умы человечества XIX-XX века. Американский философ и писатель Генри Дэвид Торо писал: «В великом учении Вед нет ни тени сектантства. Оно предназначено для всех эпох, климатических регионов и наций и является королевской дорогой к достижению Великого Знания».

Лев Толстой в письме индийскому гуру Премананду Бхарати в 1907 году заметил: «Метафизическая религиозная идея Кришны - вечная и универсальная основа всех истинных философских систем и всех религий».

Наш классик литературы также говорил: «Только такие великие умы, как древние индусские мудрецы, могли додуматься до этого великого понятия... Наши христианские понятия духовной жизни происходят от древних, от еврейских, а еврейские - от ассирийских, а ассирийские - от индийских, и все идут ходом обратно: чем новее, тем ниже, чем древнее, тем выше».

Любопытно, что Альберт Эйнштейн специально учил санскрит, чтобы прочитать в подлиннике Веды, в которых описывались общие закономерности физической природы.

Многие другие известные люди, такие как Кант, Гегель, Ганди признавали Веды как источник разнообразных знаний.

От ноля до кальпы

Древние математики в Индии ввели множество понятий, которыми мы пользуемся до сих пор. Заметим, что лишь в VII веке нашей эры цифра «ноль» впервые начало упоминаться в арабских источниках, и только в VIII веке она дошла до Европы.

Однако в индийской математике понятие ноля (на санскрите «шунья») известно с IV века до нашей эры!

Именно в древней Индии впервые появилось эта цифра. Заметим, что без понятия о нуле не могла бы существовать бинарная система и компьютеры. Десятичная система счисления была также изобретена в Индии.

В древней Индии было известно число «пи», а так же теорема Пифагора, точнее теорема Баудхаяны, который ее впервые изложил в VI веке до нашей эры.

Самое маленькое число, приведенное в Ведах – крати. Оно равно одной тридцатичетырехтысячной секунды. Самое большое число – кальпа – равняется 4,32 миллиарда лет.

Кальпа – это день Брахмы. По прошествии этого периода наступает ночь Брахмы, равная по продолжительности дню. Таким образом, божественные сутки длятся 8,64 млрд лет. Месяц Брахмы состоит из тридцати таких суток (тридцати дней и тридцати ночей), что составляет 259,2 млрд лет, а год Брахмы (3,1104·1012 обычных лет) - из двенадцати месяцев. Брахма живет сто лет (3,1104·1014, или 311 триллионов 40 миллиардов лет), по прошествии которых умирает.

Бхаскарачарья – первый!

Как мы знаем, польский ученый Николай Коперник выдвинул предположения о том, что Земля вращается вокруг Солнца в 1543 году. Однако за 1000 лет до этого ведический астроном и математик Арьябхатта утверждал то же самое: «Как человеку, плывущему на лодке, кажется, что деревья на берегах движутся, также и людям, живущим на Земле, кажется, что движется Солнце».

В своей работе под названием «Ариабхатия» ученый утверждал, что Земля круглая, вращается вокруг своей оси и вокруг Солнца и «висит» в космосе. Кроме того, он привел точные данные о размерах Земли и Луны.

Теория притяжения также была хорошо известна астрономам древности. Мудрец Бхаскарачарья в знаменитом астрономическом трактате «Сурья Сидханта» пишет: «Объекты падают на Землю вследствие силы ее притяжения. Земля, Луна, Солнце и другие планеты держатся на своих орбитах также силой притяжения».

Заметим, что Исаак Ньютон открыл закон притяжения только в 1687 году.

В «Сурья Сидханте» Бхаскарачарья приводит время, необходимое Земле, чтобы обойти вокруг Солнца: 365,258756484 дня. Современные ученые принимают цифру 365,2596 дней.

«Ригведа» утверждала, что Луна – это спутник Земли! «Будучи спутником Земли, Луна вращается вокруг своей материнской планеты и сопровождает ее во вращении вокруг отцовской планеты – Солнца. Всего в солнечной системе 32 планеты-спутника. Луна – единственный спутник, имеющий собственную индивидуальную природу. Размер остальных спутников не превышает 1/8 размера своих материнских планет. Луна – единственный спутник очень большого размера».

Происхождение материи разъясняли «Упанищады»: «Из него (Абсолюта) произошло пространство, из которого произошел ветер, из ветра произошел огонь, из огня – вода, а из воды – земля». Это очень похоже на последовательность происхождения материи, как ее понимают современные физики: плазма, газ, энергия, жидкость, твердое вещество.

Удивительные памятники прошлого

От древней ведической цивилизации остались не только теоретические знания, а вполне конкретные следы материальной культуры. Храмовый комплекс Ангкор Ват в джунглях Камбоджи посвящен богу Вишну и является одним из самых удивительных памятников ведической цивилизации.

Это самое крупное религиозное сооружение мира. Его площадь составляет 200 кв. км, а не его территории проживало 500 тысяч человек.

Как было создано это удивительное сооружение, до сих пор остается загадкой. Вот что пишет Й. Ивасаки, директор геолого-исследовательского института в г. Осака, Япония:

«Начиная с 1906 г. в Ангкоре работала группа французских реставраторов. В 50-е гг. французские специалисты попытались поднять камни на крутую насыпь. Но так как угол крутой насыпи составляет 40º, после того как была построена первая ступень высотой 5 м, насыпь разрушилась. Была предпринята вторая попытка, но с тем же результатом. В конце концов французы отказались от идеи следовать историческим технологиям и установили бетонную стену внутри пирамиды, чтобы сохранить земляные сооружения. Сегодня нам не известно, как древние могли строить такие высокие и крутые насыпи».

Рядом с Ангкором находится огромное водохранилище . Размеры водоема составляют 8 км на 2,1 км, а глубина – 5 метров. Сделано оно в незапамятные времена. Поражает точность границ водохранилища и грандиозность выполненных работ. Этот огромный водоем имеет четкие прямые границы, что нехарактерно даже для современных подобных сооружений.

Еще в одном храме, расположенном в деревне Лепакши в Индии (штат Андхра-Прадеш), имеется загадка, которую не дает покоя многим исследователям. В храме находится 69 обычных колонн и одна особенная - она не касается земли. Местные гиды для развлечения туристов просовывают под нее газету или палки, чтобы показать, что колонна действительно «парит» в воздухе.

Долгие годы эксперты пытались разгадать тайну висящей колонны. Например, британские инженеры в период колонизации Индии даже пытались выбить колонну с ее места, но к счастью, у них ничего не получилось. До сих пор, несмотря на передовые инженерные знания и современное оборудование, ученые не открыли секрет висячей колонны, нарушающей законы гравитации…


ВВЕДЕНИЕ 2

1.РАЗВИТИЕ НАУЧНЫХ ЗНАНИЙ ДРЕВНЕГО ЕГИПТА 3

2.ПИСЬМЕННОСТЬ И ЛИТЕРАТУРА 13

ЗАКЛЮЧЕНИЕ 16

4.СПИСОК ЛИТЕРАТУРЫ 18

ВВЕДЕНИЕ

С незапамятных времен древнеегипетская цивилизация привлекала внимание человечества. Египет, как никакая другая древняя цивилизация, создает впечатление вечности и редкой целостности. На земле страны, в древности возникла одна из самых могущественных и загадочных цивилизаций, которая веками и тысячелетиями притягивала как магнит внимание современников.

В то время, когда в Европе и Америке еще господствовала эпоха каменного века и примитивных охотников, древние египетские инженеры строили ирригационные сооружения вдоль Великого Нила, древние египетские математики рассчитывали квадрат основания и угол наклона Великих Пирамид, древние египетские зодчие возводили грандиозные храмы, величие которых не способно принизить время.

История Египта насчитывает более 6 тысяч лет. Сохранившиеся на его территории уникальные памятники древней культуры привлекают ежегодно огромное количество туристов со всего мира. Грандиозные пирамиды и Большой Сфинкс, величественные храмы в Верхнем Египте, многие другие архитектурные и исторические шедевры - все это по-прежнему поражает воображение всех, кому удается поближе познакомиться с этой удивительной страной. Сегодняшний Египет - крупнейшая арабская страна, расположенная на северо-востоке Африки.

Цель работы заключается в рассмотрении развития научных знаний Древнего Египта, а также в рассмотрении письменности и литературы.

1.РАЗВИТИЕ НАУЧНЫХ ЗНАНИЙ ДРЕВНЕГО ЕГИПТА

Древневосточная история ведется примерно с 3000 года до н.э. Географически, под древним Востоком разумеются страны, расположенные в Южной Азии и частью в Северной Африке. Характерной особенностью природных условий этих стран является чередование плодородных речных долин с огромными пустынными областями и горными хребтами. Долины рек Нила, Тигра и Евфрата, Ганга и Хуанхэ очень благоприятны для земледелия. Разливы рек дают орошение полей, теплый климат - плодородную почву. Однако, хозяйственная жизнь и быт в северном Двуречье строились иначе, чем в южном. Южное Двуречье, как писалось раньше, было плодородной страной, но урожай приносила только упорная работа населения. Постройка сложной сети водных сооружений, регулирующих наводнения и обеспечивающих запас воды на сухое время года. Тем не менее, племена там вели оседлый образ жизни и дали начало древним историческим культурам. Источником информации о зарождении и истории государств Египта и Двуречья (Месопотамии) являлись раскопки холмов и курганов, образованных в течение ряда веков на месте разрушенных городов, храмов и дворцов, а для истории Иуды и Израиля единственным источником была библия - собрание мифологических произведений .

ЕГИПЕТ. Египет представлял собой узкую долину реки Нила. С запада и востока возвышаются горы. Западные горы отделяют нильскую долину от пустыни Сахары, а за восточными горами тянется берег Красного моря. На юге нильская долина упирается в горы. На севере долина расширяется и кончается дельтой Нила. Горы были богаты строительным камнем - гранитом, базальтом, известняком. В восточных горах добывали золото. В долине Нила росли ценные породы деревьев - тамариск, сикомора стволы которых использовались в судоходстве. Нил впадает в Средиземное море - главную артерию стран древнего мира. Благодаря разливам Нила, почва Египта удобрялась и разлив обеспечивал обильное орошение. Покрытая мхом земля была плодородна. Культ Нил свято соблюдается и в наши дни. Основным занятием древнейшего населения долины было: земледелие, охота и рыболовство. Первым злаком, культивированным в Египте был ячмень, затем стали выращивать пшеницу и лён. В Египте сооружались ирригационные сооружения в виде бассейнов со стенами из сбитой земли и обмазанные глиной. Во время разлива вода попадала в бассейны, и люди распоряжались ею по мере надобности. Для поддержания этой сложной системы создавались центры управления области называемые «номами». Правили ими нормахи (они отдавали указания о подготовке полей к посеву следили за сбором урожая и в течении года раздавали урожай населению. Египтяне редко готовили пищу дома, было заведено относить зерно в столовые, там кормились несколько деревень. Специальный чиновник следил, чтобы не воровали повара и поровну разливали похлебку. Во главе Египетского войска стоял фараон. В завоеванной стране на трон восходил верный Египту человек. Главный целью войны была военная добыча - рабы, скот, редкая древесина, слоновая кость, золото, драгоценные камни .

