Множественная корреляция формула. Коэффициент корреляции и причинно-следственная связь: формулы и их интерпретация

Если частные коэффициенты корреляции модели множественной регрессии оказались значимыми, т. е. между результативной переменной и факторными модельными переменными действительно существует корреляционная взаимосвязь, то в этом случае построение множественного коэффициента корреляции считается целесообразным.

С помощью множественного коэффициента корреляции характеризуется совокупное влияние всех факторных переменных на результативную переменную в модели множественной регрессии.

Коэффициент множественной корреляции для линейной модели множественной регрессии с n факторными переменными рассчитывается через стандартизированные частные коэффициенты регрессии и парные коэффициенты корреляции по формуле:

где r (yxi) – парный (не частный) коэффициент корреляции между результативной переменной у и факторной переменной xi

Коэффициент множественной корреляции изменяется в пределах от нуля до единицы. С его помощью нельзя охарактеризовать направление связи между результативной и факторными переменными. Чем ближе значение множественного коэффициента корреляции к единице, тем сильнее взаимосвязь между результативной и независимыми переменными, и наоборот, чем ближе значение множественного коэффициента корреляции к нулю, тем слабее взаимосвязь между результативной и независимыми переменными.

Коэффициентом множественной детерминации R2 называется квадрат множественного коэффициента корреляции:

Коэффициент множественной детерминации характеризует, на сколько процентов построенная модель регрессии объясняет вариацию значений результативной переменной относительно своего среднего уровня, т. е. показывает долю общей дисперсии результативной переменной, объяснённой вариацией факторных переменных, включённых в модель регрессии.

Коэффициент множественной детерминации также называется количественной характеристикой объяснённой построенной моделью регрессии дисперсии результативной переменной. Чем больше значение коэффициента множественной детерминации, тем лучше построенная модель регрессии характеризует взаимосвязь между переменными.

Для коэффициента множественной детерминации всегда выполняется неравенство вида:

Следовательно, включение в линейную модель регрессии дополнительной факторной переменной xn не снижает значения коэффициента множественной детерминации.

Коэффициент множественной детерминации может быть определён не только как квадрат множественного коэффициента корреляции, но и с помощью теоремы о разложении сумм квадратов по формуле:

где ESS (Error Sum Square) – сумма квадратов остатков модели множественной регрессии с n независимыми переменными:

TSS (TotalSumSquare) – общая сумма квадратов модели множественной регрессии с n независимыми переменными:

Однако классический коэффициент множественной детерминации не всегда способен определить влияние на качество модели регрессии дополнительной факторной переменной. Поэтому наряду с обычным коэффициентом рассчитывают также и скорректированный (adjusted) коэффициент множественной детерминации, в котором учитывается количество факторных переменных, включённых в модель регрессии:

где n – количество наблюдений в выборочной совокупности;

Коэффициент обладает следующими свойствами:

1) не имеет размерности, следовательно, сопоставим для величин различных порядков;

2) изменяется в диапазоне от –1 до +1. Положительное значение свидетельствует о прямой линейной связи, отрицательное – об обратной. Чем ближе абсолютное значение коэффициента к единице, тем теснее связь. Считается, что связь достаточно сильная, если коэффициент по абсолютной величине превышает 0,7, и слабая, если он менее 0,3.

Значение коэффициента легко вычисляется при помощи MS Excel (функция КОРРЕЛ).

Величина r 2 называется коэффициентом детерминации . Он определяет долю вариации одной из переменных, которая объясняется вариацией другой переменной.

6. Коэффициент множественной корреляции

Экономические явления чаще всего адекватно описываются именно многофакторными моделями. Поэтому возникает необходимость обобщить рассмотренное выше корреляционное отношение (6.4) на случай нескольких переменных.

Теснота линейной взаимосвязи между переменной y и рядом переменных x j , рассматриваемых в целом, может быть определена с помощью коэффициента множественной корреляции .

Предположим, что переменная y испытывает влияние двух переменных - x и z . В этом случае коэффициент множественной корреляции может быть определен по формуле:

. (6.9)

где r yx , r yz , r xz - простые коэффициенты линейной парной корреляции, определенные из соотношения (6.4).

Коэффициент множественной корреляции заключен в пределах 0 ≤ R ≤ 1. Он не меньше, чем абсолютная величина любого парного или частного коэффициента корреляции с таким же первичным индексом.

С помощью множественного коэффициента (по мере приближения R к 1) делается вывод о тесноте взаимосвязи, но не о ее направлении. Величина R 2 , называемая множественным коэффициентом детерминации , показывает, какую долю вариации исследуемой переменной (y ) объясняет вариация остальных учтенных переменных (x , z ).

