Уравнение бернулли для воздушного потока. Течение жидкости и уравнение бернулли для новичков

Уравнение Бернулли для потока реальной жидкости, его физический смысл.

Уравнение Бернулли является следствием закона сохранения энергии для стационарного потока идеальной (то есть без внутреннего трения) несжимаемой жидкости:

Здесь — плотность жидкости, — скорость потока, — высота, на которой находится рассматриваемый элемент жидкости, — давление в точке пространства, где расположен центр массы рассматриваемого элемента жидкости, — ускорение свободного падения.

В реальных потоках жидкости присутствуют силы вязкого трения. В результате слои жидкости трутся друг об друга в процессе движения. На это трение затрачивается часть энергии потока. По этой причине в процессе движения неизбежны потери энергии. Эта энергия, как и при любом трении, преобразуется в тепловую энергию. Из-за этих потерь энергия потока жидкости по длине потока, и в его направлении постоянно уменьшается.

Из закона Бернулли следует, что при уменьшении сечения потока, из-за возрастания скорости, то есть динамического давления, статическое давление падает. Это является основной причиной эффекта Магнуса. Закон Бернулли справедлив и для ламинарных потоков газа. Закон Бернулли справедлив в чистом виде только для жидкостей, вязкость которых равна нулю. Для описания течений реальных жидкостей в технической гидромеханике (гидравлике) используют интеграл Бернулли с добавлением слагаемых, учитывающих потери на местных и распределенных сопротивлениях.

Уравнение Бернулли для потока реальной жидкости

Распределение скоростей:

Что такое трубка Пито и для чего она служит?

Трубка Пито - прибор для измерения скорости в точках потока. для измерения динамического напора текущей жидкости или газа. Представляет собой Г-образную трубку. Установившееся в трубке избыточное давление приближённо равно: , где p — плотность движущейся (набегающей) среды; V?- скорость набегающего потока; ξ — коэффициент.

Напорная трубка Пито подключается к специальным приборам и устройствам. Применяется при определении относительной скорости и объёмного расхода в газоходах и вентиляционных системах в комплекте с дифференциальными манометрами.

Применяется как составная часть трубки Прандтля в авиационных приёмниках воздушного давления для возможности одновременного определения скорости и высоты полёта.


Как перевести уравнение Бернулли из размерности длин в размерность давлений?

Уравнение Бернулли в форме напоров, м

Уравнение Бернулли в форме давлений, Па

Потери давления от первого сечения до второго.

Какие существуют режимы течения и как определяются границы существования этих режимов?

1. Ламинарный режим движения. Особенности - слоистый характер течения жидкости, отсутствие перемешивания, неизменность давления и скорости по времени.

2. Переходный режим.

3. Турбулентный режим течения. Заметны: вихреобразование, вращательное движение жидкости, непрерывные пульсации давления и скорости в потоке воды.

1. Ламинарным называется слоистое течение без перемешивания частиц жидкости и без пульсации скорости и давления. При ламинарном течении жидкости в прямой трубе постоянного сечения все линии тока направлены параллельно оси трубы, при этом отсутствуют поперечные перемещения частиц жидкости.

2. Турбулентным называется течение, сопровождающееся интенсивным перемешиванием жидкости с пульсациями скоростей и давлений. Наряду с основным продольным перемещением жидкости наблюдаются поперечные перемещения и вращательные движения отдельных объемов жидкости. 3. Переход от ламинарного режима к турбулентному наблюдается при определенной скорости движения жидкости. Эта скорость называется критической (Vкр=kv/d) .

Значение этой скорости прямо пропорционально кинематической вязкости жидкости v и обратно пропорционально диаметру трубы d .

4. Входящий в эту формулу безразмерный коэффициент k одинаков для всех жидкостей и газов, а также для любых диаметров труб. Этот коэффициент называется критическим числом Рейнольдса Reкр и определяется следующим образом:

Reкр = Vкрd/v = pVкрd/μ ≈ 2300-2320

Как вычисляется число Рейнольдса?

Критерий подобия Рейнольдса (число Рейнольдса) позволяет судить о режиме течения жидкости в трубе. Число (критерий) Рейнольдса Re - мера отношения силы инерции к силе трения

Re = Vd/v = pVd/μ, где μ-динамич.коэф.вязкости, v = μ/p,

При Re < Reкр = 2320 течение является ламинарным;

Re > 3800-4200 течение турбулентное.

Зависимости справедливы только для круглых труб.

При увеличении скорости растут силы инерции . Силы трения при этом больше сил инерции и до некоторых пор выпрямляют траектории струек

При некоторой скорости vкр:

Сила инерции Fи > силы трения Fтр, поток становится турбулентным

Уравнение Бернулли для установившегося движения идеальной жидкости, его физический смысл.

Приведем уравнения Эйлера к виду, удобному для интегрирования, умножив соответственно на dx, dy,

dz и сложив:

Получаем

С учетом, что

Полный дифференциал давления

Окончательное выражение:

Если жидкость находится только под действием силы тяжести и ее плотность неизменна, то

Окончательно

уравнение Бернулли для струйки идеальной жидкости

Уравнение Бернулли для установившегося движения вязкой жидкости.

Распределение скоростей:

1 - элементарная струйка; идеальная жидкость;

2 - реальная (вязкая) жидкость

При движении реальной вязкой жидкости возникают силы трения и вихри, на преодоление которых жидкость затрачивает энергию.

В результате полная удельная энергия жидкости в сечении 1-1 будет больше полной удельной энергии в сечении 2-2 на величину потерянной энергии

V 1,2 - средняя скорость потока в сечениях 1,2;

hW1,2 = hпот 1-2 - потерянный напор потери напора между сечениями 1-2;

α1,2 - безразмерный коэффициент Кориолиса - отношение действительной кинетической энергии потока в данном сечении к кинетической энергии потока в том же сечении при равномерном распределении скоростей.

Таким образом, уровень первоначальной энергии, которой обладает жидкость в первом сечении, для второго сечения будет складываться из четырех составляющих: геометрической высоты, пьезометрической высоты, скоростной высоты и потерянного напора между сечениями 1-1 и 2-2
Скорость течения вязкой жидкости в длинной трубке : v = (ΔP / η) · R 2 / (8 · l) , где ΔP — разность давлений на концах трубки, η — вязкость жидкости или газа (сильно зависит от температуры), R — внутренний радиус трубки, l — её длина, l >> R .

Коэффициенты Кориолиса . Величина коэффициентов для ламинарного и турбулентного режимов течения.

Коэффициент Кориолиса - отношение действительной кинетической энергии потока в данном сечении к кинетической энергии потока в том же сечении при равномерном распределении скоростей.

Мощность элементарной струйки:

Для потока

Разделив полученное выражение на и учитывая, что (удельная мощность на 1 Н

веса жидкости = средний напор в сечении Нср ) получаем:

Здесь ? - коэффициент Кориолиса.

При равномерном распределении скоростей α =1 (элементарная струйка/идеальная жидкость),

при неравномерном α>1. V - средняя скорость в живом сечении .

Коэффициент Кориолиса для ламинарного режима.

Коэффициент Кориолиса для турбулентного режима (стремится к 1,0 при увеличении Re)

Рациональный выбор сечений для решения уравнения Бернулли.

Сечения выбираются всегда перпендикулярно направлению движения жидкости и должны располагаться на прямолинейных участках потока

Одно из расчетных сечений необходимо брать там, где нужно определить давление р , высоту z или скорость V , второе, где величины р , z , и V известны

Нумеровать расчетные сечения следует так, чтобы жидкость двигалась от сечения 1-1 к сечению 2-2

Плоскость сравнения 0-0 - любая горизонтальная плоскость. Для удобства её проводят через центр тяжести одного из сечений

Практическое применение уравнения Бернулли: трубка Пито.

Трубка Пито - прибор для измерения скорости в точках потока.

Составив уравнение Бернулли для сечений a-a и b-b , получим

Практическое применение уравнения Бернулли: расходомер Вентури.

а) Пренебрегая потерями напора и считая z1 = z2 , напишем уравнение Бернулли для сечений 1-1 и 2-2:

б) Из уравнения неразрывности

в) Из уравнения пьезометра

Решая совместно, получаем:

Энергетическое толкование уравнения Бернулли.

Энергетических характеристик жидкости. Суммарной энергетической характеристикой жидкости является её гидродинамический напор.

С физической точки зрения это отношение величины механической энергии к величине веса жидкости, которая этой энергией обладает. Таким образом, гидродинамический напор нужно понимать как энергию единицы веса жидкости. И для идеальной жидкости эта величина постоянна по длине. Таким образом, физический смысл уравнения Бернулли это закон сохранения энергии для движущейся жидкости .