ДРЕВНЯЯ ИНДИЯ. Особенностью является резкая изолированность Индии от других стран. С севера она отделена Гималаями, с запада - Аравийским морем, с востока - Бенгальским заливом, с юга - Индийским океаном. Поэтому развитие Индии шло медленно и очень обособленно. Но не смотря на это культура дравидов выше египетской, а в некоторых отношениях - и шумерской. Уже в IV тысячелетии они были знакомы с выделкой бронзы, в то время как шуммерийцы перешли к ней в III, а египтяне - во II тысячелетии. Уровень строительного дела у дравидов был также выше, чем у шуммеров. Дравиды строили дома из обожженных кирпичей, тогда как шуммеры - из кирпича-сырца. Древние племена индии умели делать лодки и весла и через Элам вели торговлю с Вавилонией. Наряду с торговлей развивалось ремесло. Производили бронзовое оружие, ювелирные изделия. Посуду изготовляли на гончарном круге, покрывали ее тонкой глазурью и расписывали несколькими цветами красок. Религия дравидов сохранила первобытные формы. Священным животным они считали быка. Господствующей формой религии был культ стихий. Считали они, пользуясь десятичной системой исчисления, как и египтяне. Деление общества превратилось в касты. Различались 4 касты: брахманы - жрецы Кшатрии - военные Вайшьи - крестьяне Шудра - слуги. Религия поддерживала разделения на касты. Индийцы знали алфавитное письмо из 51 буквы. В области математики получила свое развитие десятеричная система счисления - был изобретен нуль. Были обширны познания в медицине: особенно искусны были хирурги. Они могли вырезать опухоли, снимать бельмо с глаз, а в лингвистике индийцы превзошли все древневосточные народы: были составлены словари и другие труды по грамматике. В VI в. в Индии стала зарождаться новая религия - буддизм. Духовная культура в Индии переживает расцвет, зарождается философия, храмовая литература. Буддийские храмы, высеченные в скалах, поражают своими огромными размерами, округлыми линиями, геометрическими фигурами и изображениями на своде. Благодаря индийским торговцам, буддизм распространился в Корее, Японии, Тибете, Монголии и Китае .

ДРЕВНИЙ КИТАЙ. Китай своими колоссальными размерами напоминает Индию, а по площади равен Европе. Культура Китая развивалась в соответствии с природными условиями, например, Великая китайская равнина стала родиной Древнекитайской цивилизации. В 1893 г. в Китае уже встречается бронзовое оружие и утварь. Хозяйство этого периода: развитие охоты и скотоводства. К концу II тысячелетия до н.э. земледелие начинает играть одну из важных ролей в хозяйстве. Возделывали пшеницу, ячмень и рис. Так как в Китае культивировали тутовое дерево, он стал родиной шелководства и бумаги. Технический процесс обработки тутового шелкопряда сохранялся в тайне, за разглашение которой назначалась смертная казнь. Постепенно развивалось гончарное ремесло и торговля. Функцию денег выполняла драгоценная раковина - каури. В XVIII в. возникла письменность рисунчатого характера, в ней около 30000 знаков. Писали на бамбуковых палочках, расщепленных на части, так образовалась вертикальная строка, характерная для китайского письма. В заключении хочу выделить значение восточной культуры для стран Европы. Итак, восточные народы первые в истории создали мощные государства и роскошные храмы, книги и оросительные каналы. От шумеров нам достались знания о сотворении мира и принципы постройки ирригационных сооружений. Из Вавилона - деление года на 12 месяцев, часа - на минуты и секунды, круга - на 360 градусов, принципы обустройства библиотек. Египет научил мир мумифицировать трупы и подарил физиологию и анатомию. От хеттского языка произошел славянский, германский, романский. Финикийцы составили формулу стекла и первыми протянули ниточку торговых связей через Средиземное море. Они определили времена года. Из иудеи дошла к нам библия. Военное искусство Ассирии дало начало современным постройкам пантонов и кораблей на воздушных подушках. Труды великих философов Китая до сих пор изучают во всех учебных заведениях мира .

1.Влияние мировоззрения древних египтян на развитие научной мысли.

Больших успехов достигли древние египтяне и в научных познаниях. Разумеется, это были разрозненные сведения, слабо связанные между собой и еще не выделившиеся из религигиозно-мифологической картины мира. Тем не менее, многие из полученных древними египтянами результатов поражают. Развитию вычислительного дела способствовало строительство (точность строительных промеров и совершенная разметка краской углов наклонов глубины и уровней уступов на пирамидной кладке). Необходимость вычислять периоды разлития Нила создала египетскую астрономию. По сути дела, они создали один из первых календарей, основные принципы построения которого сохраняют свое значение до сего дня.

Год состоял из трех времен, каждое время из 4 месяцев, каждый месяц из 30 дней; сверх 360 дней в году имелось 5 добавочных, високосных лет не было, так что календарный год опережал природный, состоящий из 365 суток, каждые 4 года на 1 день. Грандиозное древних египтян было сделано в области физики - для уменьшения силы трения рабы лили масло под полозья тележек (строительство пирамид). В пору Древнего царства египтяне сделали открытие в области химии - изобретают цветные пасты, которыми покрывают крупный бисер или делают его из цветных смальт. Из этого бисера на протяжении всей истории Древнего Египта изготовляли много различных украшений. Периоду Среднего царства принадлежат первые математические и медицинские тексты (некоторые из них являются задачниками в современном понимании этого слова). Астрономы создают достаточно точные картины звездного неба (списки созвездий на саркофагах). Появляются догадки о том, что соответствующие созвездия находятся на небе и днем. Они невидимы днем, так как на небе находится Солнце. Физика - изобретены водяные часы (карманные, нашейные египетские часики, инструкции - «наставления» о пользовании солнечными часами). Медицина - лечебники с описанием кровообращения, лечения ран, пролома черепа и повреждения внутренних полостей носа. География - до нас дошли куски подробных чертежей карт горных промыслов пустыни. Возможно, современному человеку эти знания покажутся слишком примитивными, однако, не следует забывать, что это - ранний этап человеческой культуры. Далеко не случайно древние греки считали египтян мудрейшими из людей, ездили в Египет за мудростью, учились у египетских жрецов. Культура Древнего Египта во многом стала образцом для многих других цивилизаций, образцом, которому не только подражали, но и от которого отталкивались и который стремились преодолеть.

1.1 Математика

Особенно развита в Древнем Египте была математика - и это несмотря на громоздкую и неудобную числовую систему. Египтяне знали сложные задачи с образованием дробей, понятие неизвестного, наработки по вычислению поверхности полушария и объема пирамиды, в том числе и усеченной; они уже используют число «Пи»= 3,16. Вместе с тригонометрией объемных тел разрабатывается система правил золотого сечения. Для строительства храмов и гробниц, измерения земельных площадей и подсчета налогов требовалась, прежде всего, система исчисления; с этого началось развитие математики. Измерение круглых площадей и цилиндрических объемов потребовало исчисление квадратного корня. Изучая движение звезд и небесных тел, египтяне пришли к тому, что звездам необходимо дать имена и нанести их на карту неба. Эти наблюдения позволили создать календарь. Год египтяне разделили на 365 дней, что соответствовало времени между двумя разливами Нила. Таким образом, математические познания, порожденные практическими потребностями строительства, земледелия и хозяйства, были развиты у египтян довольно хорошо. Египетские цифры были изобретены в глубокой древности, видимо, одновременно с письменностью. Они довольно просты. Маленькие вертикальные черточки использовали для записи чисел от единицы до девяти. Знак, напоминающий скобу или подкову, применяли для обозначения десятки. Изображение закругленной веревки служило для записи понятия сотни. Стебель лотоса обозначал тысячу. Поднятый вверх человеческий палец соответствовал десяти тысячам. Изображение головастика было символом ста тысяч. Фигура сидящего на корточках божества с поднятыми руками обозначала один миллион. Таким образом, египтяне применяли десятичную систему исчисления, при которой десять знаков низшего ряда можно было заменить одним знаком последующей ступени. Мерой длины у египтян был «локоть», равный 52,3 см. Локоть, в свою очередь, состоял из семи «ладоней», а каждая ладонь делилась на четыре «пальца». Основной мерой площади считался «сечат», равный 100 кв. локтям. Основная мера веса «дебен» соответствовала примерно 91 г..

1.2 Медицина

Обширные медицинские познания египтяне получили из практики бальзамирования трупов, которая привела к знакомству с внутренним строением человеческого тела. В эпоху Древнего царства отдельные медицинские наблюдения, полученные эмпирическим путем, были подвергнуты отбору и классификации, на основе которых появились первые медицинские трактаты. До нас дошли десять основных медицинских папирусов, получивших свое название или по имени первых владельцев, или по наименованию городов, где они хранятся. Из них наибольшую ценность представляют два - большой медицинский папирус Эберса и хирургический папирус Эдвина Смита. Папирус Эберса был обнаружен в одной из фиванских гробниц в 1872 г. и датирован периодом правления фараона Аменхотепа I (XVI в. до н. э.). на этом папирусе записаны более сорока текстов по медицине. В нем содержится множество рецептов и предписаний для лечения различных болезней, даются советы, как спастись от укусов насекомых и животных; в разделе косметики содержатся указания о том, как избавиться от морщин, удалить родинки, усилить рост волос и т. п. Все без исключения медицинские рецепты сопровождаются соответствующими магическими заклинаниями и заговорами для каждого конкретного случая. В качестве лекарственных средств упоминаются различные растения (лук, чеснок, лотос, мак, финики, виноград), минеральные вещества (сурьма, сода, сера, глина, свинец, селитра), вещества органического происхождения (обработанные органы животных, кровь, молоко). Лекарства приготовлялись обычно в виде настоев на молоке, меде, пиве. Египетские медики лечили различные лихорадки, дизентерию, водянку, ревматизм, болезни сердца, печени, дыхательных путей, диабета, большинство желудочных заболеваний, язвы и т. д. В папирусе Эдвина Смита перечисляются различные травмы: головы, горла, ключиц, грудной клетки, позвоночника. Египетские хирурги отважились на довольно сложные операции. Как свидетельствуют находки в гробницах, они использовали хирургические инструменты, изготовленные из бронзы. Во всем античном мире лучшими врачами, и в частности хирургами, справедливо считались египтяне. Они знали травы и их лекарственные свойства, умели во многих случаях ставить точный диагноз, применяли морфий, пользовались опробованными на практике способами лечения. Недостаток знаний восполнялся магией и колдовством, которые тоже нередко оказывались полезными (по крайне мере, психологически). Некоторые средства и способы лечения, применявшиеся древнеегипетскими врачами, используются в современной медицине .

