Степень числа: определения, обозначение, примеры. Степень с рациональным и действительным показателем Степень с действительным показателем определение

Тема урока: Степень с действительным показателем.

Задачи:

  • Образовательные :
    • обобщить понятие степени;
    • отработать умение находить значение степени с действительным показателем;
    • закрепить умения использовать свойства степени при упрощении выражений;
    • выработать навык использования свойств степени при вычислениях.
  • Развивающие :
    • интеллектуальное, эмоциональное, личностное развитие ученика;
    • развивать умение обобщать, систематизировать на основе сравнения, делать вывод;
    • активизировать самостоятельную деятельность;
    • развивать познавательный интерес.
  • Воспитательные :
    • воспитание коммуникативной и информационной культуры обучающихся;
    • эстетическое воспитание осуществляется через формирование умения рационально, аккуратно оформлять задание на доске и в тетради.

Учащиеся должны знать: определение и свойства степени с действительным показателем.

Учащиеся должны уметь:

  • определять имеет ли смысл выражение со степенью;
  • использовать свойства степени при вычислениях и упрощении выражений;
  • решать примеры, содержащие степень;
  • сравнивать, находить сходства и отличия.

Форма урока: семинар – практикум, с элементами исследования. Компьютерная поддержка.

Форма организации обучения: индивидуальная, групповая.

Тип урока: урок исследовательской и практической работы.

ХОД УРОКА

Организационный момент

«Однажды царь решил выбрать из своих придворных первого помощника. Он подвёл всех к огромному замку. «Кто первым откроет, тот и будет первым помощником». Никто даже не притронулся к замку. Лишь один визирь подошёл и толкнул замок, который открылся. Он не был закрыт на ключ.
Тогда царь сказал: «Ты получишь эту должность, потому что полагаешься не только на то, что видишь и слышишь, а надеешься на собственные силы и не боишься сделать попытку».
И мы сегодня будем пытаться, пробовать, чтобы прийти к правильному решению.

1. С каким математическим понятием связаны слова:

Основание
Показатель (Степень)
Какими словами можно объединить слова:
Рациональное число
Целое число
Натуральное число
Иррациональное число (Действительное число)
Сформулируйте тему урока. (Степень с действительным показателем)

2. Какая наша стратегическая цель? (ЕГЭ)
Какие цели нашего урока ?
– Обобщить понятие степени.

Задачи:

– повторить свойства степени
– рассмотреть применение свойств степени при вычислениях и упрощениях выражений
– отработка вычислительных навыков.

3. Итак, а р, где р – число действительное.
Приведите примеры (выберете из выражений 5 –2 , 43, ) степени

– с натуральным показателем
– с целым показателем
– с рациональным показателем
– с иррациональным показателем

4. При каких значениях а имеет смысл выражение

аn, где n (а – любое)
аm, где m (а 0) Как от степени с отрицательным показателем перейти к степени с положительным показателем?
, где (а0)

5. Из данных выражений выберете те, которые смысла не имеют:
(–3) 2 , , , 0 –3 , , (–3) –1 , .
6. Вычислите. Ответы в каждом столбике обладают одним общим свойством. Укажите лишний ответ (этим свойством не обладающий)

2 = =
= 6 = (неправ. др.) = (нельзя записать дес. др.)
= (дробь) = =

7. Какие действия (математические операции) можно выполнять со степенями?

Установите соответствие:

Один ученик записывает формулы (свойства) в общем виде.

8. Дополнить степени из п.3 так, чтобы к полученному примеру можно было применить свойства степени.

(Один человек работает у доски, остальные в тетрадях. Для проверки обменяться тетрадями, а ещё один выполняет действия на доске)

9. На доске (работает ученик):

Вычислите : =

Самостоятельно (с проверкой на листах)

Какой из ответов не может получиться в части «В» на ЕГЭ? Если в ответе получилось , то как записать такой ответ в части «В»?

10. Самостоятельное выполнение задания (с проверкой у доски – несколько человек)

Задание с выбором ответа

1
2 :
3 0,3
4

11. Задание с кратким ответом (решение у доски):

+ + (60)5 2 – 3–4 27 =

Самостоятельно с проверкой на скрытой доске:

– – 322– 4 + (30)4 4 =

12 . Сократите дробь (на доске):

В это время один человек решает на доске самостоятельно: = (класс проверяет)

13. Самостоятельное решение (на проверку)

На отметку «3»: Тест с выбором ответа:

1. Укажите выражение, равное степени

1. 2. 3. 4.

2. Представьте в виде степени произведение: – Спасибо за урок!

Степенью числа a с натуральным показателем n , большим 1, называется произведение n множителей, каждый из которых равен a :

В выражении a n:

Число а (повторяющийся множитель) называют основанием степени

Число n (показывающее сколько раз повторяется множитель) – показателем степени

Например:
2 5 = 2·2·2·2·2 = 32,
здесь:
2 – основание степени,
5 – показатель степени,
32 – значение степени

Отметим, что основание степени может быть любым числом.

Вычисление значения степени называют действием возведения в степень. Это действие третьей ступени. То есть при вычислении значения выражения, не содержащего скобки, сначала выполняют действие третьей ступени, затем второй (умножение и деление) и, наконец, первой (сложение и вычитание).

Для записи больших чисел часто применяются степени числа 10. Так, расстояние от земли до солнца примерно равное 150 млн. км, записывают в виде 1,5 · 10 8

Каждое число больше 10 можно записать в виде: а · 10 n , где 1 ≤ a < 10 и n – натуральное число. Такая запись называется стандартным видом числа.

Например: 4578 = 4,578 · 10 3 ;

103000 = 1,03 · 10 5 .

Свойства степени с натуральным показателем:

1 . При умножении степеней с одинаковыми основаниями основание остается прежним, а показатели степеней складываются

a m · a n = a m + n

например: 7 1.7 · 7 - 0.9 = 7 1.7+(- 0.9) = 7 1.7 - 0.9 = 7 0.8

2 . При делении степеней с одинаковыми основаниями основание остается прежним, а показатели степеней вычитаются

a m / a n = a m - n ,

где, m > n,
a ≠ 0

например: 13 3.8 / 13 -0.2 = 13 (3.8 -0.2) = 13 3.6

3 . При возведении степени в степень основание остается прежним, а показатели степеней перемножаются.

(a m) n = a m · n

например: (2 3) 2 = 2 3·2 = 2 6

4 . При возведении в степень произведения в эту степень возводится каждый множитель

(a · b) n = a n ·b m ,

например:(2·3) 3 = 2 n · 3 m ,

5 . При возведении в степень дроби в эту степень возводятся числитель и знаменатель

(a / b) n = a n / b n

например: (2 / 5) 3 =(2 / 5)·(2 / 5)·(2 / 5) = 2 3 /5 3

Степень с рациональным показателем

Степенью числа а > 0 с рациональным показателем , где m – целое число, а n – натуральное (n > 1), называется число

Например:

Степень числа 0 определена только для положительных показателей;

по определению 0 r = 0 , для любого r > 0

Замечания

Для степеней с рациональным показателем сохраняются основные свойства степеней , верные для любых показателей (при условии, что основание степени будет положительным).

Степень с действительным показателем

Итак, для любого действительного числа мы определили операцию возведения в натуральную степень; для любого числа мы определили возведения в нулевую и целую отрицательную степень; для любого мы определили операцию возведения в положительную дробную степень; для любого мы определили операцию возведения в отрицательную дробную степень.

Возникает естественный вопрос: можно ли каким-либо образом определить операцию возведения в иррациональную степень, а, следовательно, определить смысл выражения a x и для любого действительного числа x ? Оказывается, что для положительных чисел a можно придать смысл записи a α , где α - иррациональное число. Для этого нужно рассмотреть три случая: a = 1, a > 1, 0 < a < 1.

Итак, для a > 0 мы определили степень с любым действительным показателем.

Степень с рациональным показателем

В множество рациональных чисел входят целые и дробные числа.

Определение 1

Степень числа $а$ с целым показателем $n$ является результатом умножения числа $а$ самого на себя $n$ раз, причем: $a^n=a \cdot a \cdot a \cdot \ldots \cdot a$, при $n>0$; $a^n=\frac{1}{a \cdot a \cdot a \cdot \ldots \cdot a}$, при $n

Определение 2

Степень числа $а$ с показателем в виде дроби $\frac{m}{n}$ называется корнем $n$-ной степени из $a$ в степени $m$: $a^\frac{m}{n}=\sqrt[n]{a^m}$, где $а>0$, $n$ – натуральное число, $m$ – целое число.

Определение 3

Степень нуля с показателем в виде дроби $\frac{m}{n}$ определяется следующим образом: $0^\frac{m}{n}=\sqrt[n]{0^m}=0$, где $m$ – целое число, $m>0$, $n$ – натуральное число.

Существует и другой подход к определению степени числа с дробный показателем, который показывает возможность существования степени отрицательного числа или отрицательного дробного показателя.

Например, выражения $\sqrt{(-3)^6}$, $\sqrt{(-3)^3}$ или $\sqrt{(-7)^{-10}}$ имеют смысл, таким образом, и выражения $(-3)^\frac{6}{7}$, $(-3)^\frac{3}{7}$ и $(-7)^\frac{-10}{6}$ должны иметь смысл, в то время, как согласно определению степени с показателем в виде дроби при отрицательном основании не существуют.

Дадим другое определение:

Степенью числа $a$ с дробным показателем $\frac{m}{n}$ называется $\sqrt[n]{a^m}$ в следующих случаях:

    При любом действительном числе $a$, целом $m>0$ и нечетном натуральном $n$.

    Например, $13,4^\frac{7}{3}=\sqrt{13,4^7}$, $(-11)^\frac{8}{5}=\sqrt{(-11)^8}$.

    При любом отличном от нуля действительном числе $a$, целом отрицательном $m$ и нечетном $n$.

    Например, $13,4^\frac{-7}{3}=\sqrt{13,4^{-7}}$, $(-11)^\frac{-8}{5}=\sqrt{(-11)^{-8}}$.

    При любом неотрицательном числе $a$, целом положительном $m$ и четном $n$.

    Например, $13,4^\frac{7}{4}=\sqrt{13,4^7}$, $11^\frac{3}{16}=\sqrt{11^3}$.

    При любом положительном $a$, целом отрицательном $m$ и четном $n$.

    Например, $13,4^\frac{-7}{4}=\sqrt{13,4^{-7}}$, $11^\frac{-3}{8}=\sqrt{11^{-3}}$.

    При других условиях степень с дробным показателем определить невозможно.

    Например, $(-13,4)^\frac{10}{3}=\sqrt{(-13,4)^{10}}$, $(-11)^\frac{5}{4}=\sqrt{(-11)^5}$.

К тому же, при применении данного определения является важным, чтобы дробный показатель $\frac{m}{n}$ был несократимой дробью.

Серьезность данного замечания в том, что степенью отрицательного числа с дробным сократимым показателем, например, $\frac{10}{14}$ будет положительное число, а степенью того же числа с уже сокращенным показателем $\frac{5}{7}$ будет отрицательное число.

Например, $(-1)^\frac{10}{14}=\sqrt{(-1)^{10}}=\sqrt{1^{10}}=1$, а $(-1)^\frac{5}{7}=\sqrt{(-1)^5}=-1$.

Таким образом, при выполнении сокращения дроби $\frac{10}{14}=\frac{5}{7}$ не выполняется равенство $(-1)^\frac{10}{14}=(-1)^\frac{5}{7}$.

Замечание 1

Нужно отметить, что чаще применяется более удобное и простое первое определение степени с показателем в виде дроби.

В случае записи дробного показателя степени в виде смешанной дроби или десятичной, необходимо показатель степени преобразовать к виду обыкновенной дроби.

Например, $(2 \frac{3}{7})^{1 \frac{2}{7}}=(2 \frac{3}{7})^\frac{9}{7}=\sqrt{(2 \frac{3}{7})^9}$, $7^{3,6}=7^\frac{36}{10}=\sqrt{7^{36}}$.

Степень с иррациональным и действительным показателем

К действительным числам относятся рациональные и иррациональные числа.

Разберем понятие степени с иррациональным показателем, т.к. степень с рациональным показателем мы рассмотрели.

Рассмотрим последовательность приближений к числу $\alpha$, которые являются рациональными числами. Т.е. имеем последовательность рациональных чисел $\alpha_1$, $\alpha_2$, $\alpha_3$, $\ldots$, которые определяют число $\alpha$ с любой степенью точности. Если вычислить степени с этими показателями $a^{\alpha_1}$, $a^{\alpha_2}$, $a^{\alpha_3}$, $\ldots$, то окажется, что эти числа являются приближениями к некоторому числу $b$.

Определение 4

Степенью числа $a>0$ с иррациональным показателем $\alpha$ называется выражение $a^\alpha$, которое имеет значение, равное пределу последовательности $a^{\alpha_1}$, $a^{\alpha_2}$, $a^{\alpha_3}$, $\ldots$, где $\alpha_1$, $\alpha_2$, $\alpha_3$, … – последовательные десятичные приближения иррационального числа $\alpha$.

Данный урок входит в тему "Преобразования выражений, содержащих степени и корни".

Конспект представляет собой подробную разработку урока по свойствам степени с рациональным и действительным показателем. Используются компьютерные, групповые и игровые технологии обучения.

Скачать:


Предварительный просмотр:

Методическая разработка урока по алгебре

преподавателя математики ГАУ КО ПО КСТ

Пеховой Надежды Юрьевны

по теме: «Свойства степени с рациональным и действительным показателем».

Цели урока:

  • обучающие: закрепление и углубление знаний свойств степени с рациональным показателем и применение их в упражнениях; совершенствование знаний по истории развития степеней;
  • развивающие: развитие навыка само- и взаимоконтроля; развитие интеллектуальных способностей, мыслительных умений,
  • воспитывающие: воспитание познавательного интереса к предмету, воспитание ответственности за выполняемую работу, способствовать созданию атмосферы активного творческого труда.

Тип урока: Уроки совершенствования знаний, умений и навыков.

Методы проведения: словесно – наглядные.

Педагогические технологии: компьютерные, групповые и игровые технологии обучения.

Оснащение урока: проекционная техника, компьютер, презентация к уроку, рабочие

тетради, учебники, карточки с текстом кроссворда и рефлексивного теста.

Время занятия: 1час 20мин.

Основные этапы урока :

1. Организационный момент. Сообщение темы, целей урока.

2. Актуализация опорных знаний. Повторение свойств степени с рациональным показателем.

3. Математический диктант на свойства степени с рациональным показателем.

4. Сообщения обучающихся с использованием компьютерной презентации.

5. Работа группами.

6. Решение кроссворда.

7. Подведение итогов, выставление оценок. Рефлексия.

8. Домашнее задание.

Ход урока :

1. Орг. момент. Сообщение темы, целей урока, плана урока. Слайды 1, 2.

2. Актуализация опорных знаний.

1) Повторение свойств степени с рациональным показателем: обучающиеся должны продолжить написанные свойства – фронтальный опрос. Слайд 3.

2) Учащиеся у доски - разбор упражнений из учебника (Алимов Ш.А.): а) № 74, б) № 77.

В) № 82-а;б;в.

№74: а) = = a ;

Б) + = ;

В) : = = = b .

№ 77: а) = = ;

Б) = = = b .

№ 82: а) = = = ;

Б) = = y;

В) () () = .

3. Математический диктант со взаимопроверкой. Обучающиеся обмениваются работами, сверяют ответы и выставляют оценки.

Слайды 4 - 5

4. Сообщения учащихся некоторых исторических фактов по изучаемой теме.

Слайды 6 – 12:

Первый учащийся : Слайд 6

Понятие степени с натуральным показателем сформировалось ещё у древних народов. Квадрат и куб числа использовались для вычисления площадей и объемов. Степени некоторых чисел использовались при решении отдельных задач учеными Древнего Египта и Вавилона.

В III веке вышла книга греческого ученого Диофанта “Арифметика”, в которой было положено начало введению буквенной символики. Диофант вводит символы для первых шести степеней неизвестного и обратных им величин. В этой книге квадрат обозначается знаком и индексом; например, куб – знаком k c индексом r и т.д.

Второй учащийся : Слайд 7

Большой вклад в развитие понятия степени внес древнегреческий ученый Пифагор. У него была целая школа, и всех его учеников называли пифагорейцами. Они придумали, что каждое число можно представить в виде фигур. Например, числа 4, 9 и 16 они представляли в виде квадратов.

Первый учащийся : Слайды 8-9

Слайд 8

Слайд 9

XVI век. В этом веке понятие степени расширилось: его стали относить не только к конкретному числу, но и к переменной. Как тогда говорили «к числам вообще» Английский математик С. Стевин придумал запись для обозначения степени: запись 3(3)+5(2)–4 обозначала такую современную запись 3 3 + 5 2 – 4.

Второй учащийся : Слайд 10

Позже дробные и отрицательные, показатели встречаются в “Полной арифметике” (1544 г.) немецкого математика М.Штифеля и у С. Стевина.

С.Стевин предположил подразумевать под степенью с показателем вида корень, т.е. .

Первый учащийся : Слайд 11

В конце ХVI века Франсуа Виет ввел буквы для обозначения не только переменных, но и их коэффициентов. Он применял сокращения: N, Q, C – для первой, второй и третьей степеней.

Но современные обозначения (типа , ) в XVII веке ввел Рене Декарт.

Второй учащийся : Слайд 12

Современные определения и обозначения степени с нулевым, отрицательным и дробным показателем берут начало от работ английских математиков Джона Валлиса (1616–1703) и Исаака Ньютона.

5. Решение кроссворда.

Обучающиеся получают листы с кроссвордом. Решают парами. Оценку получает пара, решившая первой. Слайды 13-15.

6. Работа группами. Слайд 16.

Учащиеся выполняют самостоятельную работу, работая группами по 4 человека, консультируя друг друга. Затем работы сдаются на проверку.

7. Подведение итогов, выставление оценок.

Рефлексия.

Учащиеся заполняют рефлексивный тест. Отметьте «+», если согласны, и «-» в противном случае.

Рефлексивный тест :

1. Я узнал(а) много нового.

2. Мне это пригодится в дальнейшем.

3. На уроке было над чем подумать.

4. На все возникшие у меня в ходе урока вопросы, я получил(а) ответы.

5. На уроке я поработал(а) добросовестно и цели урока достиг(ла).

8. Задание на дом: Слайд 17.

1) № 76 (1; 3); № 70 (1; 2)

2) По желанию: составить кроссворд с основными понятиями изученной темы.

Использованная литература:

  1. Алимов Ш.А. алгебра и начала анализа 10-11 классы, учебник – М.: Просвещение, 2010.
  2. Алгебра и начала анализа 10 класс. Дидактические материалы. Просвещение, 2012.

Интернет - ресурсы:

  1. Образовательный сайт - RusCopyBook.Com - Электронные учебники и ГДЗ
  2. Сайт Образовательные ресурсы Интернета - школьникам и студентам. http://www.alleng.ru/edu/educ.htm
  3. Сайт Учительский портал - http://www.uchportal.ru/


После того как определена степень числа , логично поговорить про свойства степени . В этой статье мы дадим основные свойства степени числа, при этом затронем все возможные показатели степени. Здесь же мы приведем доказательства всех свойств степени, а также покажем, как применяются эти свойства при решении примеров.

Навигация по странице.

Свойства степеней с натуральными показателями

По определению степени с натуральным показателем степень a n представляет собой произведение n множителей, каждый из которых равен a . Отталкиваясь от этого определения, а также используя свойства умножения действительных чисел , можно получить и обосновать следующие свойства степени с натуральным показателем :

  1. основное свойство степени a m ·a n =a m+n , его обобщение ;
  2. свойство частного степеней с одинаковыми основаниями a m:a n =a m−n ;
  3. свойство степени произведения (a·b) n =a n ·b n , его расширение ;
  4. свойство частного в натуральной степени (a:b) n =a n:b n ;
  5. возведение степени в степень (a m) n =a m·n , его обобщение (((a n 1) n 2) …) n k =a n 1 ·n 2 ·…·n k ;
  6. сравнение степени с нулем:
    • если a>0 , то a n >0 для любого натурального n ;
    • если a=0 , то a n =0 ;
    • если a<0 и показатель степени является четным числом 2·m , то a 2·m >0 , если a<0 и показатель степени есть нечетное число 2·m−1 , то a 2·m−1 <0 ;
  7. если a и b – положительные числа и a
  8. если m и n такие натуральные числа, что m>n , то при 00 справедливо неравенство a m >a n .

Сразу заметим, что все записанные равенства являются тождественными при соблюдении указанных условий, и их правые и левые части можно поменять местами. Например, основное свойство дроби a m ·a n =a m+n при упрощении выражений часто применяется в виде a m+n =a m ·a n .

Теперь рассмотрим каждое из них подробно.

    Начнем со свойства произведения двух степеней с одинаковыми основаниями, которое называют основным свойством степени : для любого действительного числа a и любых натуральных чисел m и n справедливо равенство a m ·a n =a m+n .

    Докажем основное свойство степени. По определению степени с натуральным показателем произведение степеней с одинаковыми основаниями вида a m ·a n можно записать как произведение . В силу свойств умножения полученное выражение можно записать как , а это произведение есть степень числа a с натуральным показателем m+n , то есть, a m+n . На этом доказательство завершено.

    Приведем пример, подтверждающий основное свойство степени. Возьмем степени с одинаковыми основаниями 2 и натуральными степенями 2 и 3 , по основному свойству степени можно записать равенство 2 2 ·2 3 =2 2+3 =2 5 . Проверим его справедливость, для чего вычислим значения выражений 2 2 ·2 3 и 2 5 . Выполняя возведение в степень , имеем 2 2 ·2 3 =(2·2)·(2·2·2)=4·8=32 и 2 5 =2·2·2·2·2=32 , так как получаются равные значения, то равенство 2 2 ·2 3 =2 5 - верное, и оно подтверждает основное свойство степени.

    Основное свойство степени на базе свойств умножения можно обобщить на произведение трех и большего числа степеней с одинаковыми основаниями и натуральными показателями. Так для любого количества k натуральных чисел n 1 , n 2 , …, n k справедливо равенство a n 1 ·a n 2 ·…·a n k =a n 1 +n 2 +…+n k .

    Например, (2,1) 3 ·(2,1) 3 ·(2,1) 4 ·(2,1) 7 = (2,1) 3+3+4+7 =(2,1) 17 .

    Можно переходить к следующему свойству степеней с натуральным показателем – свойству частного степеней с одинаковыми основаниями : для любого отличного от нуля действительного числа a и произвольных натуральных чисел m и n , удовлетворяющих условию m>n , справедливо равенство a m:a n =a m−n .

    Прежде чем привести доказательство этого свойства, обговорим смысл дополнительных условий в формулировке. Условие a≠0 необходимо для того, чтобы избежать деления на нуль, так как 0 n =0 , а при знакомстве с делением мы условились, что на нуль делить нельзя. Условие m>n вводится для того, чтобы мы не выходили за рамки натуральных показателей степени. Действительно, при m>n показатель степени a m−n является натуральным числом, в противном случае он будет либо нулем (что происходит при m−n ), либо отрицательным числом (что происходит при m

    Доказательство. Основное свойство дроби позволяет записать равенство a m−n ·a n =a (m−n)+n =a m . Из полученного равенства a m−n ·a n =a m и из следует, что a m−n является частным степеней a m и a n . Этим доказано свойство частного степеней с одинаковыми основаниями.

    Приведем пример. Возьмем две степени с одинаковыми основаниями π и натуральными показателями 5 и 2 , рассмотренному свойству степени отвечает равенство π 5:π 2 =π 5−3 =π 3 .

    Теперь рассмотрим свойство степени произведения : натуральная степень n произведения двух любых действительных чисел a и b равна произведению степеней a n и b n , то есть, (a·b) n =a n ·b n .

    Действительно, по определению степени с натуральным показателем имеем . Последнее произведение на основании свойств умножения можно переписать как , что равно a n ·b n .

    Приведем пример: .

    Данное свойство распространяется на степень произведения трех и большего количества множителей. То есть, свойство натуральной степени n произведения k множителей записывается как (a 1 ·a 2 ·…·a k) n =a 1 n ·a 2 n ·…·a k n .

    Для наглядности покажем это свойство на примере. Для произведения трех множителей в степени 7 имеем .

    Следующее свойство представляет собой свойство частного в натуральной степени : частное действительных чисел a и b , b≠0 в натуральной степени n равно частному степеней a n и b n , то есть, (a:b) n =a n:b n .

    Доказательство можно провести, используя предыдущее свойство. Так (a:b) n ·b n =((a:b)·b) n =a n , а из равенства (a:b) n ·b n =a n следует, что (a:b) n является частным от деления a n на b n .

    Запишем это свойство на примере конкретных чисел: .

    Теперь озвучим свойство возведения степени в степень : для любого действительного числа a и любых натуральных чисел m и n степень a m в степени n равна степени числа a с показателем m·n , то есть, (a m) n =a m·n .

    Например, (5 2) 3 =5 2·3 =5 6 .

    Доказательством свойства степени в степени является следующая цепочка равенств: .

    Рассмотренное свойство можно распространить на степень в степени в степени и т.д. Например, для любых натуральных чисел p , q , r и s справедливо равенство . Для большей ясности приведем пример с конкретными числами: (((5,2) 3) 2) 5 =(5,2) 3+2+5 =(5,2) 10 .

    Осталось остановиться на свойствах сравнения степеней с натуральным показателем.

    Начнем с доказательства свойства сравнения нуля и степени с натуральным показателем.

    Для начала обоснуем, что a n >0 при любом a>0 .

    Произведение двух положительных чисел является положительным числом, что следует из определения умножения. Этот факт и свойства умножения позволяют утверждать, что результат умножения любого числа положительных чисел также будет положительным числом. А степень числа a с натуральным показателем n по определению является произведением n множителей, каждый из которых равен a . Эти рассуждения позволяют утверждать, что для любого положительного основания a степень a n есть положительное число. В силу доказанного свойства 3 5 >0 , (0,00201) 2 >0 и .

    Достаточно очевидно, что для любого натурального n при a=0 степень a n есть нуль. Действительно, 0 n =0·0·…·0=0 . К примеру, 0 3 =0 и 0 762 =0 .

    Переходим к отрицательным основаниям степени.

    Начнем со случая, когда показатель степени является четным числом, обозначим его как 2·m , где m - натуральное. Тогда . По каждое из произведений вида a·a равно произведению модулей чисел a и a , значит, является положительным числом. Следовательно, положительным будет и произведение и степень a 2·m . Приведем примеры: (−6) 4 >0 , (−2,2) 12 >0 и .

    Наконец, когда основание степени a является отрицательным числом, а показатель степени есть нечетное число 2·m−1 , то . Все произведения a·a являются положительными числами, произведение этих положительных чисел также положительно, а его умножение на оставшееся отрицательное число a дает в итоге отрицательное число. В силу этого свойства (−5) 3 <0 , (−0,003) 17 <0 и .

    Переходим к свойству сравнения степеней с одинаковыми натуральными показателями, которое имеет следующую формулировку: из двух степеней с одинаковыми натуральными показателями n меньше та, основание которой меньше, а больше та, основание которой больше. Докажем его.

    Неравенство a n свойств неравенств справедливо и доказываемое неравенство вида a n (2,2) 7 и .

    Осталось доказать последнее из перечисленных свойств степеней с натуральными показателями. Сформулируем его. Из двух степеней с натуральными показателями и одинаковыми положительными основаниями, меньшими единицы, больше та степень, показатель которой меньше; а из двух степеней с натуральными показателями и одинаковыми основаниями, большими единицы, больше та степень, показатель которой больше. Переходим к доказательству этого свойства.

    Докажем, что при m>n и 00 в силу исходного условия m>n , откуда следует, что при 0

    Осталось доказать вторую часть свойства. Докажем, что при m>n и a>1 справедливо a m >a n . Разность a m −a n после вынесения a n за скобки принимает вид a n ·(a m−n −1) . Это произведение положительно, так как при a>1 степень a n есть положительное число, и разность a m−n −1 есть положительное число, так как m−n>0 в силу начального условия, и при a>1 степень a m−n больше единицы. Следовательно, a m −a n >0 и a m >a n , что и требовалось доказать. Иллюстрацией этого свойства служит неравенство 3 7 >3 2 .

Свойства степеней с целыми показателями

Так как целые положительные числа есть натуральные числа, то все свойства степеней с целыми положительными показателями в точности совпадают со свойствами степеней с натуральными показателями, перечисленными и доказанными в предыдущем пункте.

Степень с целым отрицательным показателем , а также степень с нулевым показателем мы определяли так, чтобы оставались справедливыми все свойства степеней с натуральными показателями, выражаемые равенствами. Поэтому, все эти свойства справедливы и для нулевых показателей степени, и для отрицательных показателей, при этом, конечно, основания степеней отличны от нуля.

Итак, для любых действительных и отличных от нуля чисел a и b , а также любых целых чисел m и n справедливы следующие свойства степеней с целыми показателями :

  1. a m ·a n =a m+n ;
  2. a m:a n =a m−n ;
  3. (a·b) n =a n ·b n ;
  4. (a:b) n =a n:b n ;
  5. (a m) n =a m·n ;
  6. если n – целое положительное число, a и b – положительные числа, причем ab −n ;
  7. если m и n – целые числа, причем m>n , то при 01 выполняется неравенство a m >a n .

При a=0 степени a m и a n имеют смысл лишь когда и m , и n положительные целые числа, то есть, натуральные числа. Таким образом, только что записанные свойства также справедливы для случаев, когда a=0 , а числа m и n – целые положительные.

Доказать каждое из этих свойств не составляет труда, для этого достаточно использовать определения степени с натуральным и целым показателем, а также свойства действий с действительными числами. Для примера докажем, что свойство степени в степени выполняется как для целых положительных чисел, так и для целых неположительных чисел. Для этого нужно показать, что если p есть нуль или натуральное число и q есть нуль или натуральное число, то справедливы равенства (a p) q =a p·q , (a −p) q =a (−p)·q , (a p) −q =a p·(−q) и (a −p) −q =a (−p)·(−q) . Сделаем это.

Для положительных p и q равенство (a p) q =a p·q доказано в предыдущем пункте. Если p=0 , то имеем (a 0) q =1 q =1 и a 0·q =a 0 =1 , откуда (a 0) q =a 0·q . Аналогично, если q=0 , то (a p) 0 =1 и a p·0 =a 0 =1 , откуда (a p) 0 =a p·0 . Если же и p=0 и q=0 , то (a 0) 0 =1 0 =1 и a 0·0 =a 0 =1 , откуда (a 0) 0 =a 0·0 .

Теперь докажем, что (a −p) q =a (−p)·q . По определению степени с целым отрицательным показателем , тогда . По свойству частного в степени имеем . Так как 1 p =1·1·…·1=1 и , то . Последнее выражение по определению является степенью вида a −(p·q) , которую в силу правил умножения можно записать как a (−p)·q .

Аналогично .

И .

По такому же принципу можно доказать все остальные свойства степени с целым показателем, записанные в виде равенств.

В предпоследнем из записанных свойств стоит остановиться на доказательстве неравенства a −n >b −n , которое справедливо для любого целого отрицательного −n и любых положительных a и b , для которых выполняется условие a. Так как по условию a0 . Произведение a n ·b n тоже положительно как произведение положительных чисел a n и b n . Тогда полученная дробь положительна как частное положительных чисел b n −a n и a n ·b n . Следовательно, откуда a −n >b −n , что и требовалось доказать.

Последнее свойство степеней с целыми показателями доказывается так же, как аналогичное свойство степеней с натуральными показателями.

Свойства степеней с рациональными показателями

Степень с дробным показателем мы определяли, распространяя на нее свойства степени с целым показателем. Иными словами, степени с дробными показателями обладают теми же свойствами, что и степени с целыми показателями. А именно:

Доказательство свойств степеней с дробными показателями базируется на определении степени с дробным показателем, на и на свойствах степени с целым показателем. Приведем доказательства.

По определению степени с дробным показателем и , тогда . Свойства арифметического корня позволяют нам записать следующие равенства . Дальше, используя свойство степени с целым показателем, получаем , откуда по определению степени с дробным показателем имеем , а показатель полученной степени можно преобразовать так: . На этом доказательство завершено.

Абсолютно аналогично доказывается второе свойство степеней с дробными показателями:

По схожим принципам доказываются и остальные равенства:

Переходим к доказательству следующего свойства. Докажем, что для любых положительных a и b , a b p . Запишем рациональное число p как m/n , где m – целое число, а n – натуральное. Условиям p<0 и p>0 в этом случае будут эквивалентны условия m<0 и m>0 соответственно. При m>0 и a

Аналогично, при m<0 имеем a m >b m , откуда , то есть, и a p >b p .

Осталось доказать последнее из перечисленных свойств. Докажем, что для рациональных чисел p и q , p>q при 00 – неравенство a p >a q . Мы всегда можем привести к общему знаменателю рациональные числа p и q , пусть при этом мы получим обыкновенные дроби и , где m 1 и m 2 – целые числа, а n - натуральное. При этом условию p>q будет соответствовать условие m 1 >m 2 , что следует из . Тогда по свойству сравнения степеней с одинаковыми основаниями и натуральными показателями при 01 – неравенство a m 1 >a m 2 . Эти неравенства по свойствам корней можно переписать соответственно как и . А определение степени с рациональным показателем позволяет перейти к неравенствам и соответственно. Отсюда делаем окончательный вывод: при p>q и 00 – неравенство a p >a q .

Свойства степеней с иррациональными показателями

Из того, как определяется степень с иррациональным показателем , можно заключить, что она обладает всеми свойствами степеней с рациональными показателями. Так для любых a>0 , b>0 и иррациональных чисел p и q справедливы следующие свойства степеней с иррациональными показателями :

  1. a p ·a q =a p+q ;
  2. a p:a q =a p−q ;
  3. (a·b) p =a p ·b p ;
  4. (a:b) p =a p:b p ;
  5. (a p) q =a p·q ;
  6. для любых положительных чисел a и b , a0 справедливо неравенство a p b p ;
  7. для иррациональных чисел p и q , p>q при 00 – неравенство a p >a q .

Отсюда можно сделать вывод, что степени с любыми действительными показателями p и q при a>0 обладают этими же свойствами.

Список литературы.

  • Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. МатематикаЖ учебник для 5 кл. общеобразовательных учреждений.
  • Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра: учебник для 7 кл. общеобразовательных учреждений.
  • Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра: учебник для 8 кл. общеобразовательных учреждений.
  • Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра: учебник для 9 кл. общеобразовательных учреждений.
  • Колмогоров А.Н., Абрамов А.М., Дудницын Ю.П. и др. Алгебра и начала анализа: Учебник для 10 - 11 классов общеобразовательных учреждений.
  • Гусев В.А., Мордкович А.Г. Математика (пособие для поступающих в техникумы).