Диагностическое значение рентгенологических методов исследования. Рентген и денситометрия костей

Глава 2. Основы и клиническое применение рентгенологического метода диагностики

Глава 2. Основы и клиническое применение рентгенологического метода диагностики

Уже более 100 лет известны лучи особого рода, занимающие большую часть спектра электромагнитных волн. 8 ноября 1895 г. профессор физики Вюрцбург-ского университета Вильгельм Конрад Рентген (1845-1923) обратил внимание на удивительное явление. Изучая в своей лаборатории работу электровакуумной (катодной) трубки, он заметил, что при подаче тока высокого напряжения на ее электроды находящийся рядом платино-синеродистый барий стал испускать зеленоватое свечение. Такое свечение люминесцирующих веществ под воздействием катодных лучей, исходящих из электровакуумной трубки, было к тому времени уже известно. Однако на столе Рентгена трубка во время опыта была плотно завернута в черную бумагу и хотя платино-синеродистый барий находился на значительном расстоянии от трубки, его свечение возобновлялось при каждой подаче электрического тока в трубку (см. рис. 2.1).

Рис.2.1. Вильгельм Конрад Рис. 2.2. Рентгенограмма кис-

Рентген (1845-1923) ти жены В К Рентгена Берты

Рентген пришел к выводу, что в трубке возникают какие-то не известные науке лучи, способные проникать через твердые тела и распространяться в воздухе на расстояния, измеряемые метрами. Первой рентгенограммой в истории человечества было изображение кисти жены Рентгена (см. рис. 2.2).

Рис. 2.3. Спектр электромагнитных излучений

Первое предварительное сообщение Рентгена «О новом виде лучей» было опубликовано в январе 1896 г. В трех последующих публичных докладах в 1896-1897 гг. он сформулировал все выявленные им свойства неизвестных лучей и указал на технику их появления.

В первые дни после опубликования открытия Рентгена его материалы были переведены на многие иностранные языки, в том числе и на русский. В Петербургском университете и Военно-медицинской академии уже в январе 1896 г. с помощью Х-лучей были выполнены снимки конечностей человека, а позже и других органов. Вскоре изобретатель радио А. С. Попов изготовил первый отечественный рентгеновский аппарат, который функционировал в Кронштадтском госпитале.

Рентген первым среди физиков в 1901 г. за свое открытие был удостоен Нобелевской премии, которая была ему вручена в 1909 г. Решением I Международного съезда по рентгенологии в 1906 г. Х-лучи названы рентгеновскими.

В течение нескольких лет во многих странах появились специалисты, посвятившие себя рентгенологии. В больницах появились рентгеновские отделения и кабинеты, в крупных городах возникли научные общества рентгенологов, на медицинских факультетах университетов организовались соответствующие кафедры.

Рентгеновские лучи являются одним из видов электромагнитных волн, которые в общеволновом спектре занимают место между ультрафиолетовыми лучами и γ-лучами. Они отличаются от радиоволн, инфракрасного излучения, видимого света и ультрафиолетового излучения меньшей длиной волны (см. рис. 2.3).

Скорость распространения рентгеновских лучей равна скорости света - 300 000 км/с.

В настоящее время известны следующие свойства рентгеновских лучей. Рентгеновские лучи обладают проникающей способностью. Рентген сообщал, что способность лучей к проникновению через различные среды обратно

пропорциональна удельному весу этих сред. Вследствие малой длины волны рентгеновские лучи могут проникать сквозь объекты, непроницаемые для видимого света.

Рентгеновские лучи способны поглощаться и рассеиваться. При поглощении часть рентгеновских лучей с наибольшей длиной волны исчезает, полностью передавая свою энергию веществу. При рассеивании часть лучей отклоняется от первоначального направления. Рассеянное рентгеновское излучение не несет полезной информации. Часть лучей полностью проходит через объект с изменением своих характеристик. Таким образом формируется невидимое изображение.

Рентгеновские лучи, проходя через некоторые вещества, вызывают их флюоресценцию (свечение). Вещества, обладающие этим свойством, называются люминофорами и широко применяются в рентгенологии (рентгеноскопия, флюорография).

Рентгеновские лучи оказывают фотохимическое действие. Как и видимый свет, попадая на фотографическую эмульсию, они воздействуют на галоге-ниды серебра, вызывая химическую реакцию восстановления серебра. На этом основана регистрация изображения на фоточувствительных материалах.

Рентгеновские лучи вызывают ионизацию вещества.

Рентгеновские лучи оказывают биологическое действие, связанное с их ионизирующей способностью.

Рентгеновские лучи распространяются прямолинейно, поэтому рентгеновское изображение всегда повторяет форму исследуемого объекта.

Рентгеновским лучам свойственна поляризация - распространение в определенной плоскости.

Дифракция и интерференция присущи рентгеновским лучам, как и остальным электромагнитным волнам. На этих свойствах основаны рентгеноспек-троскопия и рентгеновский структурный анализ.

Рентгеновские лучи невидимы.

В состав любой рентгенодиагностической системы входят 3 основных компонента: рентгеновская трубка, объект исследования (пациент) и приемник рентгеновского изображения.

Рентгеновская трубка состоит из двух электродов (анода и катода) и стеклянной колбы (рис. 2.4).

При подаче тока накала на катод его спиральная нить сильно разогревается (накаляется). Вокруг нее возникает облачко свободных электронов (явление термоэлектронной эмиссии). Как только между катодом и анодом возникает разность потенциалов, свободные электроны устремляются к аноду. Скорость движения электронов прямо пропорциональна величине напряжения. При торможении электронов в веществе анода часть их кинетической энергии идет на образование рентгеновских лучей. Эти лучи свободно выходят за пределы рентгеновской трубки и распространяются в разных направлениях.

Рентгеновские лучи в зависимости от способа возникновения делятся на первичные (лучи торможения) и вторичные (лучи характеристические).

Рис. 2.4. Принципиальная схема рентгеновской трубки: 1 - катод; 2 - анод; 3 - стеклянная колба; 4 - поток электронов; 5 - пучок рентгеновских лучей

Первичные лучи. Электроны в зависимости от направления главного трансформатора могут перемещаться в рентгеновских трубках с различными скоростями, приближающимися при наибольшем напряжении к скорости света. При ударе об анод, или, как говорят, при торможении, кинетическая энергия полета электронов преобразуется большей частью в тепловую энергию, которая нагревает анод. Меньшая часть кинетической энергии преобразуется в рентгеновские лучи торможения. Длина волны лучей торможения зависит от скорости полета электронов: чем она больше, тем длина волны меньше. Проникающая способность лучей зависит от длины волны (чем волна короче, тем больше ее проникающая способность).

Меняя напряжение трансформатора, можно регулировать скорость электронов и получать либо сильно проникающие (так называемые жесткие), либо слабо проникающие (так называемые мягкие) рентгеновские лучи.

Вторичные (характеристические) лучи. Они возникают в процессе торможения электронов, но длина их волн зависит исключительно от структуры атомов вещества анода.

Дело в том, что энергия полета электронов в трубке может достигнуть таких величин, что при ударах электронов об анод будет выделяться энергия, достаточная, чтобы заставить электроны внутренних орбит атомов вещества анода «перескакивать» на внешние орбиты. В таких случаях атом возвращается к своему состоянию, потому что с внешних его орбит будет происходить переход электронов на свободные внутренние орбиты с выделением энергии. Возбужденный атом вещества анода возвращается к состоянию покоя. Характеристическое излучение возникает в результате изменений во внутренних электронных слоях атомов. Слои электронов в атоме строго определены

для каждого элемента и зависят от его места в периодической системе Менделеева. Следовательно, получаемые от данного атома вторичные лучи будут иметь волны строго определенной длины, поэтому эти лучи и называют характеристическими.

Формирование электронного облака на спирали катода, полет электронов к аноду и получение рентгеновских лучей возможны только в условиях вакуума. Для его создания и служит колба рентгеновской трубки из прочного стекла, способного пропускать рентгеновские лучи.

В качестве приемников рентгеновского изображения могут выступать: рентгенографическая пленка, селеновая пластина, флюоресцентный экран, а также специальные детекторы (при цифровых способах получения изображения).

МЕТОДИКИ РЕНТГЕНОЛОГИЧЕСКОГО ИССЛЕДОВАНИЯ

Все многочисленные методики рентгенологического исследования разделяют на общие и специальные.

К общим относятся методики, предназначенные для изучения любых анатомических областей и выполняемые на рентгеновских аппаратах общего назначения (рентгеноскопия и рентгенография).

К общим следует отнести и ряд методик, при которых также возможно изучение любых анатомических областей, но требуются либо особая аппаратура (флюорография, рентгенография с прямым увеличением изображения), либо дополнительные приспособления к обычным рентгеновским аппаратам (томография, электрорентгенография). Иногда эти методики называют также частными.

К специальным методикам относятся те, которые позволяют получить изображение на специальных установках, предназначенных для исследования определенных органов и областей (маммография, ортопантомография). К специальным методикам относится также большая группа рентгенокон-трастных исследований, при которых изображения получаются с применением искусственного контрастирования (бронхография, ангиография, экскреторная урография и др.).

ОБЩИЕ МЕТОДИКИ РЕНТГЕНОЛОГИЧЕСКОГО ИССЛЕДОВАНИЯ

Рентгеноскопия - методика исследования, при которой изображение объекта получают на светящемся (флюоресцентном) экране в реальном масштабе времени. Некоторые вещества интенсивно флюоресцируют под влиянием рентгеновских лучей. Эту флюоресценцию используют в рентгенодиагностике, применяя картонные экраны, покрытые флюоресцирующим веществом.

Больного устанавливают (укладывают) на специальном штативе. Рентгеновские лучи, пройдя сквозь тело больного (интересующую исследователя область), попадают на экран и вызывают его свечение - флюоресценцию. Флюоресценция экрана неодинаково интенсивна - она тем ярче, чем больше попадает рентгеновских лучей в ту или иную точку экрана. На экран

попадает тем меньше лучей, чем более плотные препятствия будут на их пути от трубки до экрана (например, костная ткань), а также чем толще ткани, через которые лучи проходят.

Свечение флюоресцентного экрана очень слабое, поэтому рентгеноскопия проводилась в темноте. Изображение на экране было плохо различимо, мелкие детали не дифференцировались, а лучевая нагрузка при таком исследовании была довольно высокой.

В качестве усовершенствованного метода рентгеноскопии применяют рентгенотелевизионное просвечивание с помощью усилителя рентгеновского изображения - электронно-оптического преобразователя (ЭОП) и замкнутой телевизионной системы. В ЭОП видимое изображение на флюоресцирующем экране усиливается, преобразуется в электрический сигнал и отображается на экране дисплея.

Рентгеновское изображение на дисплее, как и обычное телевизионное изображение, можно изучать в освещенном помещении. Лучевая нагрузка на пациента и персонал при применении ЭОП значительно меньше. Телесистема позволяет записать все этапы исследования, в том числе движение органов. Кроме того, по телеканалу изображение можно передать на мониторы, находящиеся в других помещениях.

При рентгеноскопическом исследовании формируется позитивное плоскостное черно-белое суммационное изображение в реальном масштабе времени. При перемещении больного относительно рентгеновского излучателя говорят о полипозиционном, а при перемещении рентгеновского излучателя относительно больного - о полипроекционном исследовании; и то и другое позволяет получить более полную информацию о патологическом процессе.

Однако рентгеноскопии, как с ЭОП, так и без него, свойствен ряд недостатков, сужающих сферу применения метода. Во-первых, лучевая нагрузка при рентгеноскопии остается относительно высокой (намного выше, чем при рентгенографии). Во-вторых, у методики низкое пространственное разрешение (возможность рассмотреть и оценить мелкие детали ниже, чем при рентгенографии). В связи с этим рентгеноскопию целесообразно дополнять производством снимков. Это необходимо также для объективизации результатов исследования и возможности их сравнения при динамическом наблюдении за больным.

Рентгенография - это методика рентгенологического исследования, при которой получается статическое изображение объекта, зафиксированное на каком-либо носителе информации. Такими носителями могут быть рентгеновская пленка, фотопленка, цифровой детектор и др. На рентгенограммах можно получить изображение любой анатомической области. Снимки всей анатомической области (голова, грудь, живот) называют обзорными (рис. 2.5). Снимки с изображением небольшой части анатомической области, которая наиболее интересует врача, называют прицельными (рис. 2.6).

Некоторые органы хорошо различимы на снимках благодаря естественной контрастности (легкие, кости) (см. рис. 2.7); другие (желудок, кишечник) отчетливо отображаются на рентгенограммах только после искусственного контрастирования (см. рис. 2.8).

Рис. 2.5. Обзорная рентгенограмма поясничного отдела позвоночника в боковой проекции. Компрессион но-ос-кольчатый перелом тела L1 позвонка

Рис. 2.6.

Прицельная рентгенограмма L1 позвонка в боковой проекции

Проходя через объект исследования, рентгеновское излучение в большей или меньшей степени задерживается. Там, где излучение задерживается больше, формируются участки затенения; где меньше - просветления.

Рентгеновское изображение может быть негативным или позитивным. Так, например, в негативном изображении кости выглядят светлыми, воздух - темным, в позитивном изображении - наоборот.

Рентгеновское изображение черно-белое и плоскостное (сум-мационное).

Преимущества рентгенографии перед рентгеноскопией:

Большая разрешающая способность;

Возможность оценки многими исследователями и ретроспективного изучения изображения;

Возможность длительного хранения и сравнения изображения с повторными снимками в процессе динамического наблюдения за больным;

Уменьшение лучевой нагрузки на пациента.