2.Технические изобретения и открытия древних египтян

2.1 Гончарные

Одним из древнейших производств в Египте было гончарное: глиняные горшки из грубой, плохо перемешенной глины дошли до нас от эпохи неолита (VI-V тысячелетия до н.э.). Изготовление керамической посуды началосьс размешивания ногами глины, политой водой, к которой иногда добавляли мелкорубленую солому - для уменьшения вязкости глины, скорейшего высыхания и предотвращения при этом чрезмерной усадки сосуда.

Египетская керамика в художественном отношении не может сравниться с греческой. Но для разных периодов можно выделить ведущие и в то же время наиболее изящные формы сосудов, особенно для додинастического периода. Для тасийской культуры характерны бокаловидные сосуды, расширяющиеся чашеобразно в верхней части, черного или коричнево-черного цвета с процарапанным орнаментом, залитым белой пастой, для бадарийской - керамика многообразных форм, покрытая коричневой или красной глазурью, с черными внутренними стенками и краем. Сосуды культуры Нагада I - темного цвета с белым орнаментом, Нагада II - светлые с красным орнаментом. Наряду с геометрическим белым орнаментом на сосудах Нагада I появляются изображение фигур животных и людей. Во времена Нагада II предпочитали спиралеобразный орнамент и изображения животных, людей и лодок. Во времена Нового царства горшечники научились расписывать кувшины и сосуды различными сценами, заимствованными иногда у резчиков по камню и дереву, но чаще порождаемые собственной фантазией, - встречаются геометрический и цветочный орнаменты, изображения виноградных лоз и деревьев, птиц, пожирающих рыбу, бегущих животных .

2.2 Стекло

Как самостоятельный материал стекло стали использовать со времени XVII династии. Особенно распространено оно было в последующую, XVIII династию. От времени Нового царства дошли стеклянные вазы, свидетельствующие о зарождении производства стеклянной мозаики. Состав стекла был близок современному (силикат натрия и кальция), но оно содержало мало кремнезема и извести, больше щелочи и окиси железа, благодаря чему могло плавиться при более низкой температуре, что облегчало изготовление стеклянных изделий. В отличие от современного оно большей частью совсем не пропускало света, иногда просвечивало, еще реже - было прозрачным.

В древнем Египте применяли так называемое "катанное" стекло. Его плавили в тиглях, и только после второй плавки оно приобретало достаточную чистоту .

2.3 Столярное

В грандиозном строительстве начиная с Древнего царства довольно широко использовали дерево.. Большое количество дерева расходовали на орудия труда земледельцев (сохи, мотыги, простые рычаги, коромысла, и различные приспособления, которые употребляли в сельском хозяйстве, - упряжки, клетки для птиц и мелких животных и т. п.). Из дерева строили часовни, двери, мебель, лари, саркофаги, статуи и мелкие поделки.

Столяры Древнего царства уже умели изготовлять тонкую фанеру, о чем свидетельствует деревянный ящик в алебастровом саркофаге III династии - он составлен из шести слоев фанеры разных пород дерева (каждый толщиной около 5 мм), скрепленных деревянными гвоздиками. На протяжении Среднего и Нового царств орудия и способы обработки дерева совершенствовались. Медные лезвия орудий постепенно заменялись бронзовыми, а в период Позднего царства — железными. Примитивная форма ручной пилы («лисий хвост») приняла более современный вид; кроме того, перестали вставлять клин для расширения распила. Развод пил в Новом царстве повсеместно вошел в обиход. Маленькие доски распиливали сидя не на полу, как в Древнем царстве, а на низеньком трехногом табурете, упираясь ногой в доску, чтобы придать ей устойчивость. Стволы обтесывали металлическим теслом, заменяющим рубанок, шлифовали плоским камнем мелкозернистого песчаника. Мелкие детали и ножки мебели вырезали долотом-стамеской. Впервые в это время мебель начинают фанеровать. Тонкую фанеру умели изготовлять уже во времена Древнего царства, но скрепляли ее деревянными гвоздиками, а с Нового царства фанеру, сделанную из лучших сортов дерева, стали наклеивать на менее дорогую древесину. Клей извлекали из костей, кож, сухожилий и хрящей животных путем кипячения, выпаривания полученного отвара и охлаждения в формах, где он застывал в твердую массу.

2.4 Металлургия

Несмотря на то, что медь, добываемая на Синае, была мягкой, поскольку имела незначительное количество примесей марганца и мышьяка, Древние кузнецы умели ее закаливать при помощи холодной ковки и получать достаточно твердый металл. Еще в додинастические времена медь для улучшения качества стали переплавлять.

2.ПИСЬМЕННОСТЬ И ЛИТЕРАТУРА

Литература Древнего Египта — литература, написанная на египетском языке с фараоновского периода Древнего Египта до конца римского господства. Вместе с шумерской литературой считается первой литературой мира.

Письмо в Древнем Египте и иероглифическое, и иератическое, впервые появилось в конце 4-го тысячелетия до н. э. в последней фазе додинастического Египта. К периоду Старого царства (XXVI—XXII века до н. э.) в литературное творчество входили погребальные тексты, послания и письма, религиозные гимны и стихи и памятные автобиографические тексты, рассказывающие о карьерах выдающихся вельмож. В двух текстах из жанра дидактической литературы ("Поучение Птаххотапа" и "Поучение, обращенное к Кагемни" сказано, что они были созданы при царях Старого царства, однако это утверждение подвергнуто сомнению, поскольку язык дошедших рукописей не является столь древним. Однако, возможно, что грамотно было менее одного процента всего населения. Таким образом, литературное творчество принадлежало классу писцов, работавших при архивах, канцеляриях и при дворе правящего фараона. Писцами могли быть названы вельможы самого высокого ранга.

Среднеегипетский язык, устная речь Среднего царства, стал классическим языком во время Нового царства (XVI—XI века до н. э.), когда просторечный новоегипетский язык впервые появился в письменной форме. Писцы Нового царства канонизировали и переписали много литературных текстов на среднеегипетском, который остался языком, употребляемым для устного чтения святых иероглифических текстов. Некоторые жанры литературы Среднего царства, как, например, «учения» и рассказы, остались популярны в Новом царстве, хотя жанр пророческих текстов возродился только в Эллинистическом Египте (IV—III века до н. э.). Среди рассказов были популярны «Рассказ о Синухе» и «Красноречивый поселянин», из назидательных текстов — «Наказы Аменемхата» и «Верноподданное учение». В период Нового царства процветал новый жанр литературы, памятные граффити на стенах храмов и гробов, но с шаблонными фразами как в других жанрах. Указание авторства оставалось важным только в некоторых жанрах, тогда как тексты «учений» писались под псевдонимами и ложно приписывались известным историческим деятелям.

Древнеегипетские тексты выполнены на свитках и пакетах из папируса, известняковых и керамических остраконах, деревянных писчих досках, монументальных каменных зданиях и даже гробах. Сохранившиеся до наших дней тексты представляют лишь малую часть литературного материала Древнего Египта. Влажный климат поймы Нила не способствовал сохранению самих папирусов и надписей на них. С другой стороны, в поселениях на пустынных окраинах египетской цивилизации археологи открыли через тысячи лет множество тайных складов литературы.

2.1 Иероглифика, иератика и демотика

К периоду Раннего царства в конце 4-го тысячелетия до н. э. иероглифика и курсивная форма иератика стали хорошо устоявшимися видами письменности. Иероглифическое письмо состоит из небольших рисунков предметов. Например, иероглиф, изображающий задвижку («сэ»), обозначает звук «с». При сочетании этого иероглифа с другими, он представляет собой абстрактные понятия, такие, как горе, счастье, красота и зло.

Египтяне называли иероглифы «словами бога» и использовали их для высоких целей. Каждое иероглифическое слово и означало особый предмет, и воплощало в себе сущность этого предмета, признавая его созданным при вмешательстве божьей силы и принадлежащим к большему космосу

Иератика является упрощённой, скорописной формой египетских иероглифов. Как и иероглифы, иератика использовалась в священных и религиозных текстах. К первому тысячелетию до н. э. каллиграфическая иератика стала шрифтом, преимущественно использовавшимся в погребальных папирусах и храмовых свитках. Тогда как написание иероглифов требовало предельной точности, скорописная иератика выполнялась гораздо быстрее и поэтому использовалась для ведения учёта писцами. В первую очередь она служила скорописным шрифтом для не фараоновских, не монументальных и менее официальных писаний: писем, юридических документов, стихов, налоговых отчётов, медицинских текстов, математических трактатов и учебных текстов. Существовало два стиля иератики: один был более каллиграфический и обычно использовался для правительственных отчётов и литературных рукописей, другой — для неофициальных счетов и писем.

К середине 1-го тысячелетия до н. э. иероглифика и иератика ещё использовались для королевских, монументальных, религиозных и погребальных писаний, в то время как новый, ещё более скорописный шрифт использовался для неофициального, повседневного письма — демотика. Окончательным шрифтом, принятым древними египтянами, было коптское письмо — адаптированный вариант греческого алфавита. Коптский алфавит стал стандартом в IV веке н. э., когда христианство стало государственной религией всей Римской империи; иероглифы были отброшены как идолопоклоннические изображения языческой традиции, непригодные для написания библейского канона .

2.2 Инструменты и материалы написания

Главным инструментом для письма в древнем Египте была тростниковая ручка. Кроме камня, керамических остраконов и папируса писали на дереве, слоновой кости и гипсе.

К римскому периоду традиционная египетская тростниковая ручка была заменена распространённой в греко-римском мире — более короткой, толстой тростниковой ручкой с расщеплённым кончиком. Кроме того, от оригинальных египетских пигментов отказались в пользу греческих чернил на основе свинца. Принятие греко-римских письменных принадлежностей оказало влияние на египетский почерк, так как иератические знаки стали более широко расположенными, с более круглыми росчерками и с большей угловой точностью .

ЗАКЛЮЧЕНИЕ

Египетская культура была наиболее яркой на фоне культур других цивилизаций. Во время процветания египетской династии египтяне изобрели много полезных вещей, например, как определять поверхность куба, решать уравнение с одним неизвестным и т.п.

Египетская культура внесла огромный вклад в культуру всемирную. После исчезновения египетской цивилизации осталось много полезных сведений и информации, которыми люди пользуются до сих пор.

Самые древние в мире и массивные монументы из камня - египетские пирамиды - были созданы, чтобы внушать людям благоговейный ужас и поражать их воображение. Поразительно, с каким интересом люди всегда воспринимали самые невероятные теории, возникавшие на их счет.