7. Коэффициент частной корреляции

Иногда представляет интерес измерение частных зависимостей (между y и x j ) при условии, что воздействие других факторов, принимаемых во внимание, устранено. В качестве соответствующих измерителей приняты коэффициенты частной корреляции .

Рассмотрим порядок расчета коэффициента частной корреляции для случая, когда во взаимосвязи находятся три случайные переменные – x , y , z . Для них могут быть получены простые коэффициенты линейной парной корреляции – r yx , r yz , r xz . Однако большая величина этого коэффициента может быть обусловлена не только тем, что y и x действительно связаны между собой, но и в силу того, что обе переменные испытывают сильное действие третьего фактора – z .

Коэффициент частной корреляции отличается от простого коэффициента линейной парной корреляции тем, что он измеряет парную корреляцию соответствующих признаков (y и x ) при условии, что влияние на них третьего фактора (z ) устранено.

Соответствующая расчетная формула:

. (6.10)

Частный коэффициент корреляции, так же как и парный коэффициент корреляции r (рассчитанный по формуле (6.4)), может принимать значения от -1 до 1.

Множественный коэффициент корреляции характеризует тесноту линейной связи между одной переменной и совокупностью других рассматриваемых переменных.
Особое значение имеет расчет множественного коэффициента корреляции результативного признака y с факторными x 1 , x 2 ,…, x m , формула для определения которого в общем случае имеет вид

Y ) 2 " data-id="a;b" data-formul="sqrt(c-a/b)" data-r="R" data-const="c:1">Рассчитать свое значение


где ∑(y i -y x) 2 - необъясненная (остаточная) сумма квадратов отклонений, ∑(y i -y ) 2 - общая сумма квадратов отклонений.
Множественный коэффициент корреляции можно найти через корреляционные матрицы:

где ∆ r – определитель корреляционной матрицы; ∆ 11 – алгебраическое дополнение элемента r yy корреляционной матрицы.
Если рассматриваются лишь два факторных признака, то для вычисления множественного коэффициента корреляции можно использовать следующую формулу:

Построение множественного коэффициента корреляции целесообразно только в том случае, когда частные коэффициенты корреляции оказались значимыми, и связь между результативным признаком и факторами, включенными в модель, действительно существует.

Коэффициент детерминации

Общая формула: R 2 = RSS/TSS=1-ESS/TSS
где RSS - объясненная сумма квадратов отклонений, ESS - необъясненная (остаточная) сумма квадратов отклонений, TSS - общая сумма квадратов отклонений (TSS=RSS+ESS)

,
где r ij - парные коэффициенты корреляции между регрессорами x i и x j , a r i 0 - парные коэффициенты корреляции между регрессором x i и y ;
- скорректированный (нормированный) коэффициент детерминации.

Квадрат множественного коэффициента корреляции R² y|x 1 x 2 ...x m ≡R² называется множественным коэффициентом детерминации ; он показывает, какая доля дисперсии результативного признака y объясняется влиянием факторных признаков x 1 , x 2 , …,x m . Заметим, что формула для вычисления коэффициента детерминации через соотношение остаточной и общей дисперсии результативного признака даст тот же результат.
Множественный коэффициент корреляции и коэффициент детерминации изменяются в пределах от 0 до 1. Чем ближе к 1, тем связь сильнее и, соответственно, тем точнее уравнение регрессии, построенное в дальнейшем, будет описывать зависимость y от x 1 , x 2 , …,x m . Если значение множественного коэффициента корреляции невелико (меньше 0,3), это означает, что выбранный набор факторных признаков в недостаточной мере описывает вариацию результативного признака либо связь между факторными и результативной переменными является нелинейной.

Рассчитывается множественный коэффициент корреляции с помощью калькулятора . Значимость множественного коэффициента корреляции и коэффициента детерминации проверяется с помощью критерия Фишера .

Какое из приведенных чисел может быть значением коэффициента множественной детерминации:
а) 0,4 ;
б) -1;
в) -2,7;
г) 2,7.

Множественный линейный коэффициент корреляции равен 0.75 . Какой процент вариации зависимой переменной у учтен в модели и обусловлен влиянием факторов х 1 и х 2 .
а) 56,2 (R 2 =0.75 2 =0.5625);
б) 75,0;
в) 37,5

Для нелинейных моделей регрессии показатель корреляции называется индексом множественной корреляции . Для линейных моделей он равен коэффициенту множественной корреляции .
Решение осуществляем с помощью калькулятора .