К недостаткам рентгенографии следует отнести увеличение материальных затрат при ее применении (рентгенографическая пленка, фотореактивы и др.) и получение желаемого изображения не сразу, а через определенное время.

Методика рентгенографии доступна для всех лечебных учреждений и применяется повсеместно. Рентгеновские аппараты различных типов позволяют выполнять рентгенографию не только в условиях рентгеновского кабинета, но и за его пределами (в палате, в операционной и т. д.), а также в нестационарных условиях.

Развитие компьютерной техники позволило разработать цифровой (дигитальный) способ получения рентгеновского изображения (от англ. digit - «цифра»). В цифровых аппаратах рентгеновское изображение с ЭОП поступает в специальное устройство - аналого-цифровой преобразователь (АЦП), в котором электрический сигнал, несущий информацию о рентгеновском изображении, кодируется в цифровую форму. Поступая затем в компьютер, цифровая информация обрабатывается в нем по заранее составленным программам, выбор которых зависит от задач исследования. Превращение цифрового образа в аналоговый, видимый происходит в цифро-аналоговом преобразователе (ЦАП), функция которого противоположна АЦП.

Основные преимущества цифровой рентгенографии перед традиционной: быстрота получения изображения, широкие возможности его постпроцессорной обработки (коррекция яркости и контрастности, подавление шума, электронное увеличение изображения зоны интереса, преимущественное выделение костных либо мяг-котканных структур и т. д.), отсутствие фотолабораторного процесса и электронное архивирование изображений.

Кроме того, компьютеризация рентгеновского оборудования позволяет быстро передавать изображения на значительные расстояния без потери качества, в том числе в другие лечебные учреждения.

Рис. 2.7. Рентгенограммы голеностопного сустава в прямой и боковой проекциях

Рис. 2.8. Рентгенограмма толстой кишки, контрастированной взвесью бария сульфата (ирригограмма). Норма

Флюорография - фотографирование рентгеновского изображения с флюоресцентного экрана на фотографическую пленку различного формата. Такое изображение всегда уменьшено.

По информативности флюорография уступает рентгенографии, но при использовании крупнокадровых флюорограмм различие между этими методиками становится менее существенным. В связи с этим в лечебных учреждениях у ряда пациентов с заболеваниями органов дыхания флюорография может заменять рентгенографию, особенно при повторных исследованиях. Такую флюорографию называют диагностической.

Основным назначением флюорографии, связанным с быстротой ее выполнения (на выполнение флюорограммы тратится примерно в 3 раза меньше времени, чем на выполнение рентгенограммы), являются массовые обследования для выявления скрыто протекающих заболеваний легких (профилактическая, или проверочная, флюорография).

Флюорографические аппараты компактны, их можно монтировать их в кузове автомобиля. Это делает возможным проведение массовых обследований в тех местностях, где рентгенодиагностическая аппаратура отсутствует.

В настоящее время пленочная флюорография все больше вытесняется цифровой. Термин «цифровые флюорографы» является в известной мере условным, поскольку в этих аппаратах не происходит фотографирования рентгеновского изображения на фотопленку, т. е. не выполняются флюо-рограммы в привычном смысле этого слова. По сути дела эти флюорографы представляют собой цифровые рентгенографические аппараты, предназначенные преимущественно (но не исключительно) для исследования органов грудной полости. Цифровая флюорография обладает всеми достоинствами, присущими цифровой рентгенографии вообще.

Рентгенография с прямым увеличением изображения может использоваться только при наличии специальных рентгеновских трубок, в которых фокусное пятно (площадь, с которой рентгеновские лучи исходят от излучателя) имеет очень малые размеры (0,1-0,3 мм 2). Увеличенное изображение получают, приближая исследуемый объект к рентгеновской трубке без изменения фокусного расстояния. В результате на рентгенограммах видны более мелкие детали, неразличимые на обычных снимках. Методика находит применение при исследовании периферических костных структур (кисти, стопы и др.).

Электрорентгенография - методика, при которой диагностическое изображение получают не на рентгеновской пленке, а на поверхности селеновой пластины с переносом на бумагу. Равномерно заряженная статическим электричеством пластина используется вместо кассеты с пленкой и в зависимости от разного количества ионизирующего излучения, попавшего в различные точки ее поверхности, по-разному разряжается. На поверхность пластины распыляют тонкодисперсный угольный порошок, который по законам электростатического притяжения распределяется по поверхности пластины неравномерно. На пластину накладывают лист писчей бумаги, и изображение переводится на бумагу в результате прилипания угольного

порошка. Селеновую пластину в отличие от пленки можно использовать неоднократно. Методика отличается быстротой, экономичностью, не требует затемненного помещения. Кроме того, селеновые пластины в незаряженном состоянии индифферентны к воздействию ионизирующих излучений и могут быть использованы при работе в условиях повышенного радиационного фона (рентгеновская пленка в этих условиях придет в негодность).

В целом электрорентгенография по своей информативности лишь ненамного уступает пленочной рентгенографии, превосходя ее при исследовании костей (рис. 2.9).

Линейная томография - методика послойного рентгенологического исследования.

Рис. 2.9. Электрорентгенограмма голеностопного сустава в прямой проекции. Перелом малоберцовой кости

Как уже упоминалось, на рентгенограмме видно суммационное изображение всей толщи исследуемой части тела. Томография служит для получения изолированного изображения структур, расположенных в одной плоскости, как бы расчленяя сумма-ционное изображение на отдельные слои.

Эффект томографии достигается благодаря непрерывному движению во время съемки двух или трех компонентов рентгеновской системы: рентгеновская трубка (излучатель) - пациент - приемник изображения. Чаще всего перемещаются излучатель и приемник изображения, а пациент неподвижен. Излучатель и приемник изображения движутся по дуге, прямой линии или более сложной траектории, но обязательно в противоположных направлениях. При таком перемещении изображение большинства деталей на томограмме оказывается размазанным, расплывчатым, нечетким, а образования, находящиеся на уровне центра вращения системы излучатель - приемник, отображаются наиболее четко (рис. 2.10).

Особое преимущество перед рентгенографией линейная томография приобретает

тогда, когда исследуются органы со сформированными в них плотными патологическими зонами, полностью затеняющими те или иные участки изображения. В ряде случаев она помогает определить характер патологического процесса, уточнить его локализацию и распространенность, выявить мелкие патологические очаги и полости (см. рис. 2.11).

Конструктивно томографы выполняют в виде дополнительного штатива, который может автоматически передвигать рентгеновскую трубку по дуге. При изменении уровня центра вращения излучатель - приемник изменится глубина получаемого среза. Толщина изучаемого слоя тем меньше, чем больше амплитуда движения упомянутой выше системы. Если же выбирают очень

малый угол перемещения (3-5°), то получают изображение толстого слоя. Эта разновидность линейной томографии получила название - зонография.

Линейная томография применяется достаточно широко, особенно в лечебных учреждениях, не имеющих компьютерных томографов. Наиболее часто показанием к выполнению томографии служат заболевания легких и средостения.

СПЕЦИАЛЬНЫЕ МЕТОДИКИ

РЕНТГЕНОЛОГИЧЕСКОГО

ИССЛЕДОВАНИЯ

Ортопантомография - это вариант зо-нографии, позволяющий получитьразвер-нутое плоскостное изображение челюстей (см. рис. 2.12). Отдельное изображение каждого зуба при этом достигается путем их последовательной съемки узким пуч-

Рис. 2.10. Схема получения томографического изображения: а - исследуемый объект; б - томографический слой; 1-3 - последовательные положения рентгеновской трубки и приемника излучения в процессе исследованиям

ком рентгеновских лучей на отдельные участки пленки. Условия для этого создаются синхронным круговым движением вокруг головы пациента рентгеновской трубки и приемника изображения, установленных на противоположных концах поворотного штатива аппарата. Методика позволяет исследовать и другие отделы лицевого скелета (околоносовые пазухи, глазницы).

Маммография - рентгенологическое исследование молочной железы. Оно выполняется для изучения структуры молочной железы при обнаружении в ней уплотнений, а также с профилактической целью. Молочная желе-

за является мягкотканным органом, поэтому для изучения ее структуры необходимо использовать очень небольшие величины анодного напряжения. Существуют специальные рентгеновские аппараты - маммографы, где устанавливаются рентгеновские трубки с фокусным пятном размером в доли миллиметра. Они оборудованы специальными штативами для укладки молочной железы с устройством для ее компрессии. Это позволяет уменьшить толщину тканей железы во время исследования, повышая тем самым качество маммограмм (см. рис. 2.13).

Методики с применением искусственного контрастирования

Для того чтобы невидимые на обычных снимках органы были отображены на рентгенограммах, прибегают к методике искусственного контрастирования. Методика заключается во введении в организм веществ,

Рис. 2.11. Линейная томограмма правого легкого. В верхушке легкого определяется крупная воздушная полость с толстыми стенками

которые поглощают (или, наоборот, пропускают) излучение гораздо сильнее (или слабее), чем исследуемый орган.

Рис. 2.12. Ортопантомограмма

В качестве контрастных веществ используют вещества либо с низкой относительной плотностью (воздух, кислород, углекислый газ, закись азота), либо с большой атомной массой (взвеси или растворы солей тяжелых металлов и галогениды). Первые поглощают рентгеновское излучение в меньшей степени, чем анатомические структуры (негативные), вторые - в большей (позитивные). Если, например, ввести воздух в брюшную полость (искусственный пневмоперитонеум), то на его фоне отчетливо выделяются очертания печени, селезенки, желчного пузыря, желудка.

Рис. 2.13. Рентгенограммы молочной железы в краниокаудальной (а) и косой (б) проекциях

Для исследования полостей органов обычно применяют высокоатомные контрастные вещества, наиболее часто - водную взвесь бария сульфата и соединения йода. Эти вещества, в значительной мере задерживая рентгеновское излучение, дают на снимках интенсивную тень, по которой можно судить о положении органа, форме и величине его полости, очертаниях его внутренней поверхности.

Различают два способа искусственного контрастирования с помощью высокоатомных веществ. Первый заключается в непосредственном введении контрастного вещества в полость органа - пищевода, желудка, кишечника, бронхов, кровеносных или лимфатических сосудов, мочевыводящих путей, полостных систем почек, матки, слюнных протоков, свищевых ходов, лик-ворных пространств головного и спинного мозга и т. д.

Второй способ основан на специфической способности отдельных органов концентрировать те или иные контрастные вещества. Например, печень, желчный пузырь и почки концентрируют и выделяют некоторые введенные в организм соединения йода. После введения пациенту таких веществ на снимках через определенное время различаются желчные протоки, желчный пузырь, полостные системы почек, мочеточники, мочевой пузырь.

Методика искусственного контрастирования в настоящее время является ведущей при рентгенологическом исследовании большинства внутренних органов.

В рентгенологической практике используют 3 вида рентгеноконтрастных средств (РКС): йодсодержащие растворимые, газообразные, водную взвесь сульфата бария. Основным средством для исследования желудочно-кишечного тракта является водная взвесь сульфата бария. Для исследования кровеносных сосудов, полостей сердца, мочевыводящих путей применяют водорастворимые йодсодержащие вещества, которые вводят либо внутрисо-судисто, либо в полость органов. Газы в качестве контрастных веществ в настоящее время почти не применяются.

При выборе контрастных веществ для проведения исследований РКС необходимо оценивать с позиций выраженности контрастирующего эффекта и безвредности.

Безвредность РКС помимо обязательной биологической и химической инертности зависит от их физических характеристик, из которых наиболее существенными являются осмолярность и электрическая активность. Ос-молярность определяется числом ионов или молекул РКС в растворе. Относительно плазмы крови, осмолярность которой равна 280 мОсм /кг Н 2 О, контрастные вещества могут быть высокоосмолярными (более 1200 мОсм/кг Н 2 О), низкоосмолярными (менее 1200 мОсм/кг Н 2 О) или изоосмолярными (по осмолярности равными крови).

Высокая осмолярность отрицательно воздействует на эндотелий, эритроциты, клеточные мембраны, протеины, поэтому следует отдавать предпочтение низкоосмолярным РКС. Оптимальны РКС, изоосмолярные с кровью. Следует помнить, что осмолярность РКС как ниже, так и выше осмолярности крови делает эти средства неблагоприятно воздействующими на клетки крови.

По показателям электрической активности рентгеноконтрастные препараты подразделяются на: ионные, распадающиеся в воде на электрически заряженные частицы, и неионные, электрически нейтральные. Осмолярность ионных растворов в силу большего содержания в них частиц вдвое больше, чем неионные.

Неионные контрастные вещества по сравнению с ионными обладают рядом преимуществ: значительно меньшей (в 3-5 раз) общей токсичностью, дают значительно менее выраженный вазодилатационный эффект, обусловливают

меньшую деформацию эритроцитов и гораздо меньше высвобождают гис-тамин, активизируют систему комплемента, ингибируют активность холи-нэстеразы, что снижает риск негативных побочных действий.

Таким образом, неионные РКС дают наибольшие гарантии в отношении как безопасности, так и качества контрастирования.

Широкое внедрение контрастирования различных органов указанными препаратами обусловило появление многочисленных методик рентгенологического исследования, значительно повышающих диагностические возможности рентгенологического метода.

Диагностический пневмоторакс - рентгенологическое исследование органов дыхания после введения газа в плевральную полость. Выполняется с целью уточнения локализации патологических образований, расположенных на границе легкого с соседними органами. С появлением метода КТ применяется редко.

Пневмомедиастинография - рентгенологическое исследование средостения после введения газа в его клетчатку. Выполняется с целью уточнения локализации выявленных на снимках патологических образований (опухолей, кист) и их распространения на соседние органы. С появлением метода КТ практически не применяется.