Культура Древнего Египта во многом стала образцом для многих других цивилизаций, образцом, которому не только подражали, но и от которого отталкивались и который стремились преодолеть.

3.ТЕСТ

Укажите, где впервые были открыты и изобретены:

  1. Водяные и солнечные часыб. Древний Китай
  2. Теорема Пифагора

СПИСОК ЛИТЕРАТУРЫ

1.Вейс Г. «История культуры народов мира. Древний Египет. Зарождение мировой цивилизации»/Г. Вейс - М,: 2005.-144с.

2. «История Древнего Востока»/А. А. Вигасин, М. А. Дандамаев, М. В. Крюков.; под ред. В. И. Кузищина. - 3-е изд., - М.: 2003. - 462с.

3.Коростовцев М. А. «Религия Древнего Египта»/М. А. Коростовцев - СПб, 2000. - 464с.

4. Перепелкин Ю. Я. «История Древнего Египта»/Ю. Я. Перепелкин - СПб, 2001. - 560с.

5. Солкин В. В. «Древний Египет. Энциклопедия»/В. В. Солкин - М.:2005. - 480с.

В древнеегипетской цивилизации возник сложный аппа-рат государственной власти, тесно сращенный с сакральным аппаратом жрецов. Носителями знаний были жрецы, в зави-симости от уровня посвящения обладавшие той или иной суммой знаний. Знания существовали в религиозно-мисти-ческой форме и поэтому были доступны только жрецам, которые могут читать священные книги и как носители практи-ческих знаний иметь власть над людьми.

Как правило, люди селились в долинах рек, где близко вода, но здесь и опасность - разливы рек. Поэтому возника-ет необходимость систематического наблюдения за явления-ми природы, что способствовало открытию определенных связей между ними и привело к созданию календаря, откры-тию циклически повторяющихся затмений Солнца и т. д. Жрецы накапливают знания в области математики, химии, медицины, фармакологии, психологии, они хорошо владеют гипнозом. Искусное мумифицирование свидетельствует о том, что древние египтяне имели определенные достижения в области медицины, химии, хирургии, физики, ими была разработана ирридодиагностика.

Так как любая хозяйственная деятельность была связана с вычислениями, то был накоплен большой массив знаний в области математики: вычисление площадей, подсчет произве-денного продукта, расчет выплат, налогов, использовались пропорции, так как распределение благ велось пропорцио-нально социальным и профессиональным рангам. Для прак-тического употребления создавалось множество таблиц с го-товыми решениями. Древние египтяне занимались только теми математическими операциями, которые были необходи-мы для их непосредственных хозяйственных нужд, но никог-да они не занимались созданием теорий - одним из важней-ших признаков научного знания.

Шумеры изобрели гончарный круг, колесо, бронзу, цветное стекло, установили, что год равен 365 дням, 6 часам, 15 мину-там, 41 секунде (для справки: современное значение - 365 дней 5 часов, 48 минут, 46 секунд), ими была создана оригинальная концепция Me, содержащая мудрость шумерской цивилиза-ции, большая часть текстов которой не расшифрована.

Специфика освоения мира шумерской и другими цивилиза-циями Древней Месопотамии обусловлена способом мышления, в корне отличающимся от европейского: нет рационального

исследования мира, теоретического решения проблем, а чаще всего для объяснения явлений используются аналогии из жизни людей.

Предпосылкой возникновения научных знаний многие исследователи истории науки считают миф. В нем, как прави-ло, происходит отождествление различных предметов, явле-ний, событий (Солнце = золото, вода = молоко = кровь). Для отождествления необходимо было овладеть операцией выде-ления «существенных» признаков, а также научиться сопо-ставлять различные предметы, явления по выделенным при-знакам, что в дальнейшем сыграло значительную роль в ста-новлении знаний.

Формирование отдельных научных знаний и методов свя-зывают с тем культурным переворотом, который произошел в Древней Греции. Что же послужило причиной культурного переворота?

Рассматривая переход от традиционного общества к не-традиционному, в котором возможно создание науки, разви-тие философии, искусства, нужно отметит что для традиционного общества характерна лично-именная и про-фессионально-именная трансляция культуры. Общество та-кого типа может развиваться либо через совершенствование приемов и орудий труда, повышение качества продукта, либо за счет увеличения профессий путем их отпочкования. В этом случае объем и качество знаний, передаваемых из по-коления в поколение, увеличивается благодаря специализа-ции. Но при таком развитии наука появиться не могла, ей не на что было бы опереться, уж ли не на знания и навыки, пе-редаваемые от отца сыну? Кроме того, в таком обществе не-возможно совмещение разнородных профессий без умень-шения качества продукции. Что же тогда послужило причи-ной разрушения традиционного общества, положило конец развитию через специализацию?. Такой причиной стал пират-ский корабль. Для людей, живущих на берегу, всегда существует угроза с моря, поэтому гончар, плотник обязательно должен быть еще и воином. Но и пираты на корабле - это тоже бывшие гончары и плотники. Следовательно, возника-ет настоятельная необходимость совмещения профессий. А защищаться и нападать можно только сообща, значит, необ-ходима интеграция, которая гибельна для профессионально дифференцированного традиционного общества. Это означа-ет и возрастание роли слова, подчиненность ему (одни реша-ют, другие исполняют), что впоследствии приводит к осозна-нию роли закона (номоса) в жизни общества, равенства всех перед ним. Закон выступает и как знание для всех. Система-тизация законов, устранение в них противоречий - это уже рациональная деятельность, опирающаяся на логику.

В некоторых концепциях упор делается на особеннос-ти общественной психологии древних греков, обусловлен-ные социальными, политическими, природными и другими факторами.

Около V в. до н. э. усиливаются демократические тенден-ции в жизни греческого общества, приводящие к критике ари-стократической системы ценностей. В это время в социуме стали стимулироваться творческие задатки индивидуумов, даже если сначала плоды их деятельности были практически бесполезны. Стимулируются публичные споры по проблемам, не имеющим никакого прямого отношения к обыденным ин-тересам спорящих, что способствовало развитию критичнос-ти, без которой немыслимо научное познание. В отличие от Востока, где бурно развивалась техника счета для практичес-ких, хозяйственных нужд, в Греции начала формироваться «наука доказывающая».

В истории науки, существует два метода форми-рования знаний, соответствующих зарождению науки (преднауки) и науки в собственном смысле слова. Зарождающаяся наука изучает, как правило, те вещи и способы их изменений, с которыми человек многократно сталкивается в своей прак-тической деятельности и обыденном опыте. Он пытается строить модели таких изменений для предвидения результатов своих действий. Деятельность мышления, формирующаяся на основе практики, представляла идеализированную схему практических действий. Так, египетские таблицы сложения представляют типичную схему практических преобразований, осуществляемых над предметными совокупностями. Такая же связь с практикой обнаруживается в первых знаниях, которые относятся к геометрии, основанной на практике измерения земельных участков.

Способ построения знаний путем абстрагирования и сис-тематизации предметных отношений наличной практики обеспечивал предсказание ее результатов в границах уже сло-жившихся способов практического освоения мира. Если на этапе преднауки как первичные идеальные объекты, так и их отношения (соответственно смыслы основных терминов язы-ка и правила оперирования с ними) выводились непосред-ственно из практики и лишь затем внутри созданной системы знания (языка) формировались новые идеальные объекты, то теперь познание делает следующий шаг. Оно начинает стро-ить фундамент новой системы знания как бы «сверху» по от-ношению к реальной практике и лишь после этого, путем ряда опосредствований, проверяет созданные из идеальных объек-тов конструкции, сопоставляя их с предметными отношени-ями практики.

При таком методе исходные идеальные объекты черпают-ся уже не из практики, а заимствуются из ранее сложивших-ся систем знания (языка) и применяются в качестве строи-тельного материала для формирования новых знаний. Эти объекты погружаются в особую «сеть отношений», структуру, которая заимствуется из другой области знания, где она пред-варительно обосновывается в качестве схематизированного образа предметных структур действительности. Соединение исходных идеальных объектов с новой «сеткой отношений» способно породить новую систему знаний, в рамках которой могут найти отображение существенные черты ранее не изученных сторон действительности. Прямое или косвенное обо-снование данной системы практикой превращает ее в досто-верное знание.

В развитой науке такой способ исследования встречается буквально на каждом шагу. Так, например, по мере эволюции математики числа начинают рассматриваться не как прообраз предметных совокупностей, которыми оперируют в практике, а как относительно самостоятельные математические объек-ты, свойства которых подлежат систематическому изучению. С этого момента начинается собственно математическое ис-следование, в ходе которого из ранее изученных натуральных чисел строятся новые идеальные объекты. Применяя, напри-мер, операцию вычитания к любым парам положительных чисел, можно было получить отрицательные числа при вычи-тании из меньшего числа большего.

Открыв для себя класс отрицательных чисел, математика делает следующий шаг. Она распространяет на них все те опе-рации, которые были приняты для положительных чисел, и таким путем создает новое знание, характеризующее ранее неисследованные структуры действительности. Описанный способ построения знаний распространяется не только в математике, но и в естественных науках (метод выдвижения гипотез с их последующим обоснованием опытом).

С этого момента заканчивается преднаука. Поскольку на-учное познание начинает ориентироваться на поиск предмет-ных структур, которые не могут быть выявлены в обыденной практике и производственной деятельности, оно уже не может развиваться, опираясь только на эти формы практики. Возни-кает потребность в особой форме практики, обслуживающей развивающееся естествознание, - научном эксперименте.

Древние греки пытаются описать и объяснить возникнове-ние, развитие и строение мира в целом и вещей его составля-ющих. Эти представления получили название натурфилософ-ских. Натурфилософией (философией природы) называют преимущественно философски-умозрительное истолкование природы, рассматриваемой в целостности, и опирающееся на некоторые естественнонаучные понятия. Некоторые из этих идей востребованы и сегодняшним естествознанием.

Для создания моделей Космоса нужен был достаточно развитый математический аппарат. Важнейшей вехой на пути создания математики как теоретической науки были работы пифагорейской школы. Ею была создана картина мира, которая хотя и включала мифологические элементы, но по основным своим компонентам была уже философско-рациональным образом мироздания. В основе этой кар-тины лежал принцип: началом всего является число. Пифа-горейцы считали числовые отношения ключом к понима-нию мироустройства. И это создавало особые предпосылки для возникновения теоретического уровня математики. За-дачей становилось изучение чисел и их отношений не про-сто как моделей тех или иных практических ситуаций, а са-мих по себе, безотносительно к практическому примене-нию. Ведь познание свойств и отношений чисел теперь мыслилось как познание начал и гармонии Космоса. Чис-ла представали как особые объекты, которые нужно пости-гать разумом, изучать их свойства и связи, а затем уже, ис-ходя из знаний об этих свойствах и связях, объяснять на-блюдаемые явления.