Видеоинструкция
1. Оценка уравнения регрессии.
Определим вектор оценок коэффициентов регрессии. Согласно методу наименьших квадратов, вектор получается из выражения:
s = (X T X) -1 X T Y
Матрица X

1 474.61 428.16
1 474.3 441.04
1 393.93 371.08
1 403.87 412.53
1 428.61 534.51
1 475.37 583.03
1 476.57 600.25
1 549.98 612.33
1 578.39 618.54
1 581.06 579.44

Матрица Y
130.34
126.83
108.61
116.01
135.44
142.88
158.69
168.49
174.8
187.15

Матрица X T
1 1 1 1 1 1 1 1 1 1
474.61 474.3 393.93 403.87 428.61 475.37 476.57 549.98 578.39 581.06
428.16 441.04 371.08 412.53 534.51 583.03 600.25 612.33 618.54 579.44

Умножаем матрицы, (X T X)

В матрице, (X T X) число 10, лежащее на пересечении 1-й строки и 1-го столбца, получено как сумма произведений элементов 1-й строки матрицы X T и 1-го столбца матрицы X
Умножаем матрицы, (X T Y)

Находим определитель det(X T X) T = 14407342213.13
Находим обратную матрицу (X T X) -1

5.8295 -0.0116 -0.0002
-0.0116 0.0001 -0
-0.0002 -0 0

Уравнение регрессии (оценка уравнения регрессии)
Y = -32.2394 + 0.2412X 1 + 0.1151X 2
2. Матрица парных коэффициентов корреляции .
Число наблюдений n = 10. Число независимых переменных в модели ровно 2, а число регрессоров с учетом единичного вектора равно числу неизвестных коэффициентов. С учетом признака Y, размерность матрицы становится равным 4. Матрица, независимых переменных Х имеет размерность (10 х 4). Матрица Х T Х определяется непосредственным умножением или по следующим предварительно вычисленным суммам.
Матрица составленная из Y и X

1 130.34 474.61 428.16
1 126.83 474.3 441.04
1 108.61 393.93 371.08
1 116.01 403.87 412.53
1 135.44 428.61 534.51
1 142.88 475.37 583.03
1 158.69 476.57 600.25
1 168.49 549.98 612.33
1 174.8 578.39 618.54
1 187.15 581.06 579.44

Транспонированная матрица.
1 1 1 1 1 1 1 1 1 1
130.34 126.83 108.61 116.01 135.44 142.88 158.69 168.49 174.8 187.15
474.61 474.3 393.93 403.87 428.61 475.37 476.57 549.98 578.39 581.06
428.16 441.04 371.08 412.53 534.51 583.03 600.25 612.33 618.54 579.44

Матрица A T A.
Найдем парные коэффициенты корреляции.
Для y и x 1
Средние значения



Дисперсия




Коэффициент корреляции

Для y и x 2
Уравнение имеет вид y = ax + b
Средние значения



Дисперсия


Среднеквадратическое отклонение


Коэффициент корреляции

Для x 1 и x 2
Уравнение имеет вид y = ax + b
Средние значения



Дисперсия


Среднеквадратическое отклонение


Коэффициент корреляции

Матрица парных коэффициентов корреляции.

- y x 1 x 2
y 1 0.93 0.88
x 1 0.93 1 0.75
x 2 0.88 0.75 1

Анализ первой строки этой матрицы позволяет произвести отбор факторных признаков, которые могут быть включены в модель множественной корреляционной зависимости. Факторные признаки, у которых r yxi < 0.5 исключают из модели.
Коллинеарность - зависимость между факторами. В качестве критерия мультиколлинеарности может быть принято соблюдение следующих неравенств:
r(x j y) > r(x k x j) ; r(x k y) > r(x k x j).
Если одно из неравенств не соблюдается, то исключается тот параметр x k или x j , связь которого с результативным показателем Y оказывается наименее тесной.

3. Анализ параметров уравнения регрессии. Перейдем к статистическому анализу полученного уравнения регрессии: проверке значимости уравнения и его коэффициентов, исследованию абсолютных и относительных ошибок аппроксимации
Для несмещенной оценки дисперсии проделаем следующие вычисления:
Несмещенная ошибка e = Y - X*s (абсолютная ошибка аппроксимации)

-1.19
-6.11
3.11
3.34
2.76
-6.66
6.88
-2.42
-3.68
12.52

s e 2 = (Y - X*s) T (Y - X*s)
Несмещенная оценка дисперсии равна

Оценка среднеквадратичного отклонения равна (Стандартная ошибка для оценки Y)

Найдем оценку ковариационной матрицы вектора k = σo(X T X) -1


Дисперсии параметров модели определяются соотношением S 2 i = K ii , т.е. это элементы, лежащие на главной диагонали
С целью расширения возможностей содержательного анализа модели регрессии используются частные коэффициенты эластичности, которые определяются по формуле


Частные коэффициент эластичности E 1 < 1. Следовательно, его влияние на результативный признак Y незначительно.