Диагностический пневмоперитонеум - рентгенологическое исследование диафрагмы и органов полости живота после введения газа в полость брюшины. Выполняется с целью уточнения локализации патологических образований, выявленных на снимках на фоне диафрагмы.

Пневморетроперитонеум - методика рентгенологического исследования органов, расположенных в забрюшинной клетчатке, путем введения в забрюшин-ную клетчатку газа с целью лучшей визуализации их контуров. С внедрением в клиническую практику УЗИ, КТ и МРТ практически не применяется.

Пневморен - рентгенологическое исследование почки и рядом расположенного надпочечника после введения газа в околопочечную клетчатку. В настоящее время выполняется крайне редко.

Пневмопиелография - исследование полостной системы почки после заполнения ее газом через мочеточниковый катетер. В настоящее время используется преимущественно в специализированных стационарах для выявления внутрилоханочных опухолей.

Пневмомиелография - рентгенологическое исследование подпаутинного пространства спинного мозга после его контрастирования газом. Используется для диагностики патологических процессов в области позвоночного канала, вызывающих сужение его просвета (грыжи межпозвоночных дисков, опухоли). Применяется редко.

Пневмоэнцефалография - рентгенологическое исследование ликворных пространств головного мозга после их контрастирования газом. После внедрения в клиническую практику КТ и МРТ выполняется редко.

Пневмоартрография - рентгенологическое исследование крупных суставов после введения в их полость газа. Позволяет изучить суставную полость, выявить в ней внутрисуставные тела, обнаружить признаки повреждения менисков коленного сустава. Иногда ее дополняют введением в полость сустава

водорастворимого РКС. Достаточно широко используется в лечебных учреждениях при невозможности выполнения МРТ.

Бронхография - методика рентгенологического исследования бронхов после их искусственного контрастирования РКС. Позволяет выявить различные патологические изменения бронхов. Широко используется в лечебных учреждениях при недоступности КТ.

Плеврография - рентгенологическое исследование плевральной полости после ее частичного заполнения контрастным препаратом с целью уточнения формы и размеров плевральных осумкований.

Синография - рентгенологическое исследование околоносовых пазух после их заполнения РКС. Применяется тогда, когда возникают затруднения в интерпретации причины затенения пазух на рентгенограммах.

Дакриоцистография - рентгенологическое исследование слезных путей после их заполнения РКС. Применяется с целью изучения морфологического состояния слезного мешка и проходимости слезноносового канала.

Сиалография - рентгенологическое исследование протоков слюнных желез после их заполнения РКС. Применяется для оценки состояния протоков слюнных желез.

Рентгеноскопия пищевода, желудка и двенадцатиперстной кишки - проводится после их постепенного заполнения взвесью бария сульфата, а при необходимости - и воздухом. Обязательно включает в себя полипозиционную рентгеноскопию и выполнение обзорных и прицельных рентгенограмм. Широко применяется в лечебных учреждениях для выявления различных заболеваний пищевода, желудка и двенадцатиперстной кишки (воспалительно-деструктивные изменения, опухоли и др.) (см. рис. 2.14).

Энтерография - рентгенологическое исследование тонкой кишки после заполнения ее петель взвесью бария сульфата. Позволяет получить информацию о морфологическом и функциональном состоянии тонкой кишки (см. рис. 2.15).

Ирригоскопия - рентгенологическое исследование толстой кишки после ретроградного контрастирования ее просвета взвесью бария сульфата и воздухом. Широко применяется для диагностики многих заболеваний толстой кишки (опухоли, хронический колит и т. д.) (см. рис. 2.16).

Холецистография - рентгенологическое исследование желчного пузыря после накопления в нем контрастного вещества, принятого внутрь и выделенного с желчью.

Выделительная холеграфия - рентгенологическое исследование желчных путей, контрастированных с помощью йодсодержащих препаратов, вводимых внутривенно и выделяемых с желчью.

Холангиография - рентгенологическое исследование желчных протоков после введения РКС в их просвет. Широко используется для уточнения морфологического состояния желчных протоков и выявления в них конкрементов. Может выполняться во время оперативного вмешательства (ин-траоперационная холангиография) и в послеоперационном периоде (через дренажную трубку) (см. рис. 2.17).

Ретроградная холангиопанкреатикография - рентгенологическое исследование желчных протоков и протока поджелудочной железы после введения

в их просвет контрастного препарата под рентгеноэндоскопическим контролем (см. рис. 2.18).

Рис. 2.14. Рентгенограмма желудка, контрастированного взвесью бария сульфата. Норма

Рис. 2.16. Ирригограмма. Рак слепой кишки. Просвет слепой кишки резко сужен, контуры пораженного участка неровные (на снимке указано стрелками)

Рис. 2.15. Рентгенограмма тонкой кишки, контрастированной взвесью бария сульфата (энтерограмма). Норма

Рис. 2.17. Антеградная холангиограм-ма. Норма

Экскреторная урография - рентгенологическое исследование мочевых органов после внутривенного введения РКС и выделения его почками. Широко распространенная методика исследования, позволяющая изучать морфологическое и функциональное состояние почек, мочеточников и мочевого пузыря (см. рис. 2.19).

Ретроградная уретеропиелография - рентгенологическое исследование мочеточников и полостных систем почек после заполнения их РКС через мочеточниковый катетер. По сравнению с выделительной урографией позволяет получить более полную информацию о состоянии мочевых путей

в результате их лучшего заполнения контрастным препаратом, вводимым под небольшим давлением. Широко применяется в специализированных урологических отделениях.

Рис. 2.18. Ретроградная холангиопан-креатикограмма. Норма

Рис. 2.19. Экскреторная урограмма. Норма

Цистография - рентгенологическое исследование мочевого пузыря, заполненного РКС (см. рис. 2.20).

Уретрография - рентгенологическое исследование мочеиспускательного канала после его заполнения РКС. Позволяет получить информацию о проходимости и морфологическом состоянии уретры, выявить ее повреждения, стриктуры и т. д. Применяется в специализированных урологических отделениях.

Гистеросальпингография - рентгенологическое исследование матки и маточных труб после заполнения их просвета РКС. Широко используется в первую очередь для оценки проходимости маточных труб.

Позитивная миелография - рентгенологическое исследование под-паутинных пространств спинного

Рис. 2.20. Нисходящая цистограмма. Норма

мозга после введения водорастворимых РКС. С появлением МРТ применяется редко.

Аортография - рентгенологическое исследование аорты после введения в ее просвет РКС.

Артериография - рентгенологическое исследование артерий с помощью введенных в их просвет РКС, распространяющихся по току крови. Некоторые частные методики артериографии (коронарография, каротидная ангиография), будучи высокоинформативными, в то же время технически сложны и небезопасны для пациента, в связи с чем применяются только в специализированных отделениях (рис. 2.21).

Рис. 2.21. Каротидные ангиограммы в прямой (а) и боковой (б) проекциях. Норма

Кардиография - рентгенологическое исследование полостей сердца после введения в них РКС. В настоящее время находит ограниченное применение в специализированных кардиохирургических стационарах.

Ангиопульмонография - рентгенологическое исследование легочной артерии и ее ветвей после введения в них РКС. Несмотря на высокую информативность, небезопасна для пациента, в связи с чем в последние годы предпочтение отдается компьютерно-томографической ангиографии.

Флебография - рентгенологическое исследование вен после введения в их просвет РКС.

Лимфография - рентгенологическое исследование лимфатических путей после введения в лимфатическое русло РКС.

Фистулография - рентгенологическое исследование свищевых ходов после их заполнения РКС.

Вульнерография - рентгенологическое исследование раневого канала после заполнения его РКС. Чаще применяется при слепых ранениях живота, когда другие методы исследования не позволяют установить, является ранение проникающим или непроникающим.

Кистография - контрастное рентгенологическое исследование кист различных органов с целью уточнения формы и размеров кисты, ее топографического расположения и состояния внутренней поверхности.

Дуктография - контрастное рентгенологическое исследование млечных протоков. Позволяет оценить морфологическое состояние протоков и выявить небольшие опухоли молочной железы с внутрипротоковым ростом, неразличимые на маммограммах.

ПОКАЗАНИЯ К ПРИМЕНЕНИЮ РЕНТГЕНОЛОГИЧЕСКОГО МЕТОДА

Голова

1. Аномалии и пороки развития костных структур головы.

2. Травма головы:

Диагностика переломов костей мозгового и лицевого отделов черепа;

Выявление инородных тел головы.

3. Опухоли головного мозга:

Диагностика патологических обызвествлений, характерных для опухолей;

Выявление сосудистой сети опухоли;

Диагностика вторичных гипертензионно-гидроцефальных изменений.

4. Заболевания сосудов головного мозга:

Диагностика аневризм и сосудистых мальформаций (артериальные аневризмы, артерио-венозные мальформации, артерио-синусные соустья и др.);

Диагностика стенозирующих и окклюзирующих заболеваний сосудов головного мозга и шеи (стенозы, тромбозы и др.).

5. Заболевания ЛОР-органов и органа зрения:

Диагностика опухолевых и неопухолевых заболеваний.

6. Заболевания височной кости:

Диагностика острых и хронических мастоидитов.

Грудь

1. Травма груди:

Диагностика повреждений грудной клетки;

Выявление жидкости, воздуха или крови в плевральной полости (пнев-мо-, гемоторакс);

Выявление ушибов легких;

Выявление инородных тел.

2. Опухоли легких и средостения:

Диагностика и дифференциальная диагностика доброкачественных и злокачественных опухолей;

Оценка состояния регионарных лимфатических узлов.

3. Туберкулез:

Диагностика различных форм туберкулеза;

Оценка состояния внутригрудных лимфатических узлов;

Дифференциальная диагностика с другими заболеваниями;

Оценка эффективности лечения.

4. Заболевания плевры, легких и средостения:

Диагностика всех форм пневмоний;

Диагностика плевритов, медиастинитов;

Диагностика тромбоэмболии легочной артерии;

Диагностика отека легких;

5. Исследование сердца и аорты:

Диагностика приобретенных и врожденных пороков сердца и аорты;

Диагностика повреждений сердца при травме груди и аорты;

Диагностика различных форм перикардитов;

Оценка состояния коронарного кровотока (коронарография);

Диагностика аневризм аорты.

Живот

1. Травма живота:

Выявление свободного газа и жидкости в полости живота;

Выявление инородных тел;

Установление проникающего характера ранения живота.

2. Исследование пищевода:

Диагностика опухолей;

Выявление инородных тел.

3. Исследование желудка:

Диагностика воспалительных заболеваний;

Диагностика язвенной болезни;

Диагностика опухолей;

Выявление инородных тел.

4. Исследование кишечника:

Диагностика кишечной непроходимости;

Диагностика опухолей;

Диагностика воспалительных заболеваний.

5. Исследование мочевых органов:

Определение аномалий и вариантов развития;

Мочекаменная болезнь;

Выявление стенотических и окклюзионных заболеваний почечных артерий (ангиография);

Диагностика стенотических заболеваний мочеточников, уретры;

Диагностика опухолей;

Выявление инородных тел;

Оценка экскреторной функции почек;

Контроль эффективности проводимого лечения.

Таз

1. Травма:

Диагностика переломов костей таза;

Диагностика разрывов мочевого пузыря, задней уретры и прямой кишки.

2. Врожденные и приобретенные деформации костей таза.

3. Первичные и вторичные опухоли костей таза и тазовых органов.

4. Сакроилеит.

5. Заболевания женских половых органов:

Оценка проходимости маточных труб.

Позвоночник

1. Аномалии и пороки развития позвоночника.

2. Травма позвоночника и спинного мозга:

Диагностика различных видов переломов и вывихов позвонков.

3. Врожденные и приобретенные деформации позвоночника.

4. Опухоли позвоночника и спинного мозга:

Диагностика первичных и метастатических опухолей костных структур позвоночника;

Диагностика экстрамедуллярных опухолей спинного мозга.

5. Дегенеративно-дистрофические изменения:

Диагностика спондилеза, спондилоартроза и остеохондроза и их осложнений;

Диагностика грыж межпозвоночных дисков;

Диагностика функциональной нестабильности и функционального блока позвонков.

6. Воспалительные заболевания позвоночника (специфические и неспецифические спондилиты).

7. Остеохондропатии, фиброзные остеодистрофии.

8. Денситометрия при системном остеопорозе.

Конечности

1. Травмы:

Диагностика переломов и вывихов конечностей;

Контроль эффективности проводимого лечения.

2. Врожденные и приобретенные деформации конечностей.

3. Остеохондропатии, фиброзные остеодистрофии; врожденные системные заболевания скелета.

4. Диагностика опухолей костей и мягких тканей конечностей.

5. Воспалительные заболевания костей и суставов.

6. Дегенеративно-дистрофические заболевания суставов.

7. Хронические заболевания суставов.

8. Стенозирующие и окклюзирующие заболевания сосудов конечностей.

Рентгенологические методы исследования

1. Понятие рентгеновского излучения

Рентгеновским излучением называют электромагнитные волны с длиной приблизительно от 80 до 10~ 5 нм. Наиболее длинноволновое рентгеновское излучение перекрывается коротковолновым ультрафиолетовым, коротковолновое - длинноволновым Y-излучением. По способу возбуждения рентгеновское излучение подразделяют на тормозное и характеристическое.

Наиболее распространенным источником рентгеновского излучения является рентгеновская трубка, которая представляет собой двухэлектродный вакуумный прибор. Подогревной катод испускает электроны. Анод, называемый часто антикатодом, имеет наклонную поверхность, для того чтобы направить возникающее рентгеновское излучение под углом к оси трубки. Анод изготовлен из хорошо теплопроводящего материала для отвода теплоты, образующейся при ударе электронов. Поверхность анода выполнена из тугоплавких материалов, имеющих большой порядковый номер атома в таблице Менделеева, например из вольфрама. В отдельных случаях анод специально охлаждают водой или маслом.