Именно эта установка характеризует переход от чисто эм-пирического познания количественных отношений (привя-занного к наличному опыту) к теоретическому исследованию, которое, оперируя абстракциями и создавая на основе ранее полученных абстракций новые, осуществляет прорыв к но-вым формам опыта, открывая неизвестные ранее вещи, их свойства и отношения. В пифагорейской математике наряду с доказательством ряда теорем, наиболее известной из кото-рых является знаменитая теорема Пифагора, были осуществ-лены важные шаги к соединению теоретического исследова-ния свойств геометрических фигур со свойствами чисел. Так, число «10», которое рассматривалось как совершенное число, соотносилось с треугольником".

К началу V в. до н. э. Гиппократом Хиосским было представлено первое в истории человечества изложение основ геометрии, базирующейся на методе математической индукции. Достаточно полно была изучена окружность, так как для гре-бков круг являлся идеальной фигурой и необходимым элементом их умозрительных построений. Немногим позже стала развиваться геометрия объемных тел - стереометрия. Теэтетом была создана теория правильных многогранников, он указал способы их построения, выразил их ребра через ради-ус описанной сферы и доказал, что никаких других правиль-ных выпуклых многогранников существовать не может. Особенности греческого мышления, которое было рациональным, теоретическим, что в данном случае равносильно Созерцательному (греческий- рассматриваю, созерцаю), наложили отпечаток на формирование знаний в этот период. Основная деятельность ученого состояла в созерцании и осмыслении созерцаемого. А что же созерцать, как не небесный свод, по которому движутся небесные светила? Без сомнения, наблюдения над небом производились и в чисто практических целях в интересах навигации, сельского хозяйства, для уточнения календаря. Но не это было для греков лавным. Надо было не столько фиксировать видимые перемещения небесных светил по небесному своду и предсказы-вать их сочетания, а разобраться в смысле наблюдаемых явлений, включив их в общую схему мироздания. Причем в отличие от Древнего Востока, который накопил огромный материал подобных наблюдений и использовал их в целях предсказаний, астрология в Древней Греции не находила себе применения.

Первая геометрическая модель Космоса была разработа-на Эвдоксом (V в. до н. э.) и получила название модели го-моцентрических сфер. Затем она была усовершенствована Калиппом. Последним этапом в создании гомоцентрических моделей была модель, предложенная Аристотелем. В основе всех этих моделей лежит представление о том, что Космос со-стоит из ряда сфер или оболочек, обладающих общим цент-ром, совпадающим с центром Земли. Сверху Космос ограни-чен сферой неподвижных звезд, которые совершают оборот вокруг мировой оси в течение суток. Все небесные тела (Луна, Солнце и пять в то время известных планет: Венера, Марс, Меркурий, Юпитер, Сатурн) описываются системой взаимо-связанных сфер, каждая из которых вращается равномерно вокруг своей оси, но направление оси и скорость движения для различных сфер могут быть различными. Небесное тело прикреплено к экватору внутренней сферы, ось которой же-стко связана с двумя точками следующей по порядку сферой и т. д. Таким образом, все сферы находятся в непрерывном движении. Во всех гомоцентрических моделях расстояние от любой планеты до центра Земли всегда остается одинаковым, поэтому невозможно объяснить видимое колебание яркости таких планет, как Марс, Венера, следовательно, вполне резон-но, что могли появиться иные модели Космоса.

И к таким моделям можно отнести гелиоцентрические модели Гераклида Понтийского (V в. до н. э.) и Аристарха Самосского (в. до н. э.), но они не имели в то время ши-рокого распространения и приверженцев, потому что ге-лиоцентризм расходился с традиционными воззрениями на центральное положение Земли как центра мира и гипотеза о ее движении встречала активное сопротивление со сторо-ны астрономов.

Среди значимых натурфилософских идей античности представляют интерес атомистика и элементаризм. Как счи-тал Аристотель, атомистика возникла в процессе решения космогонической проблемы, поставленной Парменидом Элейским (около 540-450 гг. до н. э.). Если проинтерпретиро-вать мысль Парменида, то проблема будет звучать так: как найти единое, неизменное и неуничтожающееся в многообразии изменчивого, возникающего и уничтожающегося? В ан-тичности известны два пути решения этой проблемы.

Согласно первому, все сущее построено из двух начал: начала неуничтожимого, неизменного, вещественного и оформленного и начала разрушения, изменчивости, неве-щественности и бесформенного. Первое - атом («нерассе-каемое»), второе - пустота, ничем не наполненная протя-женность. Такое решение было предложено Левкиппом (V в. до н. э.) и Демокритом (около 460-370 гг. до н. э.). Бытие для них не едино, а представляет собой бесконечные по числу невидимые вследствие малости объемов частицы, которые движутся в пустоте; когда они соединяются, то это приводит к возникновению вещей, а когда разъединяются, то - к их гибели.

Второй путь решения проблемы Парменида связывают с Эмпедоклом (ок. 490-430 гг. до н. э.). По его мнению, Космос образован четырьмя элементами-стихиями: огнем, воздухом, водой, землей и двумя силами: любовью и враждой. Элемен-ты не подвержены качественным изменениям, они вечны и непреходящи, однородны, способны вступать друг с другом в различные комбинации в разных пропорциях. Все вещи со-стоят из элементов.

Платон (427-347 гг. до н. э.) объединил учение об элемен-тах и атомистическую концепцию строения вещества. В «Тимее» философ утверждает, что четыре элемента - огонь, воз-дух, вода и земля - не являются простейшими составными частями вещей. Он предлагает их назвать началами и прини-мать за стихии (греческий т. е. «буквы»). Различия между эле-ментами определяются различиями между мельчайшими ча-стицами, из которых они состоят. Частицы имеют сложную внутреннюю структуру, могут разрушаться, переходить друг в друга, обладают разными формами и величинами. Платон, а это вытекает из структурно-геометрического склада его мыш-ления, приписывает частицам, из которых состоят элементы, формы четырех правильных многогранников - куба, тетраэдра, октаэдра и икосаэдра. Им соответствуют земля, огонь, воздух, вода.

Так как некоторые элементы могут переходить друг в дру-га, то и преобразования одних многогранников в другие мо-гут происходить за счет перестройки их внутренних структур. Для этого необходимо найти в этих фигурах общее. Таким об-щим для тетраэдра, октаэдра и икосаэдра является грань этих фигур, представляющая из себя правильный (равносторон-ний) треугольник.

Предложенные американ-ским физиком К. Гелл-Манном гипотетические простейшие структурные единицы материи - кварки - имеют некоторые черты, напоминающие платоновские элементарные треуголь-ники. И те и другие не существуют отдельно, самостоятельно. Как и свойства треугольников, свойства кварков определяют-ся числом 3: существует всего три рода кварков, электричес-кий заряд кварка равен одной трети заряда электрона и т. д. Изложенная в «Тимее» атомистическая концепция Платона, «представляет собой поразитель-ное, уникальное и в каких-то отношениях провидческое явле-ние в истории европейского естествознания».

Аристотель (384-322 гг. до н. э.) создал всеобъемлющую систему знаний о мире, наиболее адекватную сознанию сво-их современников. В эту систему вошли знания из области физики, этики, политики, логики, ботаники, зоологии, фило-софии. Вот названия только некоторых из них: «Физика», «О происхождении и уничтожении», «О небе», «Механика», «О душе», «История животных» и др. Согласно Аристотелю, ис-тинным бытием обладает не идея, не число (как, например, у Платона), а конкретная единичная вещь, представляющая сочетание материи и формы. Материя - это то, из чего воз-никает вещь, ее материал. Но чтобы стать вещью, материя должна принять форму. Абсолютно бесформенна только первичная материя, в иерархии вещей лежащая на самом нижнем уровне. Над ней стоят четыре элемента, четыре стихии. Сти-хии - это первичная материя, получившая форму под дей-ствием той или иной пары первичных сил - горячего, сухо-го, холодного, влажного. Сочетание сухого и горячего дает огонь, сухого и холодного - землю, горячего и влажного - воздух, холодного и влажного - воду. Стихии могут перехо-дить друг в друга, вступать во всевозможные соединения, об-разуя разнообразные вещества.

Чтобы объяснить процессы движения, изменения, разви-тия, которые происходят в мире, Аристотель вводит четыре вида причин: материальные, формальные, действующие и целевые. Рассмотрим их на его примере с бронзовой статуей. Материальная причина - бронза, действующая - деятель-ность ваятеля, формальная - форма, в которую облекли бронзу, целевая - то, ради чего ваялась статуя.

Для Аристотеля не существует движения помимо вещи. На основании этого он выводит четыре вида движения: в отношении сущности - возникновение и уничтожение; в отношении количества - рост и уменьшение; в отношении качества - качественные изменения; в отношении места - перемеще-ние. Виды движения не сводимы друг к другу и друг из друга не выводимы. Но между ними существует некоторая иерар-хия, где первое движение - перемещение.

Согласно Аристотелю, Космос ограничен, имеет форму сферы, за пределами которой нет ничего; Космос вечен и не-подвижен, он не сотворен никем и не возник в ходе естествен-ного космического процесса; заполнен материальными телами, которые в «подлунной» области образованы из четырех элементов - воды, воздуха, огня и земли, в этой области тела возникают, преобразовываются, гибнут; в «надлунной» обла-сти нет возникновения и гибели, в ней находятся небесные тела - звезды, планеты, Земля, Луна, которые совершают свои круговые движения, и пятый элемент - эфир, «первое тело», ни с чем не смешиваемое, вечное, не переходящее в другие элементы. В центре Космоса находится шарообразная Земля, неподвижная, не вращающаяся вокруг своей оси. Ари-стотель впервые в истории человеческого знания попытался определить размеры Земли, вычисленный им диаметр земного шара примерно в два раза превысил истинный. Основанная философом перипатетическая школа дала античному миру до-стойных продолжателей его учений, которые внесли свой вклад в копилку знаний.

Эпоху эллинизма (V в. до н. э. - в. н. э.) считают наибо-лее блестящим периодом в истории становления научного знания. В это время хотя и происходило взаимодействие культур греческой и восточной на завоеванных землях, но преобладающее значение имела все-таки греческая культура. Основной чертой эллинистической культуры стал индивиду-ализм, вызванный неустойчивостью социально-политичес-кой ситуации, невозможностью для человека влиять на судь-бу полиса, усилившейся миграцией населения, возросшей ролью царя и бюрократии. Это отразилось как на основных философских системах эллинизма - стоицизме, скептициз-ме, эпикуреизме, неоплатонизме, - так и на некоторых на-турфилософских идеях. Так, в физике стоиков Зенона Катионского (336-264 гг. до н. э.), Клеанфа из Ассоса (331-232 гг. до н. э.), Хрисиппа из Сол (281-205 гг. до н. э.) большое значение придавалось законам, по которым существует При-рода, т. е. мировому порядку, которому, осознав его, долж-ны с радостью подчиняться стоики.