Частные коэффициент эластичности E 2 < 1. Следовательно, его влияние на результативный признак Y незначительно.

Индекс множественной корреляции

R > 0.9, связь между признаком Y факторами X сильная.
Коэффициент детерминации: R 2 = 0.97 2 = 0.95, т.е. в 96% случаев изменения х приводят к изменению y. Другими словами - точность подбора уравнения регрессии - высокая.
Значимость коэффициента корреляции.

По таблице Стьюдента находим Tтабл
T табл (n-m-1;a) = (7;0.05) = 1.895
Поскольку Tнабл > Tтабл, то отклоняем гипотезу о равенстве 0 коэффициента корреляции. Другими словами, коэффициента корреляции статистически - значим.

4. Оценка значения результативного признака при заданных значениях факторов.
Y(0.0,0.0,) = -32.24 + 0.2412 * 0.0 + 0.1151 * 0.0 = -32.24
Доверительные интервалы с вероятностью 0.95 для индивидуального значения результативного признака.
S 2 = X 0 T (X T X) -1 X 0
где X 0 T = [ 1 0.0 0.0]
(X T X) -1

5.8295 -0.0116 -0.0002
-0.0116 0.0001 -0
-0.0002 -0 0
S 2 = 5.83

(Y - t*S Y ; Y + t*S Y)
(-32.24 - 1.895*16.71 ; -32.24 + 1.895*16.71)
(-63.91;-0.57)
Доверительные интервалы с вероятностью 0.95 для среднего значения результативного признака.

(-32.24 - 1.895*18.08 ; -32.24 + 1.895*18.08)
(-66.5;2.02)

5. Проверка гипотез относительно коэффициентов уравнения регрессии (проверка значимости параметров множественного уравнения регрессии).
1) t-статистика


Статистическая значимость коэффициента регрессии b 0 подтверждается

Статистическая значимость коэффициента регрессии b 1 подтверждается

Статистическая значимость коэффициента регрессии b 2 подтверждается
Доверительный интервал для коэффициентов уравнения регрессии
Определим доверительные интервалы коэффициентов регрессии, которые с надежность 95% будут следующими:
(b i - t i S i ; b i + t i S i)
b 0: (-44.2749;-20.2039)
b 1: (0.204;0.2784)
b 2: (0.0887;0.1415)
2) F-статистика. Критерий Фишера


Fkp = 4.35
Поскольку F > Fkp, то коэффициент детерминации статистически значим и уравнение регрессии статистически надежно

6. Проверка на наличие гетероскедастичности методом графического анализа остатков. В этом случае по оси абсцисс откладываются значения объясняющей переменной X i , а по оси ординат квадраты отклонения e i 2 .

y y(x) e=y-y(x) e 2
130.34 131.53 -1.19 1.43
126.83 132.94 -6.11 37.35
108.61 105.5 3.11 9.67
116.01 112.67 3.34 11.16
135.44 132.68 2.76 7.63
142.88 149.54 -6.66 44.39
158.69 151.81 6.88 47.28
168.49 170.91 -2.42 5.87
174.8 178.48 -3.68 13.56
187.15 174.63 12.52 156.86

Ввод данных

Результат:

Отмена

Для определения степени зависимости между несколькими показателями применяется множественные коэффициенты корреляции. Их затем сводят в отдельную таблицу, которая имеет название корреляционной матрицы. Наименованиями строк и столбцов такой матрицы являются названия параметров, зависимость которых друг от друга устанавливается. На пересечении строк и столбцов располагаются соответствующие коэффициенты корреляции. Давайте выясним, как можно провести подобный расчет с помощью инструментов Excel.

Принято следующим образом определять уровень взаимосвязи между различными показателями, в зависимости от коэффициента корреляции:

  • 0 – 0,3 – связь отсутствует;
  • 0,3 – 0,5 – связь слабая;
  • 0,5 – 0,7 – средняя связь;
  • 0,7 – 0,9 – высокая;
  • 0,9 – 1 – очень сильная.