Для диагностических трубок важна точечность источника рентгеновских лучей, чего можно достигнуть, фокусируя электроны в одном месте антикатода. Поэтому конструктивно приходится учитывать две противоположные задачи: с одной стороны, электроны должны попадать на одно место анода, с другой стороны, чтобы не допустить перегрева, желательно распределение электронов по разным участкам анода. В качестве одного из интересных технических решений является рентгеновская, трубка с вращающимся анодом. В результате торможения электрона (или иной заряженной частицы) электростатическим полем атомного ядра и атомарных электронов вещества антикатода возникает тормозное рентгеновское излучение. Механизм его можно пояснить следующим образом. С движущимся электрическим зарядом связано магнитное поле, индукция которого зависит от скорости электрона. При торможении уменьшается магнитная индукция и в соответствии с теорией Максвелла появляется электромагнитная волна.

При торможении электронов лишь часть энергии идет на создание фотона рентгеновского излучения, другая часть расходуется на нагревание анода. Так как соотношение между этими частями случайно, то при торможении большого количества электронов образуется непрерывный спектр рентгеновского излучения. В связи с этим тормозное излучение называют также и сплошным.

В каждом из спектров наиболее коротковолновое тормозное излучение возникает тогда, когда энергия, приобретенная электроном в ускоряющем поле, полностью переходит в энергию фотона.

Коротковолновое рентгеновское излучение, обычно, обладает большей проникающей способностью, чем длинноволновое, и называется жестким, а длинноволновое - мягким. Увеличивая напряжение на рентгеновской трубке, изменяют спектральный состав излучения. Если увеличить температуру накала катода, то возрастут эмиссия электронов и сила тока в трубке. Это приведет к увеличению числа фотонов рентгеновского излучения, испускаемых каждую секунду. Спектральный состав его не изменится. Увеличивая напряжение на рентгеновской трубке, можно заметить на фоне сплошного спектра появление линейчатого, который соответствует характеристическому рентгеновскому излучению. Он возникает вследствие того, что ускоренные электроны проникают вглубь атома и из внутренних слоев выбивают электроны. На свободные места переходят электроны с верхних уровней, в результате высвечиваются фотоны характеристического излучения. В отличие от оптических спектров характеристические рентгеновские спектры разных атомов однотипны. Однотипность этих спектров обусловлена тем, что внутренние слои у разных атомов одинаковы и отличаются лишь энергетически, так как силовое воздействие со стороны ядра увеличивается по мере возрастания порядкового номера элемента. Это обстоятельство приводит к тому, что характеристические спектры сдвигаются в сторону больших частот с увеличением заряда ядра. Такая закономерность известна как закон Мозли.

Есть еще одна разница между оптическими и рентгеновскими спектрами. Характеристический рентгеновский спектр атома не зависит от химического соединения, в которое этот атом входит. Так, например, рентгеновский спектр атома кислорода одинаков для О, О 2 и Н 2 О, в то время как оптические спектры этих соединений существенно различны. Эта особенность рентгеновского спектра атома послужила основанием и для названия характеристическое.

Характеристическое излучение возникает всегда при наличии свободного места во внутренних слоях атома независимо от причины, которая его вызвала. Так, например, характеристическое излучение сопровождает один из видов радиоактивного распада, который заключается в захвате ядром электрона с внутреннего слоя.

Регистрация и использование рентгеновского излучения, а также воздействие его на биологические объекты определяются первичными процессами взаимодействия рентгеновского фотона с электронами атомов и молекул вещества.

В зависимости от соотношения энергии фотона и энергии ионизации имеют место три главных процесса

Когерентное (классическое) рассеяние. Рассеяние длинноволнового рентгеновского излучения происходит в основном без изменения длины волны, и его называют когерентным. Оно возникает если энергия фотона меньше энергии ионизации. Так как в этом случае энергия фотона рентгеновского излучения и атома не изменяется, то когерентное рассеяние само по себе не вызывает биологического действия. Однако при создании защиты от рентгеновского излучения следует учитывать возможность изменения направления первичного пучка. Этот вид взаимодействия имеет значение для рентгенструктурного анализа.

Некогерентное рассеяние (эффект Комптона). В 1922 г А.Х. Комптон, наблюдая рассеяние жестких рентгеновских лучей, обнаружил уменьшение проникающей способности рассеянного пучка по сравнению с падающим. Это означало, что длина волны рассеянного рентгеновского излучения больше, чем падающего. Рассеяние рентгеновского излучения с изменением длины волны называют некогерентным, а само явление - эффектом Комптона. Он возникает, если энергия фотона рентгеновского излучения больше энергии ионизации. Это явление обусловлено тем, что при взаимодействии с атомом энергия фотона расходуется на образование нового рассеянного фотона рентгеновского излучения, на отрыв электрона от атома (энергия ионизации А) и сообщение электрону кинетической энергии.

Существенно, что в этом явлении наряду с вторичным рентгеновским излучением (энергия hv" фотона) появляются электроны отдачи (кинетическая энергия £ к электрона). Атомы или молекулы при этом становятся ионами.

Фотоэффект. При фотоэффекте рентгеновское излучение поглощается атомом, в результате чего вылетает электрон, а атом ионизируется (фотоионизация). Если энергия фотона недостаточна для ионизации, то фотоэффект может проявляться в возбуждении атомов без вылета электронов.

Перечислим некоторые процессы, наблюдаемые при действии рентгеновского излучения на вещество.

Рентгенолюминесценция – свечение ряда веществ при рентгеновском облучении. Такое свечение платиносинеродистого бария позволило Рентгену открыть лучи. Это явление используют для создания специальных светящихся экранов с целью визуального наблюдения рентгеновского излучения, иногда для усиления действия рентгеновских лучей на фотопластинку.

Известно химическое действие рентгеновского излучения, например образование перекиси водорода в воде. Практически важный пример - воздействие на фотопластинку, что позволяет фиксировать такие лучи.

Ионизирующее действие проявляется в увеличении электропроводимости под воздействием рентгеновских лучей. Это свойство используют в дозиметрии для количественной оценки действия этого вида излучения.

Одно из наиболее важных медицинских применений рентгеновского излучения - просвечивание внутренних органов с диагностической целью (рентгенодиагностика).

Рентгенологический метод - это способ изучения строения и функции различных органов и систем, основанный на качественном и/или количественном анализе пучка рентгеновского излучения, прошедшего через тело человека. Рентгеновское излучение, возникшее в аноде рентгеновской трубки, направляют на больного, в теле которого оно частично поглощается и рассеивается, а частично проходит насквозь. Датчик преобразователя изображения улавливает прошедшее излучение, а преобразователь строит видимый световой образ, который воспринимает врач.

Типичная рентгеновская диагностическая система состоит из рентгеновского излучателя (трубки), объекта исследования (пациента), преобразователя изображения и врача-рентгенолога.

Для диагностики используют фотоны с энергией порядка 60-120 кэВ. При этой энергии массовый коэффициент ослабления в основном определяется фотоэффектом. Его значение обратно пропорционально третьей степени энергии фотона (пропорционально X 3), в чем проявляется большая проникающая способность жесткого излучения и пропорционально третьей степени атомного номера вещества-поглотителя. Поглощение рентгеновских лучей почти не зависит от того, в каком соединении атом представлен в веществе, поэтому можно легко сравнить массовые коэффициенты ослабления кости, мягкой ткани или воды. Существенное различие поглощения рентгеновского излучения разными тканями позволяет в теневой проекции видеть изображения внутренних органов тела человека.

Современная рентгенодиагностическая установка представляет собой сложное техническое устройство. Оно насыщено элементами телеавтоматики, электроники, электронно-вычислительной техники. Многоступенчатая система защиты обеспечивает радиационную и электрическую безопасность персонала и больных.

Рентгенодиагностические аппараты принято делить на универсальные, позволяющие производить рентгеновское просвечивание и рентгеновские снимки всех частей тела, и аппараты специального назначения. Последние предназначены для выполнения рентгенологических исследований в неврологии, челюстно-лицевой хирургии и стоматологии, маммологии, урологии, ангиологии. Созданы также специальные аппараты для исследования детей, для массовых проверочных исследований (флюорографы), для исследований в операционных. Для рентгеноскопии и рентгенографии больных в палатах и реанимационном отделении применяют передвижные рентгеновские установки.

В состав типового рентгенодиагностического аппарата входят питающее устройство, пульт управления, штатив и рентгеновская трубка. Она-то, собственно, и является источником излучения. Установка получает питание из сети в виде переменного тока низкого напряжения. В высоковольтном трансформаторе сетевой ток преобразуется в переменный ток высокого напряжения. Чем сильнее поглощает исследуемый орган излучение, тем интенсивнее тень, которую он отбрасывает на рентгеновский флюоресцентный экран. И, наоборот, чем больше лучей пройдет через орган, тем слабее его тень на экране.

Для того чтобы получить дифференцированное изображение тканей, примерно одинаково поглощающих излучение, применяют искусственное контрастирование. С этой целью в организм вводят вещества, которые поглощают рентгеновское излучение сильнее или, наоборот, слабее, чем мягкие ткани, и тем самым создают достаточный контраст по отношению к исследуемым органам. Вещества, задерживающие излучение сильнее, чем мягкие ткани, называют рентгенопозитивными. Они созданы на основе тяжелых элементов - бария или йода. В качестве же рентгенонегативных веществ используют газы: закись азота, углекислый газ, кислород, воздух. Основные требования к рентгеноконтрастным веществам очевидны: их максимальная безвредность (низкая токсичность), быстрое выведение из организма.

Существуют два принципиально различных способа контрастирования органов. Один из них заключается в прямом (механическом) введении контрастного вещества в полость органа - в пищевод, желудок, кишечник, в слезные или слюнные протоки, желчные пути, мочевые пути, в полость матки, бронхи, кровеносные и лимфатические сосуды. В других случаях контрастное вещество вводят в полость или клетчаточное пространство, окружающее исследуемый орган (например, в забрюшинную клетчатку, окружающую почки и надпочечники), или путем пункции - в паренхиму органа.

Второй способ контрастирования основан на способности некоторых органов поглощать из крови введенное в организм вещество, концентрировать и выделять его. Этот принцип - концентрации и элиминации - используют при рентгенологическом контрастировании выделительной системы и желчных путей.

В некоторых случаях рентгенологическое исследование проводят одновременно с двумя рентгеноконтрастными средствами. Наиболее часто таким приемом пользуются в гастроэнтерологии, производя так называемое двойное контрастирование желудка или кишки: в исследуемую часть пищеварительного канала вводят водную взвесь сульфата бария и воздух.

Можно выделить 5 типов приемников рентгеновского излучения: рентгеновскую пленку, полупроводниковую фоточувствительную пластину, флюоресцирующий экран, рентгеновский электронно-оптический преобразователь, дозиметрический счетчик. На них соответственно построены 5 общих методов рентгенологического исследования: рентгенография, электрорентгенография, рентгеноскопия, рентгенотелевизионная рентгеноскопия и дигитальная рентгенография (в том числе компьютерная томография).

2. Рентгенография (рентгеновская съемка)

Рентгенография - способ рентгенологического исследования, при котором изображение объекта получают на рентгеновской пленке путем ее прямого экспонирования пучком излучения.

Пленочную рентгенографию выполняют либо на универсальном рентгеновском аппарате, либо на специальном штативе, предназначенном только для съемки. Пациент располагается между рентгеновской трубкой и пленкой. Исследуемую часть тела максимально приближают к кассете. Это необходимо, чтобы избежать значительного увеличения изображения из-за расходящегося характера пучка рентгеновского излучения. Кроме того, это обеспечивает необходимую резкость изображения. Рентгеновскую трубку устанавливают в таком положении, чтобы центральный пучок проходил через центр снимаемой части тела и перпендикулярно к пленке. Исследуемый отдел тела обнажают и фиксируют специальными приспособлениями. Все остальные части тела покрывают защитными экранами (например, просвинцованной резиной) для снижения лучевой нагрузки. Рентгенографию можно производить в вертикальном, горизонтальном и наклонном положении больного, а также в положении на боку. Съемка в разных положениях позволяет судить о смещаемости органов и выявлять некоторые важные диагностические признаки, например растекание жидкости в плевральной полости или уровни жидкости в петлях кишечника.

Снимок, на котором изображена часть тела (голова, таз и др.) или весь орган (легкие, желудок), называют обзорным. Снимки, на которых получают изображение интересующей врача части органа в оптимальной проекции, наиболее выгодной для исследования той или иной детали, именуют прицельными. Их нередко производит сам врач под контролем просвечивания. Снимки могут быть одиночными или серийными. Серия может состоять из 2-3 рентгенограмм, на которых зафиксированы разные состояния органа (например, перистальтика желудка). Но чаще под серийной рентгенографией понимают изготовление нескольких рентгенограмм в течение одного исследования и обычно за короткий промежуток времени. Например, при артериографии производят с помощью специального устройства - сериографа - до 6-8 снимков в секунду.

Среди вариантов рентгенографии заслуживает упоминания съемка с прямым увеличением изображения. Увеличения достигают тем, что рентгеновскую кассету отодвигают от объекта съемки. В результате на рентгенограмме получается изображение мелких деталей, неразличимых на обычных снимках. Эту технологию можно использовать только при наличии специальных рентгеновских трубок, имеющих очень малые размеры фокусного пятна - порядка 0,1 - 0,3 мм 2 . Для изучения костно-суставной системы оптимальным считается увеличение изображения в 5-7 раз.