В физике стоиков использовались аристотелевские пред-ставления о первоэлементах, в которые ими вносились новые идеи: соединение огня и воздуха образует субстанцию, назван-ную «пневмой» (от греч.- «теплое дыхание»), которой припи-сывали функции мировой души. Она сообщает индивидуаль-ность вещи, обеспечивая ее единство и целостность, выражает логос вещи, т. е. закон ее существования и развития. Пневма является активным мировым агентом в отличие от физического тела, которое - пассивный участник процессов.

Согласно стоикам, мир представляется единым и взаимо-связанным потоком событий, где все имеет причину и след-ствие. И эти всеобщие и необходимые связи они называли роком или судьбой. Наряду с причинной обусловленностью явлений существует их определенная направленность к благой, прекрасной и разумной цели. Следовательно, кроме судьбы, стоики признают и благотворное провидение, что свидетельствует о тесной связи стоической физики и этики.

Так же тесно связаны физика и этика у Эпикура (342-270 гг. до н. э.), который считал, что все вещи потенциально делимы до бесконечности, но реально такое деление превращало бы вещь в ничто, поэтому надо мысленно где-то остановиться. Атом Эпикура - это мысленная конструкция, результат оста-новки деления вещи на некотором пределе.

Атомы Эпикура наделены тяжестью и поэтому движутся сверху вниз, но при этом могут «спонтанно отклоняться» от вертикального перемещения. В поэме Лукреция Кара «О при-роде вещей» это отклонение получило название clinamen. От-клонившиеся атомы описывают разнообразные кривые, спле-таются, ударяются друг о друга, в результате чего образуется вещный мир.

В эпоху эллинизма наибольшие успехи были зафиксирова-ны в области математических знаний. Так, Евклиду (конец V - начало в. до н. э.) принадлежит выдающаяся работа античности «Stoicheia» (т. е. «Элементы», что в современной литературе получило название «Начала»). Этот 15-томный труд явился результатом систематизации имевшихся в то вре-мя знаний в области математики, часть из которых, по утвер-ждению исследователей, принадлежит предшественникам Евклида. Успехами в разработке методов вычисления площа-дей поверхностей и объемов геометрических тел отмечена жизнь Архимеда (ок. 287-212 гг. до н. э.). Но в большей сте-пени он известен как гениальный механик и инженер.

II-I вв. до н. э. характеризуются упадком эллинистических государств как под воздействием междоусобных войн, так ипод ударами римских легионеров, теряют свое значение куль-турные центры, приходят в упадок библиотеки, научная жизнь замирает. Это не могло не отразиться на книжно-компиляторском характере римской учености. Рим не дал миру ни одного мыслителя, который по своему уровню мог быть приближен к Платону, Аристотелю, Архимеду. Все это ком-пенсировалось созданием компилятивных работ, носивших характер популярных энциклопедий.

Большой славой пользовалась девятитомная энциклопедия Марка Терренция Варрона (116-27 гг. до н. э.), содержавшая знания из области грамматики, логики, риторики, геометрии, арифметики, астрономии, теории музыки, медицины и архи-тектуры. Веком позже шеститомный компендиум, посвящен-ный сельскому хозяйству, военному делу, медицине, ораторско-му искусству, философии и праву, составляет Авл Корнелий Цельс. Наиболее известное сочинение этой поры - поэма Тита Лукреция Кара (ок. 99-95 гг. - ок. 55 г. до н. э.) «О природе ве-щей», в которой дано наиболее полное и систематическое изло-жение эпикурейской философии. Энциклопедическими работа-ми были труды Гая Плиния Секунда Старшего (23-79 гг. н. э.), Луция Аннея Сенеки (4 г. до н. э. - 65 г н. э.).

Кроме этих компиляций, были созданы работы больших знатоков своего дела: сочинения Витрувия «Об архитектуре», Секста Юлия Фронтина «О римских водопроводах», Луция Юния Модерета Колемеллы «О сельском хозяйстве» (в. н. э.). Ко П в. н. э. относится деятельность величайшего врача, фи-зиолога и анатома Клавдия Галена (129-199 гг.) и астронома Клавдия Птолемея (ум. ок. 170 г. до н. э.), система которого объясняла движение небесных тел с позиций геоцентричес-кого принципа и поэтому в течение столетий считалась наи-высшей точкой развития теоретической астрономии.

Знания, которые формируются в эпоху Средних веков в Европе, вписаны в систему средневекового миросозерцания, для которого характерно стремление к всеохватывающему знанию, что вытекает из представлений, заимствованных из античности: подлинное знание - это знание всеобщее, апо-диктическое (доказательное). Но обладать им может только творец, только ему доступно знать, и это знание только уни-версальное. В этой парадигме нет места знанию неточному, частному, относительному, неисчерпывающему.

Так как все на земле сотворено, то существование любой вещи определено свыше, следовательно, она не может быть несимволической. Вспомним новозаветное: «Вначале было Слово, и Слово было у Бога, и Слово было Бог». Слово вы-ступает орудием творения, а переданное человеку, оно вы-ступает универсальным орудием постижения мира. Поня-тия отождествляются с их объективными аналогами, что выступает условием возможности знания. Если человек овладевает понятиями, значит, он получает исчерпывающее знание о действительности, которая производна от поня-тий. Познавательная деятельность сводится к исследова-нию последних, а наиболее репрезентативными являются тексты Святого писания.

Все «вещи видимые» воспроизводят, но не в равной степе-ни «вещи невидимые», т. е. являются их символами. И в за-висимости от приближенности или отдаленности от Бога между символами существует определенная иерархия. Телеологизм выражается в том, что все явления действительности существуют по промыслу Бога и для предуготовленных им ролей (земля и вода служат растениям, которые в свою оче-редь служат скоту).

Как же, исходя из таких установок, может осуществляться познание? Только под контролем церкви. Формируется жест-кая цензура, все противоречащее религии подлежит запрету. Так, в 1131 г. был наложен запрет на изучение медицинской и юридической литературы. Средневековье отказалось от мно-гих провидческих идей античности, не вписывающихся в ре-лигиозные представления. Так как познавательная деятель-ность носит теологически-текстовый характер, то исследуются и анализируются не вещи и явления, а понятия. Поэтому уни-версальным методом становится дедукция (царствует дедуктив-ная логика Аристотеля). В мире, сотворенным Богом и по его планам, нет места объективным законам, без которых не могло бы формироваться естествознание. Но в это время существуют уже области знаний, которые подготавливали возможность рож-дения науки. К ним относят алхимию, астрологию, натуральную магию и др. Многие исследователи расценивают существование этих дисциплин как промежуточное звено между натурфилосо-фией и техническим ремеслом, так как они представляли сплав умозрительности и грубого наивного эмпиризма.

Средневековая западная культура - специфический фено-мен. С одной стороны, продолжение традиций античности, свидетельство тому - существование таких мыслительных комплексов, как созерцательность, склонность к абстрактно-му умозрительному теоретизированию, принципиальный отказ от опытного познания, признание превосходства универсаль-ного над уникальным. С другой стороны, разрыв с античными традициями: алхимия, астрология, имеющие «эксперимен-тальный» характер.

А на Востоке в средние века наметился прогресс в облас-ти математических, физических, астрономических, медицин-ских знаний. В X в. была переведена на арабский язык кни-га «Великая математическая система астрономии» Птолемея под названием «Аль-Магисте» (великое), которая потом вер-нулась в Европу как «Альмагест». Переводы и комментарии «Альмагеста» служили образцом для составления таблиц и правил расчета положения небесных светил. Также были переведены и «Начала» Евклида, и сочинения Аристотеля, труды Архимеда, которые способствовали развитию матема-тики, астрономии, физики. Греческое влияние отразилось на стиле сочинений арабских авторов, которые характеризуют си-стематичность изложения материала, полнота, строгость фор-мулировок и доказательств, теоретичность. Вместе с тем в этих трудах присутствует характерное для восточной традиции обилие примеров и задач чисто практического содержания. В таких областях, как арифметика, алгебра, приближенные вычисле-ния, был достигнут уровень, который значительно превзошел уровень, достигнутый александрийскими учеными.

Становление нового стиля мышления ученого в мировоззренческом плане связано с принципиально иным пониманием отношения мира и ученого, идеального и реального мира, «мира земного» и «мира небесного».

Наиболее яркое и глубокое отражение оно нашло в учениях Фараби и его последователей ал-Хорезми, Фергани, Беруни, Улугбека и многих других.

Хайруллаев М.М. утверждает, что «Фараби был одним из мыслителей, благодаря которым в период средневековья народы Средней Азии внесли огромный вклад в формирование и развитие арабоязычной философии и социологии, в развитие всей мировой общественно-философской мысли». см. Хайруллаев М.М. Мировоззрение Фараби и его вклад в историю философии. - Т.: 1967. С. 4. Не случайно Фараби на Востоке называют «вторым учителем». Объясняя природу и социальное устройство общества он, как каждый ученый-энциклопедист, охвативший почти все отрасли средневековой науки, руководствовался своим собственным стилем мышления, уделяя особое внимание проблемам логики и эпистемологии. Он справедливо утверждал, что «логика отличает истинное от ложного в каждой вещи». Там же. Комментируя учения Аристотеля Фараби подходил к нему не догматически, а творчески. Он писал: «Подражание Аристотелю должно быть таким, чтобы любовь к нему (никогда) не доходила до такой степени, когда его предпочитают истине, ни таким, когда оно становится предметом ненависти, способным вызвать желание его опровергнуть». Ал-Фараби Логические трактаты. - Алма-Ата: Наука. 1975. С. 54.

Несомненной заслугой Фараби являются его плодотворные попытки раскрыть связи между различными категориями, поскольку каждая из них отражает различные стороны связи одного и того же. «Разве не видишь ты, - писал Фараби, - что один такой индивид, к примеру, Сократ, входит в понятие сущность; поскольку он человек в понятии количества, постольку он обладает величием, поскольку он белый, достойный или какой иной, в понятии отношения, поскольку он является отцом или сыном в понятии положения, поскольку он сидит или возлежит? То же можно сказать обо всем подобном». Ал-Фараби Логические трактаты. - Алма-Ата: Наука. 1975. С. 86.

Эти мысли получили свое развитие и комментарии в трудах многих философов, в частности Рассела Б. Развивая свою науку к объяснению мира, он противопоставляет свой метод и свой стиль объяснения мира - религиозной догматикой.