Здесь с энергетической точки зрения (в единицах энергии, Дж/кг) gz удель-ная потенциальная энергия положения; rР/ удельная потенциальная энергия давления; gz + rР/ удельная потенциальная энергия; u 2 /2 удельная кинети-ческая энергия; и скорость элементарной струйки идеальной жидкости.

Умножив все члены уравнения на удельный вес жидкости g , получим:

gz - весовое давление, Па; P гидродинамическое давление, Па; иr 2 /2 — динамическое давление Па; Hg — полное давление, Па

Геометрическое толкование уравнения Бернулли.

Положение любой частицы жидкости относительно некоторой произвольной линии нулевого уровня 0-0 определяется вертикальной координатой Z . Для реальных гидравлических систем это может быть уровень, ниже которого жидкость из данной гидросистемы вытечь не может. Например, уровень пола цеха для станка или уровень подвала дома для домашнего водопровода.

Все слагаемые уравнения Бернулли имеют размерность длины и их можно изобразить графически.

Значения - нивелирную, пьезометрическую и скоростную высоты можно определить для каждого сечения элементарной струйки жидкости. Геометрическое место точек, высоты которых равны , называется пьезометрической линией . Если к этим высотам добавить скоростные высоты, равные , то получится другая линия, которая называется гидродинамической или напорной линией .

Из уравнения Бернулли для струйки невязкой жидкости (и графика) следует, что гидродинамический напор по длине струйки постоянен.

Линия полного напора и ее построение.

Физический смысл уравнения Бернулли.

Из закона Бернулли следует, что при уменьшении сечения потока, из-за возрастания скорости, то есть динамического давления, статическое давление падает. Это является основной причиной эффекта Магнуса. Закон Бернулли справедлив и для ламинарных потоков газа. Явление понижения давления при увеличении скорости потока лежит в основе работы различного рода расходомеров (например труба Вентури), водо- и пароструйных насосов. А последовательное применение закона Бернулли привело к появлению технической гидромеханической дисциплины — гидравлики.

Закон Бернулли справедлив в чистом виде только для жидкостей, вязкость которых равна нулю, то есть таких жидкостей, которые не прилипают к поверхности трубы. На самом деле экспериментально установлено, что скорость жидкости на поверхности твердого тела почти всегда в точности равна нулю (кроме случаев отрыва струй при некоторых редких условиях).

закон Бернулли объясняет эффект притяжения между телами, находящимися на границе потока движущейся жидкости (газа). Иногда это притяжение может создавать угрозу безопасности. Например, при движении скоростного поезда «Сапсан» (скорость движения более 200 км/час) для людей на платформах возникает опасность сброса под поезд.Аналогично «затягивающая сила» возникает при движении судов параллельным курсом: например, подобные инциденты происходили с лайнером «Олимпик».

Влияние эпюры скоростей в канале на удельную кинетическую энергию потока. Ее учет в уравнении Бернулли.

Кавитация, причины, условия возникновения, меры борьбы с кавитацией. Определение возможности кавитации с помощью уравнения Бернулли.

Кавитация - явление, возникающее в жидкости при высоких скоростях движения жидкости, т.е. при малых давлениях. Кавитация - нарушение сплошности жидкости с образованием паровых и газовых пузырей (каверн), вызванное падением статического давления жидкости ниже давления насыщенных паров этой жидкости при данной температуре.

p2 = pнп = f(t) - условие возникновения кавитации

Меры борьбы с кавитацией:

Снижение скорости жидкости в трубопроводе;

Уменьшение перепадов диаметров трубопровода;

Повышение рабочего давления в гидросистемах (наддув баков сжатым газом);

Установка всасывающего отверстия насоса не выше допускаемой высоты всасывания (из паспорта насоса);

Применение кавитационно-стойких материалов.

Запишем уравнение Бернулли для сечений 1-1 и 2-2 потока реальной жидкости:

Отсюда

Правила применения уравнения Бернулли.

Выбираем два сечения потока: 1-1 и 2-2, а также горизонтальную плоскость отсчета 0-0 и записываем в общем виде уравнение Бернулли.

Плоскость сравнения 0-0 - любая горизонтальная плоскость. Для удобства её проводят через центр тяжести одного из сечений


Возьмём трубу, через которую протекает жидкость. Наша труба не одинакова по всей длине, а имеет различный диаметр сечения. Закон Бернулли выражается в том, что несмотря на различный диаметр, через любое сечение в этой трубе за одно и тоже время протекает одинаковый объём жидкости.

Т.е. сколько жидкости проходит через одно сечение трубы за некоторое время, столько же ее должно пройти за такое же время через любое другое сечение. А так как объём жидкости не изменяется, а сама жидкость практически не сжимается, то изменяется что-то другое.

В более узкой части трубы скорость движения жидкости выше, а давление ниже. И наоборот, в широких частях трубы скорость ниже, а давление выше.


Изменяется давление жидкости и её скорость. Если трубу, по которой течет жидкость, снабдить впаянными в нее открытыми трубками-манометрами (рис. 209), то можно будет наблюдать распределение давления вдоль трубы.

Все сказанное о движении жидкости по трубам относится и к движению газа. Если скорость течения газа не слишком велика и газ не сжимается настолько, чтобы изменялся его объем, и если, кроме того, пренебречь трением, то закон Бернулли верен и для газовых потоков. В узких частях труб, где газ движется быстрее, давление его меньше, чем в широких частях.

Применительно аэродинамике закон Бернулли выражается в том, что набегающий на крыло воздушный поток имеет различную скорость и давление под крылом и над крылом, ввиду чего возникает подъёмная сила крыла

Проведём простой эксперимент. Возьмём небольшой листок бумаги и разместим его прямо перед собой таким образом:

А затем подуем над его поверхностью, то листок бумаги, попреки ожиданиям, вместо того, чтобы прогнуться ещё больше по направлению к Земле, наоборот выпрямится. Всё дело в том, что выдувая воздух над поверхностью листка мы уменьшаем его давление, в то время как давление воздуха под листком остаётся прежним. Получается, что над листком область пониженного давления, а под листком повышенного. Воздушные массы пытаются «перебраться» из области высокого давления в область низкого, и это приводит к тому, что листок выпрямляется.

Можно провести и другой опыт. Взяв 2 листка бумаги и разместив их перед собой следующим образом:

А затем подув в область между ними, листки бумаги, вопреки нашим ожиданиям, вместо того, чтобы отодвинуться друг от друга, наоборот приблизятся. Здесь мы наблюдаем тот же самый эффект. Воздушные массы с внешних сторон листком имеют большее давление, нежели ускоренный нами воздух между листками. Это и приводит к тому, что листки бумаги притягиваются к друг другу.



Этот же принцип используют для осуществления своих полётов парапланы, дельтапланы, самолёты, планёры, вертолёты и др. летательные аппараты. Именно это позволяет взлететь вверх многотонному пассажирскому самолёту.

Как закон Всемирного Тяготения Ньютона действовал задолго до самого Ньютона, так и уравнение Бернулли существовало задолго до того, как родился сам Бернулли. Ему удалось лишь облечь это уравнение в наглядную форму, в чем его неоспоримая и огромная заслуга. Зачем мне уравнение Бернулли, спросите Вы, ведь я прекрасно жил и без него. Да, но оно может пригодиться Вам хотя бы на экзамене по гидравлике! Как говорится, «все не так уж плохо, если ты знаешь и можешь сформулировать уравнение Бернулли».

Кто такой Бернулли?

Даниил Бернулли – сын известного ученого Якоба Бернулли, швейцарский математик и физик. Жил с 1700 по 1782 годы, а с 1725 по 1733 трудился в Петербургской Академии наук. Помимо физики и математики Бернулли также изучал медицину наряду с Д’Аламбером и Эйлером считается отцом основателем математической физики. Успехи этого человека позволяют с уверенностью сказать, что это был настоящий «супермозг».

Д. Бернулли (1700-1782)

Идеальная жидкость и течение идеальной жидкости

Помимо известной нам материальной точки и идеального газа существует также идеальная жидкость . Какой-нибудь студент, конечно, может подумать, что эта жидкость – его любимое пиво или кофе, без которого невозможно жить. Но нет, идеальная жидкость – это жидкость, которая абсолютно несжимаема, лишена вязкости и теплопроводности. Тем не менее, такая идеализация дает вполне хорошее описание движения реальных жидкостей в гидродинамике.

Течением жидкости называется движение ее слоев относительно друг друга или относительно всей жидкости.

Помимо того есть разные режимы течения жидкости. Нас интересует тот случай, когда скорость потока в какой-то конкретной точке не меняется со временем. Такой поток называют стационарным. При этом скорость течения в различных точках стационарного потока может различаться.

– совокупность частиц движущейся жидкости.


Вывод уравнения Бернулли

Но как описать движение жидкости? Для этого нам нужно знать вектор скорости частиц, точнее зависимость его от времени. Совокупность скоростей в разных точках потока дает поле вектора скорости.

Рассмотрим стационарное течение жидкости по трубке. В одном месте сечение этой трубки равно S1, а в другой – S2. При стационарном потоке через оба сечения за одинаковый промежуток времени пройдет одинаковое количество жидкости.

Данное уравнение – уравнение неразрывности струи.


Узнав его, Бернулли решил установить связь между давлением и скоростью жидкости в разных сечениях. Полное давление – это сумма статистического (обусловлено потенциальной энергией жидкости) и динамического давлений (обусловлено кинетической энергией). Оказывается, сумма статического и динамического давлений в любом сечении трубы постоянна. Само же уравнение Бернулли имеет вид:

Смысл уравнения Бернулли

Физический смысл уравнения Бернулли. Уравнение Бернулли является следствием закона сохранения энергии. Первый член уравнения Бернулли – это кинетическая энергия, второе слагаемое уравнения Бернулли – потенциальная энергия в поле силы тяжести, третье – работа силы давления при подъеме жидкости на высоту h.

Вот и все, друзья, не так уж и страшно. Совсем немного времени, а Вы уже знаете уравнение Бернулли. Даже если Вы не знаете больше ничего, с этими знаниями идти на экзамен или зачет гораздо лучше, чем просто так. А если Вам необходима помощь в том, как решать задачи на уравнение Бернулли – не стесняйтесь и оформляйте заявку. После того как наши авторы распишут решение уравнения Бернулли максимально подробно, у Вас не останется пробелов в знаниях.

В этом параграфе мы применим закон сохранения энергии к движению жидкости или газа по трубам. Движение жидкости по трубам часто встречается в технике и быту. По трубам водопровода подается вода в городе в дома, к местам ее потребления. В машинах по трубам поступает масло для смазки, топливо в двигатели и т. д. Движение жидкости по трубам нередко встречается и в природе. Достаточно сказать, что кровообращение животных и человека - это течение крови по трубкам - кровеносным сосудам. В какой-то мере течение воды в реках тоже является разновидностью течения жидкости по трубам. Русло реки - это своеобразная труба для текущей воды.

Как известно, неподвижная жидкость в сосуде согласно закону Паскаля передает внешнее давление по всем направлениям и во все точки объема без изменения. Однако, когда жидкость течет без трения по трубе, площадь поперечного сечения которой на разных участках различна, давление оказывается неодинаковым вдоль трубы. Выясним, почему давление в движущейся жидкости зависит от площади поперечного сечения трубы. Но сначала ознакомимся с одной важной особенностью всякого потока жидкости.

Предположим, что жидкость течет по горизонтально расположенной трубе, сечение которой в разных местах различное, например по трубе, часть которой показана на рисунке 207.

Если бы мы мысленно провели несколько сечений вдоль трубы, площади которых соответственно равны и измерили бы количество жидкости, протекающей через каждое из них за какой-то промежуток времени то мы обнаружили бы, что через каждое сечение протекло одно и то же количество жидкости. Это значит, что вся та жидкость, которая за время проходит через первое сечение, за такое же время проходит и через третье сечение, хотя оно по площади значительно меньше, чем первое. Если бы это было не так и через сечение площадью за время проходило, например, меньше жидкости, чем через сечение площадью то избыток жидкости должен был бы где-то накапливаться. Но жидкость заполняет всю трубу, и накапливаться ей негде.

Как же может жидкость, протекшая через широкое сечение, успеть за такое же время «протиснуться» через узкое? Очевидно, что для этого при прохождении узких частей трубы скорость движения должна быть больше, и как раз во столько раз, во сколько раз площадь сечения меньше.

Действительно, рассмотрим некоторое сечение движущегося столба жидкости, совпадающее в начальный момент времени с одним из сечений трубы (рис. 208). За время эта площадка переместится на расстояние которое равно где - скорость течения жидкости. Объем V жидкости, протекшей через сечение трубы, равен произведению площади этого сечения на длину

В единицу же времени протекает объем жидкости -

Объем жидкости, протекающей в единицу времени через сечение трубы, равен произведению площади поперечного сечения трубы на скорость течения.

Как мы только что видели, этот объем должен быть одним и тем же в разных сечениях трубы. Поэтому, чем меньше сечение трубы, тем больше скорость движения.

Сколько жидкости проходит через одно сечение трубы за некоторое время, столько же ее должно пройти за такое

же время через любое другое сечение.

При этом мы считаем, что данная масса жидкости всегда имеет один и тот же объем, что она не может сжаться и уменьшить свой объем (о жидкости говорят, что она несжимаема). Хорошо известно, например, что в узких местах реки скорость течения воды больше, чем в широких. Если обозначить скорость течения жидкости в сечениях площадями через то можно написать:

Отсюда видно, что при переходе жидкости с участка трубы с большей площадью сечения на участок с меньшей площадью сечения скорость течения увеличивается, т. е. жидкость движется с ускорением. А это по второму закону Ньютона означает, что на жидкость действует сила. Что это за сила?

Этой силой может быть только разность между силами давления в широком и узком участках трубы. Таким образом, в широком участке давление жидкости должно быть больше, чем в узком участке трубы.

Это же следует из закона сохранения энергии. Действительно, если в узких местах трубы увеличивается скорость движения жидкости, то увеличивается и ее кинетическая энергия. А так как мы приняли, что жидкость течет без трения, то этот прирост кинетической энергии должен компенсироваться уменьшением потенциальной энергии, потому что полная энергия должна оставаться постоянной. О какой же потенциальной энергии здесь идет речь? Если труба горизонтальна, то потенциальная энергия взаимодействия с Землей во всех частях трубы одна и та же и не может измениться. Значит, остается только потенциальная энергия упругого взаимодействия. Сила давления, которая заставляет жидкость течь по трубе, - это и есть упругая сила сжатия жидкости. Когда мы говорим, что жидкость несжимаема, то имеем лишь в виду, что она не может быть сжата настолько, чтобы заметно изменился ее объем, но очень малое сжатие, вызывающее появление упругих сил, неизбежно происходит. Эти силы и создают давление жидкости. Вот это сжатие жидкости и уменьшается в узких частях трубы, компенсируя рост скорости. В узких местах труб давление жидкости должно быть поэтому меньше, чем в широких.

В этом состоит закон, открытый петербургским академиком Даниилом Бернулли:

Давление текущей жидкости больше в тех сечениях потока, в которых скорость ее движения меньше, и,

наоборот, в тех сечениях, в которых скорость больше, давление меньше.

Как это ни покажется странным, но когда жидкость «протискивается» через узкие участки трубы, то ее сжатие не увеличивается, а уменьшается. И опыт хорошо это подтверждает.

Если трубу, по которой течет жидкость, снабдить впаянными в нее открытыми трубками - манометрами (рис. 209), то можно будет наблюдать распределение давления вдоль трубы. В узких местах трубы высота столба жидкости в манометрической трубке меньше, чем в широких. Это означает, что в этих местах давление меньше. Чем меньше сечение трубы, тем больше в ней скорость течения и меньше давление. Можно, очевидно, подобрать такое сечение, в котором давление равно внешнему атмосферному давлению (высота уровня жидкости в манометре будет тогда равна нулю). А если взять еще меньшее сечение, то давление жидкости в нем будет меньше атмосферного.

Такой поток жидкости можно использовать для откачки воздуха. На этом принципе действует так называемый водоструйный насос. На рисунке 210 изображена схема такого насоса. Струю воды пропускают через трубку А с узким отверстием на конце. Давление воды у отверстия трубы меньше атмосферного. Поэтому

газ из откачиваемого объема через трубку В втягивается к концу трубки А и удаляется вместе с водой.

Все сказанное о движении жидкости по трубам относится и к движению газа. Если скорость течения газа не слишком велика и газ не сжимается настолько, чтобы изменялся его объем, и если, кроме того, пренебречь трением, то закон Бернулли верен и для газовых потоков. В узких частях труб, где газ движется быстрее, давление его меньше, чем в широких частях, и может стать меньше атмосферного. В некоторых случаях для этого даже не требуется трубы.

Можно проделать простой опыт. Если дуть на лист бумаги вдоль его поверхности, как показано на рисунке 211, можно увидеть, что бумага станет подниматься вверх. Это происходит из-за понижения давления в струе воздуха над бумагой.

Такое же явление имеет место при полете самолета. Встречный поток воздуха набегает на выпуклую верхнюю поверхность крыла летящего самолета, и за счет этого происходит понижение давления. Давление над крылом оказывается меньше, чем давление под крылом. Именно поэтому возникает подъемная сила крыла.

Упражнение 62

1. Допустимая скорость течения нефти по трубам равна 2 м/сек. Какой объем нефти проходит через трубу диаметром 1 м в течение 1 ч?

2. Измерьте количество воды, вытекающей из водопроводного крана за определенное время Определите скорость течения воды, измерив диаметр трубы перед краном.

3. Каким должен быть диаметр трубопровода, по которому должно протекать воды в час? Допустимая скорость течения воды 2,5 м/сек.

Рассмотрим ламинарное движение идеальной (то есть без внутреннего трения) несжимаемой жидкости в изогнутой трубке разного диаметра. Мы уже знаем, что из уравнения непрерывности жидкости S⋅v = const. Какие ещё можно сделать выводы?

Рассмотрим трубку разного сечения:

Возьмём срез жидкости в трубке. Из уравнения непрерывности следует, что при уменьшении сечения трубы увеличивается скорость потока жидкости. Если скорость увеличивается, значит по второму закону Ньютона действует сила F = m⋅a. Эта сила возникает за счет разности давления между стенками сечения потока жидкости. Значит сзади давление больше, чем спереди сечения. Это явление впервые описал Даниил Бернулли.

Закон Бернулли

В тех участках течения жидкости, где скорость больше давление меньше и наоборот.

Как любое тело, жидкость при перемещении совершает работу, т.е. выделяет энергию или поглощает. Закон сохранения энергии утверждает, что энергия тела никогда не исчезает и не появляется вновь, она может лишь превращаться из одного вида в другой. Этот закон универсален. В различных разделах физики он имеет свою формулировку.

Рассмотрим, какую работу совершает жидкость:

  • Работа давления жидкости (E P) . Давления жидкости выражается в том, что жидкость сзади давит на жидкость спереди.
  • Работа по перемещению жидкости на высоту h (E h) . При опускании жидкости эта работа отрицательная, при поднятии - положительная.
  • Работа по приданию скорости жидкости (E v) . При сужении трубки работа положительная, при расширении - отрицательная. Ещё это называют - кинетическая энергия или динамическое давление.

Так как мы рассматриваем идеальную жидкость, то трение отсутствует, а значит нет работы силы трения. Но в реальной жидкости она присутствует.

По закону сохранения энергии:

E p + E h + E v = const

Давайте теперь определим, чем равняется каждая из этих работ.

Работа давления жидкости (E P)

Формула давления имеет вид: P = F/S, F = P⋅S. Работа силы создающая давление:

E P = P⋅S⋅ΔL = P⋅V

Работа по перемещению жидкости на высоту h (E h)

Работа по перемещению жидкости на высоту h - это изменение потенциальной энергии которая равна:

E h = m⋅g⋅h = V⋅ρ⋅g⋅h

Работа по приданию скорости жидкости (E v)

Работа по приданию скорости жидкости - это кинетическая энергия, которая зависит от массы тела и его скорости и равна:

E k = m⋅v 2 /2 = V⋅ρ⋅v 2 /2

Получим формулу сохранения энергии жидкости:

P⋅V + V⋅ρ⋅g⋅h + V⋅ρ⋅v 2 /2 = const

Сократим каждое слагаемое на V. Получим уравнение:

Формула Бернулли

P + ρ⋅g⋅h + ρ⋅v 2 /2 = const

Разделим каждый член последнего уравнения ρ⋅g, получим

h + P  +  v 2  = const
ρ⋅g 2g

где h - геометрический напор, м;
P / ρ∙g - пьезометрический напор, м;
v 2 / 2g - скоростной напор, м.

Полученное уравнение называется уравнением Бернулли для элементарной струйки идеальной жидкости. Оно было получено Даниилом Бернулли в 1738 году.

Сумма трех членов уравнения называется полным напором.

Или можно сказать по-другому - для идеальной движущейся жидкости сумма трех напоров: геометрического, пьезометрического и скоростного есть величина постоянная вдоль струйки.