На рентгенограммах можно получить изображение любой части тела. Некоторые органы хорошо различимы на снимках благодаря условиям естественной контрастности (кости, сердце, легкие). Другие органы достаточно четко отображаются только после их искусственного контрастирования (бронхи, сосуды, полости сердца, желчные протоки, желудок, кишки и пр.). В любом случае рентгенологическая картина формируется из светлых и темных участков. Почернение рентгеновской пленки, как и фотопленки, происходит вследствие восстановления металлического серебра в ее экспонированном эмульсионном слое. Для этого пленку подвергают химической и физической обработке: ее проявляют, фиксируют, промывают и сушат. В современных рентгеновских кабинетах весь процесс полностью автоматизирован благодаря наличию проявочных машин. Применение микропроцессорной техники, высокой температуры и быстродействующих реактивов позволяет сократить время получения рентгенограммы до 1 -1,5 мин.

Следует помнить, что рентгеновский снимок по отношению к изображению, видимому на флюоресцентном экране при просвечивании, является негативом. Поэтому прозрачные участки на рентгенограмме называют темными («затемнениями»), а темные - светлыми («просветлениями»). Но главная особенность рентгенограммы заключается в другом. Каждый луч на своем пути через тело человека пересекает не одну, а громадное количество точек, расположенных как на поверхности, так и в глубине тканей. Следовательно, каждой точке на снимке соответствует множество действительных точек объекта, которые проецируются друг на друга. Рентгеновское изображение является суммационным, плоскостным. Это обстоятельство приводит к потере изображения многих элементов объекта, поскольку изображение одних деталей накладывается на тень других. Отсюда вытекает основное правило рентгенологического исследования: исследование любой части тела (органа) должно быть произведено как минимум в двух взаимно перпендикулярных проекциях - прямой и боковой. Дополнительно к ним могут понадобиться снимки в косых и аксиальных (осевых) проекциях.

Рентгенограммы изучают в соответствии с общей схемой анализа лучевых изображений.

Метод рентгенографии применяют повсеместно. Он доступен для всех лечебных учреждений, прост и необременителен для пациента. Снимки можно производить в стационарном рентгеновском кабинете, в палате, в операционной, в реанимационном отделении. При правильном выборе технических условий на снимке отображаются мелкие анатомические детали. Рентгенограмма является документом, который может храниться продолжительное время, использоваться для сопоставления с повторными рентгенограммами и предъявляться для обсуждения неограниченному числу специалистов.

Показания к рентгенографии весьма широки, но в каждом отдельном случае должны быть обоснованы, так как рентгенологическое исследование сопряжено с лучевой нагрузкой. Относительными противопоказаниями служат крайне тяжелое или сильно возбужденное состояние больного, а также острые состояния, требующие экстренной хирургической помощи (например, кровотечение из крупного сосуда, открытый пневмоторакс).

3. Электрорентгенография

Электрорентгенография - метод получения рентгеновского изображения на полупроводниковых пластинах с последующим перенесением его на бумагу.

Электрорентгенографический процесс включает в себя следующие этапы: зарядка пластины, ее экспонирование, проявление, перенос изображения, фиксация изображения.

Зарядка пластины. Металлическую пластину, покрытую селеновым полупроводниковым слоем, помещают в зарядное устройство электрорентгенографа. В нем полупроводниковому слою сообщается электростатический заряд, который может сохраняться в течение 10 мин.

Экспонирование. Рентгенологическое исследование проводят так же, как при обычной рентгенографии, только вместо кассеты с пленкой используют кассету с пластиной. Под влиянием рентгеновского облучения сопротивление полупроводникового слоя уменьшается, он частично теряет свой заряд. Но в разных местах пластины заряд меняется не одинаково, а пропорционально количеству попадающих на них рентгеновских квантов. На пластине создается скрытое электростатическое изображение.

Проявление. Электростатическое изображение проявляется путем напыления на пластину темного порошка (тонера). Отрицательно заряженные частицы порошка притягиваются к тем участкам селенового слоя, которые сохранили положительный заряд, причем в степени, пропорциональной величине заряда.

Перенос и фиксация изображения. В электроретинографе изображение с пластины коронным разрядом переносится на бумагу (чаще всего используют писчую бумагу) и фиксируется в парах закрепителя. Пластина после очищения от порошка вновь пригодна для употребления.

Электрорентгенографическое изображение отличается от пленочного двумя главными особенностями. Первая заключается в его большой фотографической широте - на электрорентгенограмме хорошо отображаются как плотные образования, в частности кости, так и мягкие ткани. При пленочной рентгенографии добиться этого значительно труднее. Вторая особенность - феномен подчеркивания контуров. На границе тканей разной плотности они кажутся как бы подрисованными.

Положительными сторонами электрорентгенографии являются: 1) экономичность (дешевая бумага, на 1000 и более снимков); 2) быстрота получения изображения - всего 2,5-3 мин; 3) все исследование осуществляется в незатемненном помещении; 4) «сухой» характер получения изображения (поэтому за рубежом электрорентгенографию называют ксерорадиографией - от греч. xeros - сухой); 5) хранение электрорентгенограмм намного проще, чем рентгеновских пленок.

Вместе с тем необходимо отметить, что чувствительность электрорентгенографической пластины значительно (в 1,5-2 раза) уступает чувствительности комбинации пленка - усиливающие экраны, применяемой в обычной рентгенографии. Следовательно, при съемке приходится увеличивать экспозицию, что сопровождается возрастанием лучевой нагрузки. Поэтому электрорентгенографию не применяют в педиатрической практике. Кроме того, на электрорентгенограммах довольно часто возникают артефакты (пятна, полосы). С учетом сказанного, основным показанием для ее применения является неотложное рентгенологическое исследование конечностей.

Рентгеноскопия (рентгеновское просвечивание)

Рентгеноскопия - метод рентгенологического исследования, при котором изображение объекта получают на светящемся (флюоресцентном) экране. Экран представляет собой картон, покрытый особым химическим составом. Этот состав под влиянием рентгеновского излучения начинает светиться. Интенсивность свечения в каждой точке экрана пропорциональна количеству попавших на него рентгеновских квантов. Со стороны, обращенной к врачу, экран покрыт свинцовым стеклом, предохраняющим врача от прямого воздействия рентгеновского излучения.

Флюоресцентный экран светится слабо. Поэтому рентгеноскопию выполняют в затемненном помещении. Врач должен в течение 10-15 мин привыкать (адаптироваться) к темноте, чтобы различить малоинтенсивное изображение. Сетчатка человеческого глаза содержит два типа зрительных клеток - колбочки и палочки. Колбочки обеспечивают восприятие цветных изображений, тогда как палочки - механизм сумеречного зрения. Можно фигурально сказать, что рентгенолог при обычном просвечивании работает «палочками».

У рентгеноскопии много достоинств. Она легковыполнима, общедоступна, экономична. Ее можно произвести в рентгеновском кабинете, в перевязочной, в палате (с помощью передвижного рентгеновского аппарата). Рентгеноскопия позволяет изучать перемещения органов при изменении положения тела, сокращения и расслабления сердца и пульсацию сосудов, дыхательные движения диафрагмы, перистальтику желудка и кишок. Каждый орган нетрудно исследовать в разных проекциях, со всех сторон. Подобный способ исследования рентгенологи называют многоосевым, или методом вращения больного за экраном. Рентгеноскопию используют для выбора наилучшей проекции для рентгенографии с целью выполнения так называемых прицельных снимков.

Однако у обычной рентгеноскопии есть слабые стороны. Она связана с более высокой лучевой нагрузкой, чем рентгенография. Она требует затемнения кабинета и тщательной темновой адаптации врача. После нее не остается документа (снимка), который мог бы храниться и был бы пригоден для повторного рассмотрения. Но самое главное в другом: на экране для просвечивания мелкие детали изображения не удается различить. Это неудивительно: примите во внимание, что яркость свечения хорошего негатоскопа в 30 000 раз больше, чем флюоресцентного экрана при рентгеноскопии. В силу высокой лучевой нагрузки и низкой разрешающей способности рентгеноскопию не разрешается применять для проверочных исследований здоровых людей.

Все отмеченные недостатки обычной рентгеноскопии в известной степени устраняются в том случае, если в рентгенодиагностическую систему введен усилитель рентгеновского изображения (УРИ). Плоский УРИ типа «Круиз» повышает яркость свечения экрана в 100 раз. А УРИ, включающий в себя телевизионную систему, обеспечивает усиление в несколько тысяч раз и позволяет заменить обычную рентгеноскопию рентгенотелевизионным просвечиванием.

4. Рентгенотелевизионное просвечивание

Рентгенотелевизионное просвечивание - современный вид рентгеноскопии. Оно выполняется с помощью усилителя рентгеновского изображения (УРИ), в состав которого входят рентгеновский электронно-оптический преобразователь (РЭОП) и замкнутая телевизионная система.

РЭОП представляет собой вакуумную колбу, внутри которой, с одной стороны, имеется рентгеновский флюоресцентный экран, а с противоположной - катодолюминесцентный экран. Между ними приложено электрическое ускоряющее поле с разницей потенциалов около 25 кВ. Возникающий при просвечивании световой образ на флюоресцентном экране превращается на фотокатоде в поток электронов. Под действием ускоряющего поля и в результате фокусировки (повышения плотности потока) энергия электронов значительно возрастает - в несколько тысяч раз. Попадая на катодолюминесцентный экран, электронный поток создает на нем видимое, аналогичное исходному, но очень яркое изображение.

Это изображение через систему зеркал и линз передается на передающую телевизионную трубку - видикон. Возникающие в ней электрические сигналы поступают для обработки в блок телевизионного канала, а затем - на экран видеоконтрольного устройства или, проще говоря, на экран телевизора. При необходимости изображение может фиксироваться с помощью видеомагнитофона.

Таким образом, в УРИ осуществляется такая цепочка преобразования образа исследуемого объекта: рентгеновский - световой - электронный (на этом этапе происходит усиление сигнала) - вновь световой - электронный (здесь возможно исправление некоторых характеристик образа) - вновь световой.

Рентгеновское изображение на телевизионном экране, как и обычное телевизионное изображение, можно рассматривать при видимом свете. Благодаря УРИ рентгенологи совершили скачок из царства темноты в царство света. Как остроумно заметил один ученый, «темное прошлое рентгенологии позади». А ведь в течение многих десятилетий рентгенологи могли считать своим лозунгом слова, начертанные на гербе Дон-Кихота: «Posttenebrassperolucem» («После тьмы надеюсь на свет»).

Рентгенотелевизионное просвечивание не требует темновой адаптации врача. Лучевая нагрузка на персонал и пациента при нем значительно меньше, чем при обычной рентгеноскопии. На экране телевизора заметны детали, которые при рентгеноскопии не улавливаются. По телевизионному тракту рентгеновское изображение может быть передано на другие мониторы (в комнату управления, в учебную аудиторию, в кабинет консультанта и т. д.). Телевизионная техника обеспечивает возможность видеозаписи всех этапов исследования.

С помощью зеркал и линз рентгеновское изображение из рентгеновского электронно-оптического преобразователя может быть введено в кинокамеру. Такое рентгенологическое исследование носит название рентгенокинематографии. Это изображение может быть направлено также в фотокамеру. Получающиеся при этом снимки, имеющие небольшие - 70X70 или 100Х 100 мм - размеры и выполненные на рентгеновской пленке, носят название фоторентгенограмм (УРИ-флюорограмм). Они более экономичны, чем обычные рентгенограммы. Кроме того, при их выполнении меньше лучевая нагрузка на больного. Еще одно преимущество состоит в возможности скоростной съемки - до 6 кадров в секунду.

5. Флюорография

Флюорография - метод рентгенологического исследования, заключающийся в фотографировании изображения с рентгеновского флюоресцентного экрана или экрана электронно-оптического преобразователя на фотопленку небольшого формата.

При наиболее распространенном способе флюорографии уменьшенные рентгеновские снимки - флюорограммы получают на специальном рентгеновском аппарате - флюорографе. В этом аппарате имеется флюоресцентный экран и механизм автоматического перемещения рулонной пленки. Фотографирование изображения осуществляется посредством фотокамеры на эту рулонную пленку с размером кадра 70X70 или 100Х 100 мм.

При другом способе флюорографии, уже упомянутом в предыдущем параграфе, фотосъемку производят на пленки того же формата прямо с экрана электронно-оптического преобразователя. Этот способ исследования называют УРИ-флюорографией. Методика особенно выгодна при исследовании пищевода, желудка и кишечника, так как обеспечивает быстрый переход от просвечивания к съемке.

На флюорограммах детали изображения фиксируются лучше, чем при рентгеноскопии или рентгенотелевизионном просвечивании, но несколько хуже (на 4-5%) по сравнению с обычными рентгенограммами. В поликлиниках и стационарах более дорогую рентгенографию, особенно при повторных контрольных исследованиях. Такое рентгенологическое исследование называют диагностической флюорографией. Основным назначением флюорографии в нашей стране является проведение массовых проверочных рентгенологических исследований, главным образом для выявления скрыто протекающих поражений легких. Такую флюорографию называют проверочной или профилактической. Она является способом отбора из популяции лиц с подозрением на заболевание, а также способом диспансерного наблюдения за людьми с неактивными и остаточными туберкулезными изменениями в легких, пневмосклерозами и т. д.

Для проверочных исследований применяют флюорографы стационарного и передвижного типа. Первые размещают в поликлиниках, медико-санитарных частях, диспансерах, больницах. Передвижные флюорографы монтируют на автомобильных шасси или в железнодорожных вагонах. Съемку и в тех и в других флюорографах производят на рулонную пленку, которую затем проявляют в специальных бачках. Ввиду малого формата кадра флюорография значительно дешевле рентгенографии. Ее повсеместное использование означает существенную экономию средств медицинской службы. Для исследования пищевода, желудка и двенадцатиперстной кишки созданы специальные гастрофлюорографы.

Готовые флюорограммы рассматривают на специальном фонаре - флюороскопе, который увеличивает изображение. Из общего контингента обследованных отбирают лиц, у которых по флюорограммам заподозрены патологические изменения. Их направляют для дополнительного обследования, которое проводят на рентгенодиагностических установках с применением всех необходимых рентгенологических методов исследования.

Важные достоинства флюорографии - это возможность обследования большого числа лиц в течение короткого времени (высокая пропускная способность), экономичность, удобство хранения флюорограмм. Сопоставление флюорограмм, произведенных при очередном проверочном обследовании, с флюорограммами предыдущих лет позволяет рано выявлять минимальные патологические изменения в органах. Этот прием получил название ретроспективного анализа флюорограмм.

Наиболее эффективным оказалось применение флюорографии для выявления скрыто протекающих заболеваний легких, в первую очередь туберкулеза и рака. Периодичность проверочных обследований определяют с учетом возраста людей, характера их трудовой деятельности, местных эпидемиологических условий.

6. Дигитальная (цифровая) рентгенография

Описанные выше системы получения рентгеновского изображения относятся к так называемой обычной, или конвенциональной, рентгенологии. Но в семействе этих систем быстро растет и развивается новый ребенок. Это - дигитальные (цифровые) способы получения изображений (от англ. digit - цифра). Во всех дигитальных устройствах изображение строится в принципе одинаково. Каждая «дигитальная» картинка состоит из множества отдельных точек. Каждой точке изображения приписывается число, которое соответствует интенсивности ее свечения (ее «серости»). Степень яркости точки определяют в специальном приборе - аналого-цифровом преобразователе (АЦП). Как правило, число пикселей в одном ряду равно 32, 64, 128, 256, 512 или 1024, причем по ширине и высоте матрицы количество их равно. При величине матрицы 512 X 512 дигитальная картинка состоит из 262 144 отдельных точек.

Рентгеновское изображение, полученное в телевизионной камере, поступает после преобразования в усилителе на АЦП. В нем электрический сигнал, несущий информацию о рентгеновском изображении, превращается в череду цифр. Таким образом, создается цифровой образ - цифровое кодирование сигналов. Цифровая информация поступает затем в компьютер, где обрабатывается по заранее составленным программам. Программу выбирает врач, исходя из задач исследования. При переводе аналогового изображения в цифровое происходит, конечно, некоторая потеря информации. Но она компенсируется возможностями компьютерной обработки. С помощью компьютера можно улучшить качество изображения: повысить его контрастность, очистить его от помех, выделить в нем интересующие врача детали или контуры. Например, созданное фирмой Сименс устройство «Политрон» с матрицей 1024 X 1024 позволяет добиться отношения «сигнал - шум», равного 6000:1. Это обеспечивает выполнение не только рентгенографии, но и рентгеноскопии с высоким качеством изображения. В компьютере можно сложить изображения или вычесть одно из другого.

Чтобы цифровую информацию превратить в изображение на телевизионном экране или пленке, необходим цифро-аналоговый преобразователь (ЦАП). Его функция противоположна АЦП. Цифровой образ, «упрятанный» в компьютере, он трансформирует в аналоговое, видимое (осуществляет декодирование).

У дигитальной рентгенографии большое будущее. Есть основания полагать, что она постепенно будет вытеснять обычную рентгенографию. Она не требует дорогостоящей рентгеновской пленки и фотопроцесса, отличается быстродействием. Она позволяет после окончания исследования производить дальнейшую (апостериорную) обработку изображения и передачу его на расстояние. Весьма удобно хранение информации на магнитных носителях (диски, ленты).

Большой интерес вызывает люминесцентная дигитальная рентгенография, основанная на использовании запоминающего изображения люминесцентного экрана. Во время рентгеновской экспозиции изображение записывается на такой пластине, а затем считывается с нее с помощью гелий-неонового лазера и записывается в цифровой форме. Лучевая нагрузка по сравнению с обычной рентгенографией уменьшается в 10 и более раз. Разрабатываются и другие способы дигитальной рентгенографии (например, снятие электрических сигналов с экспонированной селеновой пластины без обработки ее в электрорентгенографе).

Основные методы рентгенологического исследования

Классификация методов рентгенологического исследования

Рентгенологические методики

Основные методы Дополнительные методы Специальные методы – необходимо дополнительное контрастирование
Рентгенография Линейная томография Рентгеннегативными веществами (газы)
Рентгеноскопия Зонография Рентген-позитивные вещества Соли тяжелых металлов (сульфак окиси бария)
Флюорография Кимография Йодосодержащие водорастворимые вещества
Электро-рентгенография Электрокимография · ионные
Стереогрентгено-графия · неионные
Рентгенокинемато-графия Йодосодержащие жирорастворимые вещества
Компьютерная томография Тропного действия вещества.
МРТ

Рентгенография - способ рентгенологического исследования, при котором изображение объекта получают на рентгеновской пленке путем ее прямого экспонирования пучком излучения.

Пленочную рентгенографию выполняют либо на универсальном рентгеновском аппарате, либо на специальном штативе, предназначенном только для съемки. Пациент располагается между рентгеновской трубкой и пленкой. Исследуемую часть тела максимально приближают к кассете. Это необходимо, чтобы избежать значительного увеличения изображения из-за расходящегося характера пучка рентгеновского излучения. Кроме того, это обеспечивает необходимую резкость изображения. Рентгеновскую трубку устанавливают в таком положении, чтобы центральный пучок проходил через центр снимаемой части тела и перпендикулярно к пленке. Исследуемый отдел тела обнажают и фиксируют специальными приспособлениями. Все остальные части тела покрывают защитными экранами (например, просвинцованной резиной) для снижения лучевой нагрузки. Рентгенографию можно производить в вертикальном, горизонтальном и наклонном положении больного, а также в положении на боку. Съемка в разных положениях позволяет судить о смещаемости органов и выявлять некоторые важные диагностические признаки, например растекание жидкости в плевральной полости или уровни жидкости в петлях кишечника.

Снимок, на котором изображена часть тела (голова, таз и др.) или весь орган (легкие, желудок), называют обзорным. Снимки, на которых получают изображение интересующей врача части органа в оптимальной проекции, наиболее выгодной для исследования той или иной детали, именуют прицельными. Их нередко производит сам врач под контролем просвечивания. Снимки могут быть одиночными или серийными. Серия может состоять из 2-3 рентгенограмм, на которых зафиксированы разные состояния органа (например, перистальтика желудка). Но чаще под серийной рентгенографией понимают изготовление нескольких рентгенограмм в течение одного исследования и обычно за короткий промежуток времени. Например, при артериографии производят с помощью специального устройства - сериографа - до 6-8 снимков в секунду.

Среди вариантов рентгенографии заслуживает упоминания съемка с прямым увеличением изображения. Увеличения достигают тем, что рентгеновскую кассету отодвигают от объекта съемки. В результате на рентгенограмме получается изображение мелких деталей, неразличимых на обычных снимках. Эту технологию можно использовать только при наличии специальных рентгеновских трубок, имеющих очень малые размеры фокусного пятна - порядка 0,1 - 0,3 мм2. Для изучения костно-суставной системы оптимальным считается увеличение изображения в 5-7 раз.

На рентгенограммах можно получить изображение любой части тела. Некоторые органы хорошо различимы на снимках благодаря условиям естественной контрастности (кости, сердце, легкие). Другие органы достаточно четко отображаются только после их искусственного контрастирования (бронхи, сосуды, полости сердца, желчные протоки, желудок, кишки и пр.). В любом случае рентгенологическая картина формируется из светлых и темных участков. Почернение рентгеновской пленки, как и фотопленки, происходит вследствие восстановления металлического серебра в ее экспонированном эмульсионном слое. Для этого пленку подвергают химической и физической обработке: ее проявляют, фиксируют, промывают и сушат. В современных рентгеновских кабинетах весь процесс полностью автоматизирован благодаря наличию проявочных машин. Применение микропроцессорной техники, высокой температуры и быстродействующих реактивов позволяет сократить время получения рентгенограммы до 1 -1,5 мин.

Следует помнить, что рентгеновский снимок по отношению к изображению, видимому на флюоресцентном экране при просвечивании, является негативом. Поэтому прозрачные участки на рентгенограмме называют темными («затемнениями»), а темные - светлыми («просветлениями»). Но главная особенность рентгенограммы заключается в другом. Каждый луч на своем пути через тело человека пересекает не одну, а громадное количество точек, расположенных как на поверхности, так и в глубине тканей. Следовательно, каждой точке на снимке соответствует множество действительных точек объекта, которые проецируются друг на друга. Рентгеновское изображение является суммационным, плоскостным. Это обстоятельство приводит к потере изображения многих элементов объекта, поскольку изображение одних деталей накладывается на тень других. Отсюда вытекает основное правило рентгенологического исследования: исследование любой части тела (органа) должно быть произведено как минимум в двух взаимно перпендикулярных проекциях - прямой и боковой. Дополнительно к ним могут понадобиться снимки в косых и аксиальных (осевых) проекциях.

Рентгенограммы изучают в соответствии с общей схемой анализа лучевых изображений.

Метод рентгенографии применяют повсеместно. Он доступен для всех лечебных учреждений, прост и необременителен для пациента. Снимки можно производить в стационарном рентгеновском кабинете, в палате, в операционной, в реанимационном отделении. При правильном выборе технических условий на снимке отображаются мелкие анатомические детали. Рентгенограмма является документом, который может храниться продолжительное время, использоваться для сопоставления с повторными рентгенограммами и предъявляться для обсуждения неограниченному числу специалистов.

Показания к рентгенографии весьма широки, но в каждом отдельном случае должны быть обоснованы, так как рентгенологическое исследование сопряжено с лучевой нагрузкой. Относительными противопоказаниями служат крайне тяжелое или сильно возбужденное состояние больного, а также острые состояния, требующие экстренной хирургической помощи (например, кровотечение из крупного сосуда, открытый пневмоторакс).

Преимущества рентгенографии

1. Широкая доступность метода и лёгкость в проведении исследований.

2. Для большинства исследований не требуется специальной подготовки пациента.

3. Относительно низкая стоимость исследования.

4. Снимки могут быть использованы для консультации у другого специалиста или в другом учреждении (в отличие от УЗИ-снимков, где необходимо проведение повторного исследования, так как полученные изображения являются оператор-зависимыми).

Недостатки рентгенографии

1. «Замороженность» изображения - сложность оценки функции органа.

2. Наличие ионизирующего излучения, способного оказать вредное воздействие на исследуемый организм.

3. Информативность классической рентгенографии значительно ниже таких современных методов медицинской визуализации, как КТ, МРТ и др. Обычные рентгеновские изображения отражают проекционное наслоение сложных анатомических структур, то есть их суммационную рентгеновскую тень, в отличие от послойных серий изображений, получаемых современными томографическими методами.

4. Без применения контрастирующих веществ рентгенография практически неинформативна для анализа изменений в мягких тканях.

Электрорентгенография - метод получения рентгеновского изображения на полупроводниковых пластинах с последующим перенесением его на бумагу.

Электрорентгенографический процесс включает в себя следующие этапы: зарядка пластины, ее экспонирование, проявление, перенос изображения, фиксация изображения.

Зарядка пластины. Металлическую пластину, покрытую селеновым полупроводниковым слоем, помещают в зарядное устройство электрорентгенографа. В нем полупроводниковому слою сообщается электростатический заряд, который может сохраняться в течение 10 мин.

Экспонирование. Рентгенологическое исследование проводят так же, как при обычной рентгенографии, только вместо кассеты с пленкой используют кассету с пластиной. Под влиянием рентгеновского облучения сопротивление полупроводникового слоя уменьшается, он частично теряет свой заряд. Но в разных местах пластины заряд меняется не одинаково, а пропорционально количеству попадающих на них рентгеновских квантов. На пластине создается скрытое электростатическое изображение.

Проявление. Электростатическое изображение проявляется путем напыления на пластину темного порошка (тонера). Отрицательно заряженные частицы порошка притягиваются к тем участкам селенового слоя, которые сохранили положительный заряд, причем в степени, пропорциональной величине заряда.

Перенос и фиксация изображения. В электроретинографе изображение с пластины коронным разрядом переносится на бумагу (чаще всего используют писчую бумагу) и фиксируется в парах закрепителя. Пластина после очищения от порошка вновь пригодна для употребления.

Электрорентгенографическое изображение отличается от пленочного двумя главными особенностями. Первая заключается в его большой фотографической широте - на электрорентгенограмме хорошо отображаются как плотные образования, в частности кости, так и мягкие ткани. При пленочной рентгенографии добиться этого значительно труднее. Вторая особенность - феномен подчеркивания контуров. На границе тканей разной плотности они кажутся как бы подрисованными.

Положительными сторонами электрорентгенографии являются: 1) экономичность (дешевая бумага, на 1000 и более снимков); 2) быстрота получения изображения - всего 2,5-3 мин; 3) все исследование осуществляется в незатемненном помещении; 4) «сухой» характер получения изображения (поэтому за рубежом электрорентгенографию называют ксерорадиографией - от греч. xeros - сухой); 5) хранение электрорентгенограмм намного проще, чем рентгеновских пленок.