Обобщение огромного количества частных квадратных уравнений в виде конечных типов их классификации, выполненное великим ученым средневековья ал-Хорезми, положило начало современной алгебре. Ал-Хорезми открыл безупречные методы их решения, которыми по существу, ежедневно пользуются все школьники мира. Методы эти обладают логическим совершенством, красотой созерцательного мышления, педагогическим удобством. Эвристический характер открытых им методов решения задач получил всеобщее признание в мировой науке, не случайно одно из понятий современной науки алгоритм этимологически связано с именем ал-Хорезми. Через его «Арифметику» европейцы познакомились с десятичной систе-мой счисления и правилами (алгоритмами - от имени ал-Хорез-ми) выполнения четырех действий над числами, записанными по этой системе. Ал-Хорезми была написана «Книга об ал-джебр и ал-мукабала», целью которой было обучить искусству решений уравнений, необходимых в случаях наследования, раздела иму-щества, торговли, при измерении земель, проведении каналов и т. д. «Ал-джебр» (отсюда идет название такого раздела матема-тики, как алгебра) и «ал-мукабала» - приемы вычислений, кот были известны Хорезми еще из «Арифметики» позднегреческого математика (в.) Диофанта. Но в Европе об алгеб-раических приемах узнали только от ал-Хорезми. Никакой специальной алгебраической символики у него даже в зачаточ-ном состоянии еще нет. Запись уравнений и приемы их решений осуществляются на естественном языке. Вот еще некоторые имена: Позже теория алгоритмов послужила основой математической логики, которая, в свою очередь, является логической основой развития современной компьютеризации. В наши дни алгоритмизация применяется и в других отраслях человеческой жизни. см. Файзуллаев А.Ф. Возникновение и развитие понятия «алгоритм» // Классическая наука Средней Азии и современная мировая цивилизация. - Т.: Фан. 2000. С. 31.

Научные труды ал-Фергани явились основой научных изысканий эпохи возрождения в Европе. Исследовательская деятельность всегда ведет ученых от познанного к непознанному. В связи с этим ал-Фергани признает, что «между учеными нет разногласия в том, что небо подобно сфере и, что оно вращается вместе со всем, что на нем из светил - как вращение сферы вокруг двух закрепленных неподвижных помостов, один из которых в северной стороне, а другой с южной стороны. Это относительно неба». Аль-Фергани Ахмад Астрономические трактаты. - Т.: Фан. 1998. С. 18 . Это касается и всего того, что нас окружает и, таким образом, все учения и о суше и море, так же подобно сфере». Ал-Фергани Ахмад Астрономические трактаты. - Т.: Фан. 1998. С. 20. Вывод о том, что небо выпуклое, земля и сфера - вогнутые, был сделан давно. Но главное, как считает ал-Фергани, доказать истинность этих взглядов. Доказательство шарообразности земли в дальнейшем осуществлено Колумбом (в XV в.), Магелланом (в XVI в.), а много веков до этого на основе мыслительно-экспериментального мышления это было доказано ал-Фергани.

Беруни прослеживает трудный путь познания. Он уделяет особое внимание единице времени, необходимой для изучения исторических событий. «В соответствии с поставленной целью нам следует объяснить, что такое ночь и день и их совокупность, и какой момент принято считать их началом, ибо сутки для месяцев, годов и эпох - то же, что и единицы для чисел, из суток они складываются и на сутки разлагаются. Полное представление о сущности суток облегчает путь к пониманию того, что составляется из суток и строится на них». Беруни А.Р. Избранные произведения. Т.1, 2. - Т.: Изд. АН Уз. 1957. С. 43.

Беруни на основе сравнительно исторического стиля мышления с позиций здравого смысла, научной объективности и беспристрастности, во-первых, сопоставляет различные философские и религиозные системы и, во-вторых, пытается установить соответствие между взглядами на тот или иной вопрос представителей различных народов и религий - древних греков, доисламских персов и арабов, иудеев, христиан различных толков, мусульман сунитов, суфиев и т.д. В этом отношении характерно сопоставление им представлений о Боге индийцев, иудеев и христиан, о душе индийской мысли и Сократа, о спасении, как соединении с Богом у индийцев, о фантастических существах индийских мифов и греческой мифологии, о сословиях древних иранцев с индийскими, о религиозных законах греков и индийцев и т.д. В этом контексте обнаруживаются не только определенные аспекты культурных, научно-философских контактов, а также то, что Беруни являлся приверженцем принципов взаимообогащения, контактов между различными культурами, народами. Поражает его беспристрастная научная объективность и исследовательская деликатность.

Открытия в астрономии Улугбека и его учеников вели к пересмотру миропонимания в главном - представлении о космосе, к ликвидации разрыва между взглядами на земную природу и небесные явления. Они составили научный план и создали уникальную обсерваторию для организации наблюдения и фиксирования движения небесных тел, таким образом, сумели доказать переход в процессе познания небесных явлений от сущности первого порядка к сущности второго порядка и так далее. Благодаря обсерватории, построенной по проекту Улугбека, проводились наблюдения и фиксировались основные характеристики движения звезд на небе. Улугбек и его ученики, основываясь формально-логическим мышлением, при научных исследованиях применяли доказательный метод. Один из методов, который использовали для произведения опосредованного вычисления величины, был метод интерполяции. Так же в проведении научных исследований не менее важными являлись методы последовательных приближений и определения «уравнения скорости», аксиома, теорема, фантазия, аналогия и т.д. Объектом исследований являлись небесные тела, субъектами - астрономы-наблюдатели (Улугбек и его ученики). Средствами познания - секстант и др. Эти элементы вступали во взаимодействие в процессе наблюдения за видимыми движениями небесных тел». Файзуллаев А.Ф. Исторические методы наблюдения как формы познания // Классическая наука Средней Азии и современная мировая цивилизация. - Т.: Фан. 2000. С. 243. Улугбек с большой точностью определил смещение точки весеннего равнодействия 51. Секстант Улугбека позволил получить наиболее точную величину звездного года - 365 суток 6 часов 10 минут 8 секунд. Этому способствовала тщательная научная обработка данных наблюдений.

v В философии наших великих предков удачно сочетается философский стиль мышления с естественнонаучным. Свои философские произведения они писали, опираясь на разделяемую ими картину мира. В частности известно, что Ибн Сина в историю вошел как князь философии и князь медицины. Он развивает мысль о единстве и взаимопроникновении философии и медицины, утверждая, что медицина лечит тело человека, а философия - его душу. В этой связи иначе звучит древний афоризм: «В здоровом теле здоровый дух», так как не только здоровое тело порождает, как правило, здоровый дух, но и здоровый дух обусловливает здоровое тело. Абу-Али ибн-Сина (Авиценна) -философ, математик, астроном, врач, чей «Канон врачебной на-уки» снискал мировую славу и представляет определен-ный познавательный интерес сегодня;

Вот ещё некоторые имена:

v Мухаммедаль-Баттани (850-929) - астроном, составив-ший новые астрономические таблицы;

v Ибн Юлас (950-1009), известный достижениями в обла-сти тригонометрии, составивший таблицы наблюдений лунных и солнечных затмений;

v Ибн аль-Хайсам (965-1020), сделавший значительные открытия в области оптики;

v Омар Хайям (1048-1122) - не только великий поэт, но и известнейший в свое время математик, астроном, ме-ханик, философ;

v Ибн Рушд (1126-1198) - философ, естествоиспытатель, добившийся больших успехов в области алхимии. Эти и многие другие выдающиеся ученые арабского средне-вековья внесли большой вклад в развитие медицины, в частно-сти глазной хирургии, что натолкнуло на мысль об изготовле-нии из хрусталя линз для увеличения изображения. В дальней-шем это привело к созданию оптики.

Работая на основе традиций, унаследованных от египтян и вавилонян, черпая некоторые знания от индийцев и китайцев и, что самое важное, переняв у греков приемы рационально-го мышления, арабы применили все это в опытах с большим количеством веществ. Тем самым они вплотную подошли к созданию химии.

В XV в. после убийства Улугбека и разгрома Самарканд-ской обсерватории начинается период заката математических, физических и астрономических знаний на Востоке и центр разработки проблем естествознания, математики переносит-ся в Западную Европу.

Возникновение научных знаний

Безраздельное господство религии не смогло полностью подавить свободной мысли человека, стремившейся познать окружающую его природу. В связи с этим появляется представление о «знании», как таковом и о высокой ценности знания, выделяющего «знающего» человека над всеми остальными людьми. Так, автор одного «Поучения» говорит: «Сделают всё, что ты скажешь, если ты будешь знающим. Углубись в писания и вложи их в своё сердце и тогда всё, что ты скажешь, будет прекрасным. На какую должность не назначат писца, он всегда будет обращаться к книгам».

Знания накапливались, и передавались от старших поколений к младшим в особых школах. Это были по большей части либо придворные школы писцов, в которых учились дети аристократов-рабовладельцев, либо особые школы, находившиеся при центральных ведомствах, в которых готовились писцы-чиновники для данного ведомства, например для царской сокровищницы. В этих школах царила строгая дисциплина, которая поддерживалась мерами телесных наказаний и внушалась особыми «Поучениями». Так, автор одного «Поучения» говорит: «О, писец, не будь ленивым, а то тебя строго накажут. Не склоняй свое сердце к удовольствиям, а то ты пойдешь ко дну. С книгами в руках, читай вслух и советуйся с теми, которые знают больше тебя. Счастлив писец, который искушён на всех своих поприщах… Не проводи в лености ни одного дня, а то тебя будут пороть. Ведь уши мальчика у него на спине и он услышит, когда его будут бить. Постоянно спрашивай совета и не забывай об этом. Пиши, и пусть тебе это не надоедает».

Учеников учили главным образом трудной и сложной грамоте, заставляя их списывать с особых прописей ежедневно около трёх страниц. Ученик должен был твёрдо усвоить не только систему правописания, но и сложную каллиграфию и стилистику. До нас дошли упражнения начинающих писцов, содержащие главным образом поучения с воспитательной целью и образцовые, столь же поучительные письма. Наконец, в Египте существовали и высшие «писцовые школы», носившие название «дом жизни» («пер анх»). Развалины такого «дома жизни» были обнаружены в древней столице фараона Эхнатона (см. стр. 218).

Потребности повседневной жизни, развитие хозяйства, торгового обмена и наблюдения над природой приводили к постепенному накоплению первых научных знаний. Все эти знания носят ещё главным образом прикладной характер. Таковы, например, древнейшие знания в области математики, которые теснейшим образом связаны с практической жизнью и имеют своей целью облегчить работу землемеров и строителей. Так, например, мы знаем, что Аменемхет I установил границы номов на основании того, «что стоит в книгах и находится в древних писаниях». Это определение границ производилось особыми землемерами на основании расчётов, которые затем записывались. На это указывают рисунки, сохранившиеся в гробницах и изображающие обмер земли при помощи особой землемерной веревки. Судя по содержанию математических задач, знания в области арифметики и геометрии использовались при определении площади поля, при определении объёма кучи зерна или амбара, служившего для ее хранения. Наконец, благодаря знаниям в области математики, египтяне умели составлять схематические карты местности и примитивные чертежи. О большом значении математики, в частности геометрии, в развитии строительного дела, говорят многочисленные и грандиозные здания, в особенности пирамиды, которые могли быть воздвигнуты лишь на основе ряда точных вычислений.