Если корреляционный коэффициент отрицательный, то это значит, что связь параметров обратная.

Для того, чтобы составить корреляционную матрицу в Экселе, используется один инструмент, входящий в пакет «Анализ данных» . Он так и называется – «Корреляция» . Давайте узнаем, как с помощью него можно вычислить показатели множественной корреляции.

Этап 1: активация пакета анализа

Сразу нужно сказать, что по умолчанию пакет «Анализ данных» отключен. Поэтому, прежде чем приступить к процедуре непосредственного вычисления коэффициентов корреляции, нужно его активировать. К сожалению, далеко не каждый пользователь знает, как это делать. Поэтому мы остановимся на данном вопросе.


После указанного действия пакет инструментов «Анализ данных» будет активирован.

Этап 2: расчет коэффициента

Теперь можно переходить непосредственно к расчету множественного коэффициента корреляции. Давайте на примере представленной ниже таблицы показателей производительности труда, фондовооруженности и энерговооруженности на различных предприятиях рассчитаем множественный коэффициент корреляции указанных факторов.


Этап 3: анализ полученного результата

Теперь давайте разберемся, как понимать тот результат, который мы получили в процессе обработки данных инструментом «Корреляция» в программе Excel.

Как видим из таблицы, коэффициент корреляции фондовооруженности (Столбец 2 ) и энерговооруженности (Столбец 1 ) составляет 0,92, что соответствует очень сильной взаимосвязи. Между производительностью труда (Столбец 3 ) и энерговооруженностью (Столбец 1 ) данный показатель равен 0,72, что является высокой степенью зависимости. Коэффициент корреляции между производительностью труда (Столбец 3 ) и фондовооруженностью (Столбец 2 ) равен 0,88, что тоже соответствует высокой степени зависимости. Таким образом, можно сказать, что зависимость между всеми изучаемыми факторами прослеживается довольно сильная.

Как видим, пакет «Анализ данных» в Экселе представляет собой очень удобный и довольно легкий в обращении инструмент для определения множественного коэффициента корреляции. С его же помощью можно производить расчет и обычной корреляции между двумя факторами.

Коэффициент множественной корреляции (R ) характеризует тесноту связи между результативным показателем и набором фактор­ных показателей:

где σ 2 - общая дисперсия эмпирического ряда, характеризующая общую вариацию результативного показателя (у) за счет факторов;

σ ост 2 - остаточная дисперсия в ряду у, отражающая влияния всех факто­ров, кроме х;

у - среднее значение результативного показателя, вычисленное по ис­ходным наблюдениям;

s - среднее значение результативного показателя, вычисленное по уравнению регрессии.

Коэффициент множественной корреляции принимает только поло­жительные значения в пределах от 0 до 1. Чем ближе значение коэффи­циента к 1, тем больше теснота связи. И, наоборот, чем ближе к 0, тем за­висимость меньше. При значении R < 0,3 говорят о малой зависимости между величинами. При значении 0,3 < R < 0,6 говорят о средней тесноте связи. При R > 0,6 говорят о наличии существенной связи.

Квадрат коэффициента множественной корреляции называется коэффициентом детерминации (D ): D = R 2 . Коэффициент детермина­ции показывает, какая доля вариации результативного показателя свя­зана с вариацией факторных показателей. В основе расчета коэффици­ента детерминации и коэффициента множественной корреляции лежит правило сложения дисперсий, согласно которому общая дисперсия (σ 2) равна сумме межгрупповой дисперсии (δ 2) и средней из групповых дис­персий σ i 2):

σ 2 = δ 2 + σ i 2 .

Межгрупповая дисперсия характеризует колеблемость результа­тивного показателя за счет изучаемого фактора, а средняя из групповых дисперсий отражает колеблемость результативного показателя за счет всех прочих факторов, кроме изучаемого.

Математические модели корреляционного анализа в форме коэф­фициентов имеют ограниченные аналитические возможности. Зная лишь направление ковариации показателей и тесноту связи, невозмож­но определить закономерности формирования уровня результативного показателя под влиянием исследуемых факторов, оценить интенсив­ность их влияния, классифицировать факторы на основные и второсте­пенные. Для этих целей используются модели регрессионного анализа. Линейная модель (уравнение) регрессионного анализа может быть пред­ставлена в виде

у = bo + b 1 x 1 + b 2 x 2 +... + b n x n ,

где у - результативный показатель;

x 1 , x 2 , ..., x n - факторные модели;

b 0 , b 1 , b 2 , ..., b n - коэффициенты регрессии.

Смотрите также: