Железо физические свойства и применение. Химические свойства железа

В организме человека содержится около 5 г железа, большая часть его (70%) входит в состав гемоглобина крови.

Физические свойства

В свободном состоянии железо - серебристо-белый металл с сероватым оттенком. Чистое железо пластично, обладает ферромагнитными свойствами. На практике обычно используются сплавы железа - чугуны и стали.


Fe - самый главный и самый распространенный элемент из девяти d-металлов побочной подгруппы VIII группы. Вместе с кобальтом и никелем образует «семейство железа».


При образовании соединений с другими элементами чаще использует 2 или 3 электрона (В = II, III).


Железо, как и почти все d-элементы VIII группы, не проявляет высшую валентность, равную номеру группы. Его максимальная валентность достигает VI и проявляется крайне редко.


Наиболее характерны соединения, в которых атомы Fe находятся в степенях окисления +2 и +3.


Способы получения железа

1. Техническое железо (в сплаве с углеродом и другими примесями) получают карботермическим восстановлением его природных соединений по схеме:




Восстановление происходит постепенно, в 3 стадии:


1) 3Fe 2 O 3 + СО = 2Fe 3 O 4 + СO 2


2) Fe 3 O 4 + СО = 3FeO +СO 2


3) FeO + СО = Fe + СO 2


Образующийся в результате этого процесса чугун содержит более 2% углерода. В дальнейшем из чугуна получают стали - сплавы железа, содержащие менее 1,5 % углерода.


2. Очень чистое железо получают одним из способов:


а) разложение пентакарбонила Fe


Fe(CO) 5 = Fe + 5СО


б) восстановление водородом чистого FeO


FeO + Н 2 = Fe + Н 2 O


в) электролиз водных растворов солей Fe +2


FeC 2 O 4 = Fe + 2СO 2

оксалат железа (II)

Химические свойства

Fe - металл средней активности, проявляет общие свойства, характерные для металлов.


Уникальной особенностью является способность к «ржавлению» во влажном воздухе:



В отсутствие влаги с сухим воздухом железо начинает заметно реагировать лишь при Т > 150°С; при прокаливании образуется «железная окалина» Fe 3 O 4:


3Fe + 2O 2 = Fe 3 O 4


В воде в отсутствие кислорода железо не растворяется. При очень высокой температуре Fe реагирует с водяным паром, вытесняя из молекул воды водород:


3 Fe + 4Н 2 O(г) = 4H 2


Процесс ржавления по своему механизму является электрохимической коррозией. Продукт ржавления представлен в упрощенном виде. На самом деле образуется рыхлый слой смеси оксидов и гидроксидов переменного состава. В отличие от пленки Аl 2 О 3 , этот слой не предохраняет железо от дальнейшего разрушения.

Виды коррозии


Защита железа от коррозии


1. Взаимодействие с галогенами и серой при высокой температуре.

2Fe + 3Cl 2 = 2FeCl 3


2Fe + 3F 2 = 2FeF 3



Fe + I 2 = FeI 2



Образуются соединения, в которых преобладает ионный тип связи.

2. Взаимодействие с фосфором, углеродом, кремнием (c N 2 и Н 2 железо непосредственно не соединяется, но растворяет их).

Fe + Р = Fe x P y


Fe + C = Fe x C y


Fe + Si = Fe x Si y


Образуются вещества переменного состава, т к. бертоллиды (в соединениях преобладает ковалентный характер связи)

3. Взаимодействие с «неокисляющими» кислотами (HCl, H 2 SO 4 разб.)

Fe 0 + 2Н + → Fe 2+ + Н 2


Поскольку Fe располагается в ряду активности левее водорода (Е° Fe/Fe 2+ = -0,44В), оно способно вытеснять Н 2 из обычных кислот.


Fe + 2HCl = FeCl 2 + Н 2


Fe + H 2 SO 4 = FeSO 4 + Н 2

4. Взаимодействие с «окисляющими» кислотами (HNO 3 , H 2 SO 4 конц.)

Fe 0 - 3e - → Fe 3+


Концентрированные HNO 3 и H 2 SO 4 «пассивируют» железо, поэтому при обычной температуре металл в них не растворяется. При сильном нагревании происходит медленное растворение (без выделения Н 2).


В разб. HNO 3 железо растворяется, переходит в раствор в виде катионов Fe 3+ а анион кислоты восстанавливется до NO*:


Fe + 4HNO 3 = Fe(NO 3) 3 + NO + 2Н 2 O


Очень хорошо растворяется в смеси НСl и HNO 3

5. Отношение к щелочам

В водных растворах щелочей Fe не растворяется. С расплавленными щелочами реагирует только при очень высоких температурах.

6. Взаимодействие с солями менее активных металлов

Fe + CuSO 4 = FeSO 4 + Cu


Fe 0 + Cu 2+ = Fe 2+ + Cu 0

7. Взаимодействие с газообразным монооксидом углерода (t = 200°C, P)

Fe(порошок) + 5CO (г) = Fe 0 (CO) 5 пентакарбонил железа

Соединения Fe(III)

Fe 2 O 3 - оксид железа (III).

Красно-бурый порошок, н. р. в Н 2 O. В природе - «красный железняк».

Способы получения:

1) разложение гидроксида железа (III)


2Fe(OH) 3 = Fe 2 O 3 + 3H 2 O


2) обжиг пирита


4FeS 2 + 11O 2 = 8SO 2 + 2Fe 2 O 3


3) разложение нитрата


Химические свойства

Fe 2 O 3 - основный оксид с признаками амфотерности.


I. Основные свойства проявляются в способности реагировать с кислотами:


Fe 2 О 3 + 6Н + = 2Fe 3+ + ЗН 2 О


Fe 2 О 3 + 6HCI = 2FeCI 3 + 3H 2 O


Fe 2 О 3 + 6HNO 3 = 2Fe(NO 3) 3 + 3H 2 O


II. Слабокислотные свойства. В водных растворах щелочей Fe 2 O 3 не растворяется, но при сплавлении с твердыми оксидами, щелочами и карбонатами происходит образование ферритов:


Fe 2 О 3 + СаО = Ca(FeО 2) 2


Fe 2 О 3 + 2NaOH = 2NaFeО 2 + H 2 O


Fe 2 О 3 + MgCO 3 = Mg(FeO 2) 2 + CO 2


III. Fe 2 О 3 - исходное сырье для получения железа в металлургии:


Fe 2 О 3 + ЗС = 2Fe + ЗСО или Fe 2 О 3 + ЗСО = 2Fe + ЗСO 2

Fe(OH) 3 - гидроксид железа (III)

Способы получения:

Получают при действии щелочей на растворимые соли Fe 3+ :


FeCl 3 + 3NaOH = Fe(OH) 3 + 3NaCl


В момент получения Fe(OH) 3 - красно-бурый слизистоаморфный осадок.


Гидроксид Fe(III) образуется также при окислении на влажном воздухе Fe и Fe(OH) 2:


4Fe + 6Н 2 O + 3O 2 = 4Fe(OH) 3


4Fe(OH) 2 + 2Н 2 O + O 2 = 4Fe(OH) 3


Гидроксид Fe(III) является конечным продуктом гидролиза солей Fe 3+ .

Химические свойства

Fe(OH) 3 - очень слабое основание (намного слабее, чем Fe(OH) 2). Проявляет заметные кислотные свойства. Таким образом, Fe(OH) 3 имеет амфотерный характер:


1) реакции с кислотами протекают легко:



2) свежий осадок Fe(OH) 3 растворяется в горячих конц. растворах КОН или NaOH с образованием гидроксокомплексов:


Fe(OH) 3 + 3КОН = K 3


В щелочном растворе Fe(OH) 3 может быть окислен до ферратов (солей не выделенной в свободном состоянии железной кислоты H 2 FeO 4):


2Fe(OH) 3 + 10КОН + 3Br 2 = 2K 2 FeO 4 + 6КВr + 8Н 2 O

Соли Fe 3+

Наиболее практически важными являются: Fe 2 (SO 4) 3 , FeCl 3 , Fe(NO 3) 3 , Fe(SCN) 3 , K 3 4- желтая кровяная соль = Fe 4 3 берлинская лазурь (темно-синий осадок)


б) Fe 3+ + 3SCN - = Fe(SCN) 3 роданид Fe(III) (р-р кроваво-красного цвета)

Цели урока:

  • Познакомить учащихся с элементом побочной группы Периодической системы – железом, его строением, свойствами.
  • Знать нахождение железа в природе, способы его получения, применение, физические свойства.
  • Уметь давать характеристику железа как элемента побочной подгруппы.
  • Уметь доказывать химические свойства железа и его соединений, записывать уравнения реакций в молекулярном, ионном, окислительно-восстановительном виде.
  • Развивать умения учащихся составлять уравнения реакций с участием железы, сформировать знания учащихся о качественных реакциях на ионы железы.
  • Воспитывать интерес к предмету.

Оборудование: железо (порошок, булавка, пластина), сера, колба с кислородом, соляная кислота, сульфат железы(II), хлорид железы(III),гидроксид натрия, красная и желтая кровяные соли.

ХОД УРОКА

I. Органиционный момент

II. Проверка домашнего задания

III. Изучение нового материала

1. Вступление учителя.

– Значение железа в жизни, его роль в истории цивилизации. Одним из самых распространенных металлов в земной коре является железо. Применять его начали гораздо позже других металлов (меди, золота, цинка, свинца, олова), что, скорее всего, объясняется малым сходством руды железа с металлом. Первобытным людям было очень трудно догадаться, что из руды можно получить металл, который успешно можно использовать при изготовлении различных предметов, сказалось отсутствие инструментов и необходимых приспособлений для организации такого процесса. До того времени, когда человек научился получать из руды железо и изготавливать из него сталь и чугун, прошло довольно длительное время.
На данный момент железные руды являются необходимым сырьем для черной металлургии, теми полезными ископаемыми, обходиться без которых не сможет ни одна развитая промышленная страна. За год мировая добыча железных руд составляет приблизительно 350 000 000 тонн. Используются они для выплавки железа (содержание углерода 0,2-0,4 %), чугуна (2,5-4% углерода), стали (2,5-1,5 % углерода) Сталь имеет наиболее широкое применение в промышленности, чем железо и чугун, поэтому и больше спрос на ее выплавку.
Для выплавки чугуна из железных руд используются домны, которые работают на каменном угле или коксе, переплавка стали и железа из чугуна происходит в отражательных мартеновских печах, бессемеровских конверторах или способом Томаса.
Черные металлы и их сплавы имеют огромное значение в жизни и развитии человеческого общества. Всевозможные предметы быта и широкого потребления изготавливаются из железа. Для строительства кораблей, самолетов, железнодорожного транспорта, автомобилей, мостов, железных дорог, различных зданий, оборудования и прочего, используются сотни миллионов тонн стали и чугуна. Не существует такой отрасли сельского хозяйства и промышленности, в которой бы не применялись железо и его различные сплавы.
Немногие часто встречающиеся в природе минералы, имеющие в своем составе железо, являются именно железной рудой. К таким минералам можно отнести: бурый железняк, гематит, магнетит, другие, образующие крупные месторождения и занимающие огромные площади.
Химическое отношение магнетита или магнитного железняка, имеющего железо – черный цвет и уникальное свойство – магнитность, представляет собой соединение, состоящее из окиси и закиси железа. В природной среде его можно встретить как в виде зернистых или сплошных масс, так и в виде хорошо сформированных кристаллов. Железная руда наиболее богата содержанием металлического железа магнетита (до 72%).
Самые крупные в нашей стране месторождения магнетитовых руд находятся на Урале, в горах Высокая, Благодать, Магнитная, в некоторых районах Сибири – бассейне реки Ангара, Горной Шории, на территории Кольского полуострова.

2. Работа с классом. Характеристика железа как химического элемента

а) Положение в периодической системе:

Задание 1. Определить положение железа в Периодической системе?

Ответ: Железо расположено в 4-м большом периоде, четном ряду, 8-й группе, побочной группе.

б) строение атома:

Задание 2. Зарисовать состав и строение атома железа, электронные формулу и ячейки.

Ответ: Fe +3 2) 8) 14) 2)металл

р = 26
е = 26
n = (56 – 26) = 30

1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2

Вопрос. На каких слоях у железа расположены валентные электроны? Почему?

Ответ. Валентные электроны расположены на последнем и предпоследнем слоях, так как это элемент побочной подгруппы.

Железо относят к d-элементам, оно входит в состав триады элементов – металлов (Fe-Co-Ni);

в) окислительно-восстановительные свойства железа:

Вопрос. Чем является железо-окислителем или восстановителем? Какие степени окисления и валентность проявляет?

Ответ:

Fe 0 – 2e = Fe +3 }восстановитель
Fe 0 – 3e = Fe +3
с.о.+ 2,+ 3; валентность = II и III, валентность 7 – не проявляет;

г) соединения железа:

FeO – основный оксид
Fe(OH) 2 – нерастворимое основание
Fe 2 O 3 – оксид признаками амфотерности
Fe(OH) 3 – основание с признаки амфотерности
Летучие водородные соединения – нет.

д) нахождение в природе.

Железо является вторым по распространенности металлом в природе(после алюминия).В свободном состоянии железо встречается только в метеоритах.Наиболее важные природные соединения:

FeO*3HO – бурый железняк,
FeO – красный железняк,
FeO (FeO*FeO) – магнитный железняк,
FeS – железный колчедан (пирит)

Соединения железа входят в состав живых организмов.

3. Характеристика простого вещества железа

а) строение молекулы, тип связи, тип кристаллической решетки;(самостоятельно)

б) физические свойства железа

Железо – серебристо-серый металл, обладает большой ковкостью, пластичностью и сильными магнитными свойствами. Плотность железа – 7,87г/см 3 , температура плавления 1539 t о С.

в) химические свойства железа:

Атомы железа в реакциях отдают электроны и проявляют степени окисления + 2,+ 3 и иногда + 6.
В реакциях железо является восстановителем. Однако при обычной температуре оно не взаимодействует даже с самыми октивными окислителями(галогенами,кислородом,серой) но при нагревании становится активными и реагирует с ними:

2Fe +3Cl 2 = 2FeCl 3 Хлорид железа(III)
3Fe + 2O 2 = Fe 2 O 3 (FeO*Fe O) Оксид железа(III)
Fe +S = FeS Сульфид железа(II)

При очень высокой температуре железо реагирует с углеродом, кремнием и фосфором.

3Fe + C = Fe 3 C Карбид железа(цементит)
3Fe + Si = Fe 3 Si Силицид железа
3Fe + 2P = Fe 3 P 2 Фосфид железа

Железо реагирует со сложными веществами.
Во влажном воздухе железо быстро скисляется(корродирует):

4Fe + 3O 2 + 6H 2 O = 4Fe(OH) 3
Fe(OH) 3 ––> FeOOH + H 2 O
Ржавчина

Железо находится в середине электрохимического ряда напряжений металлов,поэтому является металлом средней активности. Восстановительная способность у железаменьше, чем у щелочных, щелочноземельных металлов и у алюминия. Только при высокой температуре раскаленное железо реагирует с водой:

3Fe + 4H 2 O = Fe 3 O 4 + 4H 2

Железо реагирует с разбавленными серной и соляной кислотами,вытесняя из них водород:

Fe + 2HCl = FeCl 2 + H 2
Fe + H 2 SO 4 = FeSO 4 + H 2
Fe 0 + 2H + = Fe 2+ + H 2 0

При обычной температуре железо не взаимодействует с концентрированной серной кислотой, так как пассивируется ею.При нагревании концентрированная серная кислота окисляет железо до сульфата железа(III):

2Fe + 6H 2 SO 4 = Fe 2 (SO 4) 3 + 3SO 2 + 6H 2 O

Разбавленная азотная кислота окисляет железо до нитрата железа(III):

Fe + 4HNO 3 = Fe(NO 3) 3 + NO + 2H 2 O

Концентрированная азотная кислота пассивирует железо.

Из растворов солей железо вытесняет металлы, которые расположены правее его в электрохимическом ряду напряжений:

Fe + CuSO 4 = FeSO 4 + Cu,

г) применение железа (самостоятельно)

д) получение (вместе с учащимися)

В промышленности железо получают восстановлением его из железных руд углеродом (коксом) и оксидом углерода (II) в доменных печах.
Химизм доменного процесса следующий:

C + O = CO
CO + C = 2CO
3Fe 2 O 3 + CO = 2Fe 3 O 4 + CO 2
Fe 3 O 4 + CO = 3FeO + CO 2
FeO + CO = Fe + CO 2

4. Соединения железа

Химические свойства данных соединений.

Дополнение. Соединения железа(II) неустойчивы, они могут они могут окисляться и переходить в соединения железа(III)

Fe +2 Cl 2 + Cl 2 = Fe +3 Cl 3 составить дома окислительно-восстановительные
Fe +2 (OH) + H 2 O + O 2 = Fe +3 (OH) 3 схемы, уравнять.

Химические свойства данных соединений

Также качественной реакцией на Fe +2 служит реакция солей железа(II) с веществом,называемым красный кровяной солью K 3 – это комплексное соединение.

3FeCl + 2K 3 = Fe 3 }