О развитии математических знаний в древнем Египте, в особенности в период Среднего Царства, говорит довольно большое количество математических текстов того времени, в частности московский «Математический папирус». Одним из крупных достижений египетской математики было развитие десятичной системы счисления. В египетской письменности уже существовали особые знаки для обозначения чисел 1, 10, 100, 1000, 10 000, 100 000 и даже миллиона, обозначавшегося фигуркой человека, поднявшего руки в знак удивления. Очень характерны для форм египетской математики своеобразные единицы длины. Этими единицами были палец, ладонь, ступня и локоть, между длиной которых египетский математик установил определённые взаимоотношения. Математические знания широко использовались в искусстве. Египетский художник для того, чтобы нарисовать на плоскости фигуру человека, рисовал квадратную сетку, в которую он врисовывал тело человека, пользуясь для этой пели знанием математических соотношений длины одних частей тела к другим. На некоторую примитивность египетской математики указывает способ применения четырёх простых арифметических действий. Так, например, при умножении пользовались способом последовательных действий. Для того, чтобы умножить восемь на восемь, египтянин должен был произвести 4 последовательных умножения на 2. Деление производилось при помощи умножения. Для того, чтобы разделить 77 на 7, надо было установить, на какое число следует умножить 7, чтобы получить 77. Высокого развития достигла в Египте геометрия, имевшая большое практическое значение. Египетские математики умели определять поверхность прямоугольника, треугольника, в частности равнобедренного, трапеции и даже круга, принимая величину? равной 3,16, т. е. более точно, чем вавилоняне. В московском «Математическом папирусе» сохранились решения трудных задач на вычисление объёма усеченной пирамиды и полушария. Некоторые очень элементарные знания древние египтяне имели в области алгебры, умея вычислять уравнения с одним неизвестным, причём неизвестное они называли словом, «куча» (очевидно «куча зерна»).

Текст египетского сборника задач по геометрии

Некоторые знания имели древние египтяне и в области астрономии. Частые наблюдения над небесными светилами приучили их отличать планеты от звёзд и даже дали им возможность установить карту звёздного неба. Отдельным созвездиям и даже звёздам (например Сириусу) египтяне дали особые названия. Пользуясь специальными таблицами расположения звёзд и особым инструментом, египтяне умели определять время даже ночью. Астрономические знания дали египтянам возможность построить систему календаря. Египетский календарный год делился на 12 месяцев, содержащих по 30 дней каждый, причём к концу года добавлялось 5 праздничных дней, что давало в общей сложности 365 дней в году. Таким образом, египетский календарный год отставал от тропического на 1/4 суток. Эта ошибка в течение 1460 лет становилась равной 365 дням, т. е. одному году.

Табличка расположения звёзд из царской гробницы ХХ-ой династии.

Новое Царство

Значительное развитие получили в Египте медицина и ветеринария. В целом ряде текстов времени Среднего Царства даётся перечень рецептов для лечения различных болезней. Используя множество эмпирических наблюдений, египетские врачи, однако, не могли ещё полностью отрешиться от древней магии. Поэтому лечение при помощи лекарств обычно соединялось с магическими заклинаниями и обрядами. Но изучение человеческого тела, облегчавшееся вскрытием трупов при мумификации, давало возможность врачам более или менее правильно подходить к вопросам строения и функционирования человеческого организма. Так, постепенно появляются первые знания в области анатомии, которые зафиксированы в целом ряде анатомических терминов. В некоторых медицинских текстах дается и своеобразная методика лечения, требующая от врача осмотра больного, определения симптомов, диагноза и установления способа лечения. Врачи специализируются по отдельным видам болезней. Появляются особые лечебники по гинекологии, хирургии и глазным болезням. Довольно точное описание некоторых болезней, их симптомов и явлений позволяет предполагать некоторые знания египтян в области диагностики. Так, в египетских медицинских текстах подробно описываются желудочные болезни, болезни дыхательных путей, кровотечения, ревматизм, скарлатина, глазные болезни, накожные болезни и мно5кество других. В особых руководствах по гинекологии описывались ранние и поздние роды, а также указывались средства «распознать женщину, которая может родить, от той, которая не может». В одной гробнице Древнего Царства сохранились изображения различных операций (рук, ног, колен). В более позднее время хирургия достигла значительно более высокого развития. Названия некоторых болезней, а также рецептура, основанная на продолжительном опыте, свидетельствуют о довольно значительном развитии египетской медицины, достижения которой были широко заимствованы авторами медицинских трактатов античного мира.

На появление первых попыток теоретических обобщений указывает учение о кровообращении и о тех идущих от сердца «22 сосудах», которые, по мнению египетского врача, играли определённую роль в жизни человеческого организма и в ходе болезни. В этом отношении очень характерны следующие слова из медицинского папируса Эберса: «Начало тайн врача, знания хода сердца, от которого идут сосуды ко всем членам, ибо всякий врач, всякий жрец богини Сохмет, всякий заклинатель, касаясь головы, затылка, рук, ладони, ног, везде касается сердца, ибо от него направлены сосуды к каждому члену».

Так пытливая мысль человека постепенно развивалась, несмотря на господство религиозно-магического мировоззрения.

Орнаментальная гиероглифическая надпись Среднего Царства

Из книги История Германии. Том 1. С древнейших времен до создания Германской империи автора Бонвеч Бернд

Из книги История Германии. Том 1. С древнейших времен до создания Германской империи автора Бонвеч Бернд

Развитие научных знаний XVI-XVII вв. ознаменовались коренными переменами в развитии естествознания и математических наук. Идеи Коперника об организации солнечной системы получили развитие в трудах Иоганна Кеплера (1571-1630), который открыл три закона обращения планет вокруг

Из книги Запретная археология автора Бейджент Майкл

Поиски научных доказательств Западная научная традиция (зачастую курьезным образом отличающаяся от частных убеждений отдельных людей, которые могут быть далеко не столь рационалистическими) всегда ищет доказательства всякого суждения касательно реальности – будь то

Из книги История Средних веков. Том 1 [В двух томах. Под общей редакцией С. Д. Сказкина] автора Сказкин Сергей Данилович

Развитие научных знаний. Образование В ранний период в Византии еще сохранялись старые центры античной образованности - Афины, Александрия, Бейрут, Газа. Однако наступление христианской церкви на античную языческую образованность привело к упадку некоторых из них. Был

Из книги История Древнего Востока автора Авдиев Всеволод Игоревич

Возникновение научных знаний Безраздельное господство религии не смогло полностью подавить свободной мысли человека, стремившейся познать окружающую его природу. В связи с этим появляется представление о «знании», как таковом и о высокой ценности знания, выделяющего

Из книги Шумер. Вавилон. Ассирия: 5000 лет истории автора Гуляев Валерий Иванович

Зарождение научных знаний в Месопотамии АстрономияПрактические потребности, хозяйственные, административные и медицинские, уже на ранних этапах развития цивилизации в древней Месопотамии привели к появлению начатков научных знаний. Наибольшего развития в Шумере,

автора Бонвеч Бернд

6. Культура, развитие образования и научных знаний Особенности развития немецкой культуры Переходный характер эпохи раннего Нового времени, ментальные и социальные изменения, распространение гуманистических идей существенно повлияли на культурное развитие немецких

Из книги С древнейших времен до создания Германской империи автора Бонвеч Бернд

Развитие научных знаний XVI-XVII вв. ознаменовались коренными переменами в развитии естествознания и математических наук. Идеи Коперника об организации солнечной системы получили развитие в трудах Иоганна Кеплера (1571-1630), который открыл три закона обращения планет

Из книги Очерки по истории естествознания в России в XVIII столетии автора Вернадский Владимир Иванович

1.7 Общеобязательность научных результатов. В тесной связи с этим характером научного мышления стоит и другая его, исключительная в истории человечества сторона - общеобязательность его результатов. Эта общеобязательность результатов - для всех без различия, без

Из книги Народ майя автора Рус Альберто

Потребность в научных знаниях Основные научные знания майя в астрономии, математике, письменности и календаре тесно связаны между собой, как они были связаны и у других развитых народов древности. Вероятно, еще в очень отдаленные времена люди, наблюдая дневное и ночное

Из книги Народ майя автора Рус Альберто

Использование научных знаний За исключением медицины, все науки майя, монополизированные правящим классом, служили в конечном счете орудием господства этого класса над темным и бесправным народом. Все научные знания, записанные в иероглифических текстах, могли быть

Из книги Всемирная история. Том 3 Век железа автора Бадак Александр Николаевич

Возникновение научных знаний и философских воззрений Потребности повседневной жизни, развитие земледелия и ремесла побуждали древних китайцев изучать явления природы. Большое внимание среди прочих наук в древнекитайском обществе уделяли астрономии. В результате

Из книги История Украинской ССР в десяти томах. Том девятый автора Коллектив авторов

1. РАЗВИТИЕ НАУЧНЫХ ИССЛЕДОВАНИИ Во второй половине 50–х годов в мире, в том числе и в СССР, широко развернулась научно - техническая революция, главным направлением которой стали комплексная автоматизация производства, совершенствование контроля и управления

Из книги Очерк общей истории химии [От древнейших времен до начала XIX в.] автора Фигуровский Николай Александрович

I. ВОЗНИКНОВЕНИЕ И РАЗВИТИЕ ХИМИЧЕСКИХ ЗНАНИЙ В ДРЕВНОСТИ. (ПЕРИОД ПРАКТИЧЕСКОЙ И РЕМЕСЛЕННОЙ ХИМИИ) ХИМИЧЕСКИЕ ЗНАНИЯ ПЕРВОБЫТНЫХ ЛЮДЕЙ На низших ступенях культурного развития человеческого общества, при первобытно-родовом строе, процесс накопления химических знаний

Из книги История ислама. Исламская цивилизация от рождения до наших дней автора Ходжсон Маршалл Гудвин Симмс

О научных предубеждениях Ввиду большого значения личного отношения и лояльности в исторических исследованиях, ориентация историка играет здесь гораздо большую роль, чем в других научных дисциплинах, и эта роль облегчает исследование исламского мира.При исторической

Из книги КГБ во Франции автора Вольтон Тьерри

В научных кругах Голицын утверждал, что один ученый, азиат по происхождению, был завербован КГБ на конгрессе в Лондоне. И опять – никакого имени, только некоторые его приметы.После многих недель поисков УОТ уже собиралось прекратить расследование, и вдруг представитель