Вместе с тем необходимо отметить, что чувствительность электрорентгенографической пластины значительно (в 1,5-2 раза) уступает чувствительности комбинации пленка - усиливающие экраны, применяемой в обычной рентгенографии. Следовательно, при съемке приходится увеличивать экспозицию, что сопровождается возрастанием лучевой нагрузки. Поэтому электрорентгенографию не применяют в педиатрической практике. Кроме того, на электрорентгенограммах довольно часто возникают артефакты (пятна, полосы). С учетом сказанного, основным показанием для ее применения является неотложное рентгенологическое исследование конечностей.

Рентгеноскопия (рентгеновское просвечивание)

Рентгеноскопия - метод рентгенологического исследования, при котором изображение объекта получают на светящемся (флюоресцентном) экране. Экран представляет собой картон, покрытый особым химическим составом. Этот состав под влиянием рентгеновского излучения начинает светиться. Интенсивность свечения в каждой точке экрана пропорциональна количеству попавших на него рентгеновских квантов. Со стороны, обращенной к врачу, экран покрыт свинцовым стеклом, предохраняющим врача от прямого воздействия рентгеновского излучения.

Флюоресцентный экран светится слабо. Поэтому рентгеноскопию выполняют в затемненном помещении. Врач должен в течение 10-15 мин привыкать (адаптироваться) к темноте, чтобы различить малоинтенсивное изображение. Сетчатка человеческого глаза содержит два типа зрительных клеток - колбочки и палочки. Колбочки обеспечивают восприятие цветных изображений, тогда как палочки - механизм сумеречного зрения. Можно фигурально сказать, что рентгенолог при обычном просвечивании работает «палочками».

У рентгеноскопии много достоинств. Она легковыполнима, общедоступна, экономична. Ее можно произвести в рентгеновском кабинете, в перевязочной, в палате (с помощью передвижного рентгеновского аппарата). Рентгеноскопия позволяет изучать перемещения органов при изменении положения тела, сокращения и расслабления сердца и пульсацию сосудов, дыхательные движения диафрагмы, перистальтику желудка и кишок. Каждый орган нетрудно исследовать в разных проекциях, со всех сторон. Подобный способ исследования рентгенологи называют многоосевым, или методом вращения больного за экраном. Рентгеноскопию используют для выбора наилучшей проекции для рентгенографии с целью выполнения так называемых прицельных снимков.

Преимущества рентгеноскопии Главным преимуществом перед рентгенографией является факт исследования в реальном масштабе времени. Это позволяет оценить не только структуру органа, но и его смещаемость, сократимость или растяжимость, прохождение контрастного вещества, наполняемость. Метод также позволяет достаточно быстро оценить локализацию некоторых изменений, за счет вращения объекта исследования во время просвечивания (многопроекционное исследование). При рентгенографии для этого требуется проведение нескольких снимков, что не всегда возможно (пациент ушел после первого снимка не дождавшись результатов; большой поток пациентов, при котором делаются снимки только в одной проекции). Рентгеноскопия позволяет контролировать проведение некоторых инструментальных процедур - постановка катетеров, ангиопластика (см. ангиография), фистулография.

Однако у обычной рентгеноскопии есть слабые стороны. Она связана с более высокой лучевой нагрузкой, чем рентгенография. Она требует затемнения кабинета и тщательной темновой адаптации врача. После нее не остается документа (снимка), который мог бы храниться и был бы пригоден для повторного рассмотрения. Но самое главное в другом: на экране для просвечивания мелкие детали изображения не удается различить. Это неудивительно: примите во внимание, что яркость свечения хорошего негатоскопа в 30 000 раз больше, чем флюоресцентного экрана при рентгеноскопии. В силу высокой лучевой нагрузки и низкой разрешающей способности рентгеноскопию не разрешается применять для проверочных исследований здоровых людей.

Все отмеченные недостатки обычной рентгеноскопии в известной степени устраняются в том случае, если в рентгенодиагностическую систему введен усилитель рентгеновского изображения (УРИ). Плоский УРИ типа «Круиз» повышает яркость свечения экрана в 100 раз. А УРИ, включающий в себя телевизионную систему, обеспечивает усиление в несколько тысяч раз и позволяет заменить обычную рентгеноскопию рентгенотелевизионным просвечиванием.

Рентгенологические методы исследования основаны на способности рентгеновских лучей проникать через органы и ткани человеческого организма.

Рентгеноскопия – метод просвечивания, осмотр исследуемого органа за специальным рентгеновским экраном.

Рентгенография – метод получения снимков, необходим для документального подтверждения диагноза заболевания, для мониторинга наблюдения за функциональным состоянием пациента.

Плотные ткани задерживают лучи в разной степени. Костная и паренхиматозная ткани способны задерживать рентгеновские лучи, поэтому не требуют специальной подготовки пациента. Для получения более достоверных данных о внутреннем строении органа применяют метод контрастного метода исследования, что определяет «видимость» этих органов. Метод основан на введении в органы специальных веществ, задерживающих рентгеновские лучи.

В качестве контрастных веществ при рентгенологическом исследовании органов желудочно – кишечного тракта (желудка и двенадцатиперстной кишки, кишечника) используют взвесь сульфата бария, при рентгеноскопии почек и мочевыводящих путей, желчного пузыря и желчевыводящих путей – йодконтрастные препараты.

Йодсодержащие контрастные препараты чаще вводят внутривенно. За 1-2 дня до исследования сестра должна провести пробу на переносимость пациента к контрастному веществу. Для этого очень медленно внутривенно вводят 1 мл контрастного вещества и наблюдают за реакцией пациента в течение суток. При появлении зуда, насморка, крапивницы, тахикардии, слабости, понижении АД применение рентгеноконтрастных веществ противопоказано!

Флюорография – крупнокадровое фотографирование с рентгенологического экрана на фотопленку малого размера. Метод используют для массового обследования населения.

Томография – получение снимков отдельных слоев изучаемой области: легких, почек, мозга, костей. Компьютерную томографию используют для получения послойных снимков исследуемой ткани.

Рентгенография органов грудной клетки

Цели исследования:

1.Диагностика заболеваний органов грудной клетки (воспалительные, опухолевые, и системные заболевания, пороки сердца и крупных сосудов, легкого, плевры.).

2.Контроль лечения заболевания.

Цели подготовки :

Подготовка:

5.Выясните, сможет ли пациент стоять необходимое для исследования время и задерживать дыхание.

6.Определите способ транспортировки.

7.Пациенту иметь при себе направление, амбулаторную карту или историю болезни. Если ранее были исследования легких, взять результаты (снимки).

8.Исследование проводится пациенту, обнаженному до пояса (возможна легкая футболка без рентгеноконтрастных застежек).

Рентгеноскопия и рентгенография пищевода, желудка и двенадцатиперстной кишки

Цель исследования - оценка рентгеноанатомии и функции пищевода, желудка и двенадцатиперстной кишки:

Выявление особенностей строения, пороков развития, отношения к окружающим тканям;

Определение нарушения моторной функции этих органов;

Выявление подслизистых и инфильтрирующих опухолей.

Цели подготовки :

1.Обеспечить возможность проведения исследования.

2.Получить достоверные результаты.

Подготовка:

1.Объясните пациенту суть исследования и правила подготовки к нему.

2.Получите согласие пациента на предстоящее исследование.

3.Проинформируйте пациента о точном времени и месте проведения исследования.

4.Попросите пациента повторить ход подготовки к исследованию, особенно в амбулаторных условиях.

5.За 2-3 суток до исследования из рациона питания пациента исключают продукты, вызывающие метеоризм (газообразование): ржаной хлеб, сырые овощи, фрукты, молоко, бобовые и др.

6. Ужин накануне вечером должен быть не позднее 19,00

7. Вечером накануне и утром не позднее чем за 2 часа до исследования пациенту ставят очистительную клизму.

8..Исследование проводится натощак, не нужно пить, курить, принимать лекарства.

9.При исследовании с контрастным веществом (барий для рентгенологических исследований) выяснить аллергоанамнез; способность проглотить контраст.

10. Убрать съемные протезы.

11.Пациенту необходимо иметь при себе: направление, амбулаторную карту/историю болезни, данные предыдущих исследований этих органов, если они проводилась.

12..Освободиться от стесняющей одежды и одежды, имеющей рентгеноконтрастные застежки.

Примечание. Солевое слабительное вместо клизмы давать нельзя,так как оно усиливает газообразование.

В отделении пациенту оставляют завтрак.

Историю болезни после исследования возвращают в отделение.

Возможные проблемы пациента

Настоящие:

1.Появление дискомфорта, болей при обследовании и/или подготовке к нему.

2.Невозможность проглотить барий из-за нарушенного глотательного рефлекса.

Потенциальные:

1.Риск развития болевого синдрома из-за спазмов пищевода и желудка, вызванные самой процедурой (особенно у пожилых) и при раздувании желудка.

2.Риск появления рвоты.

3. Риск развития аллергической реакции.

Рентгенологическое исследование толстого кишечника (ирригоскопия)

Рентгенологическое исследование толстого кишсчника проводят после введения в толстую кишку бариевой взвеси с помощью клизмы.

Цели исследования:

1. определение формы, положения, состояние слизистой оболочки, тонуса и перистальтики различных отделов толстой кишки.

2.Выявление пороков развития и патологических изменений (полипы, опухоли, дивертикулы, кишечную непроходимость).

Цели подготовки :

1.Обеспечить возможность проведения исследования.

2.Получить достоверные результаты.

Подготовка:

1.Объясните пациенту суть исследования и правила подготовки к нему.

2.Получите согласие пациента на предстоящее исследование.

3.Проинформируйте пациента о точном времени и месте проведения исследования.

4.Попросите пациента повторить ход подготовки к исследованию, особенно в амбулаторных условиях.

5.За три дня до исследования бесшлаковая диета (состав диеты смотри в приложении).

6 По назначению врача – прием ферментов и активированного угля в течение трех дней до исследования, настой ромашки по 1/3стакана три раза в день.

7.Накануне исследования последний прием пищи в 14 – 15 часов.

При этом прием жидкости не ограничивается (можно пить бульон, кисель, компот и так далее). Молочные продукты исключить!

8.Днем накануне исследования прием слабительных – перорально или ректально.

9.В 22 часа нужно сделать две очистительные клизмы по 1,5 – 2 литра. Если после второй клизмы промывные воды окрашены, то сделать еще одну клизму. Температура воды должна быть не выше 20 – 22 0 С (комнатной температуры, при вливании вода должна ощущаться как прохладная).

10.Утром в день исследования нужно сделать еще две клизмы за 3 часа до ирригоскопии (при наличии грязных промывных вод клизмы повторять, добиваясь чистых промывных вод).

11.Пациенту необходимо иметь при себе: направление, амбулаторную карту/историю болезни, данные предыдущей колоноскопии, ирригоскопии, если проводилась.

12.Пациентам старше 30 лет иметь при себе ЭКГ не более, чем недельной давности.

13.Если пациент не может так долго не есть (больные сахарным диабетом и так далее), то утром, в день исследования, можно съесть кусок мяса или другой высокобелковый завтрак.

Возможные проблемы пациента

Настоящие:

1.Невозможность соблюдать диету.

2.Невозможность принять определенное положение.

3.Недостаточная подготовка из-за многосуточного запора, несоблюдения температурного режима воды в клизме, объема воды и количества клизм.

Потенциальные:

1.Риск появления болей из-за спазма кишечника, вызванные самой процедурой и/или подготовкой к ней.

2.Риск нарушение сердечной деятельности и дыхания.

3.Риск получения недостоверных результатов при недостаточной подготовке, невозможности введения контрастной клизмы.

Вариант подготовки без клизм

Метод основан на воздействии осмотически активного вещества на моторику толстой кишки и выведении каловых масс вместе с выпитым раствором.

Последовательность процедуры:

1.Один пакет Фортранса растворить в одном литре кипяченой воды.

2.При данном обследовании для полного очищения кишечника необходимо принять 3 литра водного раствора препарата Фортранс.

3.Если обследование проводится утром, то приготовленный раствор Фортранса принимают накануне исследования по 1 стакану каждые 15 минут (1 литр в час) с 16 до 19 часов. Действие препарата на кишечник продолжается до 21 часа.

4.Накануне вечером до 18 часов можно принять легкий ужин. Жидкость не ограничивается.

Пероральная холецистография

Исследование желчного пузыря и желчевыводящих путей основано на способности печени улавливать и накапливать йодсодержащие контрастные препараты, а затем выделять их с желчью через желчный пузырь и желчевыводящие пути. Это позволяет получить изображение желчных путей. В день исследования в рентгеновском кабинете пациенту дают желчегонный завтрак, через 30-45 минут делают серию снимков

Цели исследования:

1.Оценка расположения и функций желчного пузыря и внепеченочных желчных протоков.

2. Выявление пороков развития и патологических изменений (наличие камней в желчном пузыре, опухоли)

Цели подготовки :

1.Обеспечить возможность проведения исследования.

2.Получить достоверные результаты.

Подготовка :

1.Объясните пациенту суть исследования и правила подготовки к нему.

2.Получите согласие пациента на предстоящее исследование.

3.Проинформируйте пациента о точном времени и месте проведения исследования.

4.Попросите пациента повторить ход подготовки к исследованию, особенно в амбулаторных условиях.

5.Выясните, нет ли аллергии на контрастное вещество.

Накануне:

6.При осмотре обратите внимание на кожу и слизистые, при желтушности – сообщите врачу.

7.Соблюдение бесшлаковой диеты в течение трех дней до исследования

8. По назначению врача – прием ферментов и активированного угля в течение трех дней до исследования.

9.Накануне вечером – легкий ужин не позднее 19 час.

10. За 12 часов до исследования – прием контрастного препарата внутрь в течение 1 часа через равные промежутки времени, запивать сладким чаем. (контрастное вещество рассчитывается на массу тела пациента). Максимальная концентрация препарата в желчном пузыре – через 15-17 часов после его приема.

11.Накануне вечером и за 2 часа до исследования пациенту ставят очистительную клизму

В день исследования:

12.Утром явиться в рентгеновский кабинет натощак; нельзя принимать лекарства, курить.

13. Принести с собой 2 сырых яйца или 200 г сметаны и завтрак (чай, бутерброд).

14. Пациенту необходимо иметь при себе: направление, амбулаторную карту/историю болезни, данные предыдущих исследований этих органов, если они проводилась.

Возможные проблемы пациента

Настоящие:

1.Невозможность проведения процедуры из-за появления желтухи (прямой билирубин сорбирует на себя контрастное вещество).

Потенциальные:

Риск аллергической реакции.

2.Риск развития желчной колики на прием желчегонных средств (сметана, яичные желтки).

Перельман М. И., Корякин В. А.

Флюорография . Этот метод широко применяется при массовых обследованиях населения. Другое название этого рентгенологического метода - фоторентгенография, так как суть его заключается в фотографировании изображения с рентгеновского экрана электронно-оптического усилителя на фотопленку. В зависимости от аппарата и величины фотопленки получают кадры размером 70 х 70 или 100 х 100 мм.

По сравнению с обычной рентгенографией флюорография имеет определенные преимущества. Она позволяет значительно увеличить пропускную способность рентгеновского аппарата, сократить расходы на пленку и ее обработку, облегчить хранение архива рентгенограмм.

Разрешающая способность высококачественной флюорограммы легких в прямой и боковой проекциях с размером кадра 100 х 100 мм почти такая же, как и рентгеновского снимка, хотя ее информативность несколько ниже. До недавнего времени флюорографию легких с размером кадра 70 х 70 мм применяли в основном при массовых обследованиях населения, а при выявлении патологии проводили рентгенографию.

В настоящее время флюорограмма с размером кадра 100 х 100 мм успешно заменяет обзорную рентгенограмму легких и флюорография получает все большее распространение в качестве диагностического метода.

Рентгенография . Рентгенографическое исследование легких начинают с выполнения обзорного снимка в передней прямой проекции (кассета с пленкой у передней грудной стенки). При патологических изменениях в задних отделах легких целесообразно выполнить обзорный снимок в задней прямой проекции (кассета с пленкой у задней грудной стенки).

Далее делают обзорный снимок в боковой проекции - правый и левый. При выполнении правого бокового снимка к кассете с пленкой прилежит правая боковая поверхность грудной клетки, при выполнении левого - левая.

Рентгенограммы в боковых проекциях необходимы для определения локализации патологического процесса в долях и сегментах легких, выявления изменений в междолевых щелях и в легких за тенями сердца и диафрагмы.

При двусторонней легочной патологии лучше выполнять снимки не в боковых, а в косых проекциях, на которых получаются раздельные изображения правого и левого легких.

Рентгеновские снимки обычно выполняют на высоте вдоха. В условиях выдоха снимки делают для лучшего выявления края спавшегося легкого и плевральных сращений при наличии пневмоторакса, а также для определения смещения органов средостения при патологии легких и плевры.

Для повышения информативности рентгенограмм можно увеличить время экспозиции или жесткость рентгеновских лучей. Такие снимки называют суперэкспонированными и жесткими. Их выполняют больным с экссудативным плевритом и массивными плевральными наложениями, уплотнениями легочной ткани, после хирургических операций на легких, для получения лучшего изображения стенок трахеи и бронхов.

На жестких и суперэкспонированных снимках могут выявляться различные структуры в зонах интенсивного затемнения, не видимые на обычном снимке, но тени малой интенсивности не определяются.

Обзорные рентгенограммы в прямой и боковой проекциях дают не только общее представление о состоянии органов грудной полости, но и важную диагностическую информацию. Их дополняют прицельными снимками, производимыми под контролем рентгенотелевидения узким пучком лучей.

При этом больному придают такое положение, которое позволяет освободить изображение исследуемого легочного поля от наложения мешающих костных и других образований.

Сочетать информацию снимков, сделанных с использованием мягких, средних или жестких лучей, с картиной суперэкспонированных снимков в значительной степени позволяет электрорентгенография или ксерография. Изображение получают на селеновой пластине, а затем с помощью графитового порошка переносят на обычную белую бумагу.

По сравнению с обычными рентгенограммами на электрорентгенограммах вследствие «краевого эффекта» лучше выявляются контуры трахеи и бронхов, край коллабированного легкого при пневмотораксе, полости в легких, очаги, остаточные плевральные полости, уровень небольшого количества жидкости, межмышечные и подкожные скопления воздуха. Важным преимуществом электрорентгенографии является ее экономичность, так как можно обходиться без рентгеновской пленки.

Томография . Послойное рентгенологическое исследование является одним из основных методов диагностики заболеваний легких, особенно туберкулеза. Высококачественные томограммы дают дополнительную информацию о наличии и локализации очагов, участков распада легочной ткани, каверн, о состоянии бронхов и крупных легочных сосудов.

При туберкулезе легких томография имеет важное значение для наблюдения за процессом и для контроля эффективности лечения (рассасывание очагов и инфильтрации, закрытие каверн) .

План томографического исследования составляют после рентгенографии: определяют целесообразность обзорной или прицельной томографии, проекцию, направление размазывания (продольное или поперечное), режим снимков, глубину и число слоев.

При обзорной томографии делают снимки нескольких слоев: первый слой в 3 - 4 см от кожи спины, дальнейшие слои через 1-2 см, последний, передний, слой в 2-3 см от кожи передней грудной стенки.

Разновидностью томографии является зонография : исследуется более толстый слой легочной ткани. Зонография не требует высокой точности в выборе слоя, а несколько худшее качество изображения окупается более широким объемом информации, содержащейся на одном снимке, и меньшей лучевой нагрузкой на больного.

Особенности легочной патологии более четко определяются при электрорентгенотомографии : лучше визуализируются характер стенок внутрилегочных полостей, изменения лимфатических узлов, сосудов.

Компьютерная томография . Этот метод рентгенологического исследования получил всеобщее признание и применяется во всех областях клинической медицины. Компьютерная томография обеспечивает получение изображения поперечных слоев человеческого тела (аксиальная проекция).

Рентгеновская трубка, находящаяся в круговой раме, вращается вокруг продольной оси тела пациента. Тонкий пучок лучей проходит под разными углами через исследуемый слой и улавливается многочисленными сцинтилляционными детекторами, движущимися вместе с трубкой.

Разная плотность тканей, через которые проходят рентгеновские лучи, обусловливает неодинаковое изменение интенсивности их пучка, что с высокой точностью регистрируется детекторами, обрабатывается компьютером и трансформируется в изображение исследуемого поперечного слоя на телевизионном экране.

Таким образом, компьютерная томограмма представляет собой не снимок в обычном понимании этого слова, а рисунок, сделанный компьютером на основе математического анализа степени поглощения рентгеновских лучей тканями различной плотности (вычислительная томография).

Современные компьютерные томограммы позволяют исследовать поперечные слои толщиной от 2 до 10 мм. Сканирование одного слоя продолжается несколько секунд. Яркость и контрастность изображения можно изменять в больших пределах.

Значительное усиление контрастности сосудов удается получить при внутривенном введении больному небольшого количества рентгеноконтрастного раствора.

Аксиальные (поперечные) изображения можно с помощью компьютера реконструировать в прямые, боковые и косые томограммы исследованной области. Все результаты компьютерной томографии параллельно с изображением на телевизионном экране хранятся в памяти компьютера и могут быть воспроизведены на поляроидной фотобумаге или рентгеновской пленке.

Большим достоинством компьютерной томографии является количественная оценка плотности исследуемых тканей и сред, которую выражают в условных единицах по шкале Хоунсфилда.

При исследовании органов грудной полости компьютерная томография позволяет уточнить локализацию и распространение всех патологических образований, оценить их размеры и в динамике наблюдать за изменением их величины и плотности.

Метод представляет ценность при установлении характера патологических процессов в средостении, что невозможно определить при стандартной томографии. Компьютерная томография дает ценную информацию о состоянии плевральной полости, оставшейся после операции части легкого, и позволяет обеспечить высокую точность трансторакальной биопсии и сложных плевральных пункций. При компьютерной томографии органов дыхания выполняют 6-12 стандартных томографических срезов.

Рентгеноскопия . Для рентгеноскопии используют, как правило, электронно-оптическое усиление рентгеновского изображения и рентгенотелевидение.

Применяют этот метод после рентгенографии по определенным показаниям: с его помощью проводят контроль во время производства прицельных снимков, рентгенобронхологических, ангиографических, бронхографических исследований и фистулографии: используют для выявления свободно перемещающейся жидкости в плевральной полости, для установления подвижности патологических образований и их связи с грудной стенкой и органами средостения, для определения подвижности диафрагмы и состояния плевральных синусов.

Рентгеноскопия необходима для проведения проб с повышением и понижением внутригрудного давления (пробы Вальсальвы и Мюллера, симптом Гольцкнехта - Якобсона). Документация результатов этих проб может быть сделана с помощью видеозаписи и рентгенокиносъемки.

Ангиопульмонография . Под этим термином понимают рентгенологическое исследование легочной артерии и ее ветвей с введением контрастного вещества. Существуют две основные методики ангиопульмонографии - общая и селективная.

При проведении общей ангиопульмонографии контрастный раствор вводят через катетер в вену руки, в верхнюю полую вену или в правые полости сердца. Рентгеновские снимки производят серийно на специальном этнографическом аппарате.

Общая ангиопульмонография требует значительного количества контрастного вещества (50-60 мл) и обычно не обеспечивает четкого изображения легочных сосудов, особенно при патологических изменениях в легких. Ампутация сосудов не всегда отражает их истинное состояние.

Селективная ангиопульмонография технически хотя и сложнее, чем общая, но используется чаще. Ее осуществляют после катетеризации правых предсердия и желудочка сердца и соответствующей ветви легочной артерии. Серийные снимки делают после введения 10-12 мл раствора контрастного вещества. Изображение сосудов получается четкое.

Обычно селективную ангиопульмонографию сочетают с регистрацией давления в малом круге кровообращения и исследованием газов крови.

Показания к ангиопульмонографии ограничены. Ее применяют для диагностики тромбоза и эмболии легочной артерии, а также для выяснения способности к расправлению длительно коллабированного легкого: по состоянию сосудов судят о степени пневмофиброза.

Современные технические возможности позволяют выполнять общую ангиопульмонографию в виде числовой, или дигитальной, ангиопульмонографии. Ее осуществляют с помощью введения в вену небольшого количества контрастного вещества. При этом компьютерная обработка видеосигналов позволяет получать высококачественные снимки.

Бронхиальная артериография . Метод заключается в катетеризации, контрастировании и рентгенографии бронхиальных артерий и их ветвей. Исследование проводят под местной анестезией и контролем рентгенотелевидения.

Специальной иглой с мандреном пунктируют бедренную артерию ниже паховой складки. Мандрен заменяют металлическим проводником, по которому в просвет артерии вводят рентгеноконтрастный катетер с изогнутым концом. Затем проводник извлекают, а катетер проводят в аорту.

Кончиком катетера последовательно отыскивают устья бронхиальных артерий и вводят в них катетер, а затем - контрастное вещество (урографин, уротраст или их аналоги) со скоростью 35 мл, с в количестве 5-12 мл. Производят серийную рентгенографию.

Основным показанием к бронхиальной артериографии является легочное кровотечение неясной этиологии и локализации. В таких случаях на артериограммах могут быть выявлены расширение и патологическая извитость бронхиальных артерий, выход контрастного вещества за их пределы (экстравазация), очаговая или диффузная гиперваскуляризация, аневризмы бронхиальных артерий, их тромбоз, ретроградное заполнение периферических ветвей легочной артерии через артерио-артериальные анастомозы.

Противопоказаниями к исследованию являются тяжелый атеросклероз, тучность, выраженная легочно-сердечная недостаточность.

Осложнением бронхиальной артериографии может быть возникновение гематомы в области пункции бедренной артерии. Редким, но тяжелым осложнением является сосудистое поражение спинного мозга с нарушением функции нижних конечностей и тазовых органов. Профилактика осложнений обеспечивается строгим соблюдением методических и технических принципов исследования.

Бронхография . Контрастное рентгенологическое исследование бронхов осуществляется под местной анестезией в виде позиционной (ненаправленной) или селективной (направленной) бронхографии. При позиционной бронхографии катетер проводят в трахею через нос. Во время введения контрастного вещества придают оптимальное положение телу пациента.

Селективная бронхография основана на катетеризации исследуемого бронха. Для ее проведения применяют различные по конструкции катетеры и используют разные технические приемы.

Бронхографию больным проводят натощак. При значительном количестве мокроты предварительно осуществляется бронхоскопия для санации бронхиального дерева.

Для местной анестезии используют 10-15 мл 2 % раствора лидокаина. Мягкий катетер проводят через нос и под контролем рентгенотелевидения устанавливают в исследуемом бронхе.

Контроль осуществляют с помощью распыления порошка тантала или, чаще, водорастворимых препаратов, например 5-10 мл пропилйодона. После введения препарата больному предлагают резко выдохнуть и слегка покашлять. При этом контрастное вещество относительно равномерно распределяется по слизистой оболочке и обеспечивает контурное изображение стенок бронхов. Через 2-3 сут пропилйодон гидролизуется и без отделения свободного йода выводится из организма почками.

Проведение исследования под контролем рентгенотелевидения и с видеозаписью позволяет судить об эластичности и подвижности бронхиальных стенок.

Ранее бронхографию применяли широко. В настоящее время ее используют для выяснения наличия бронхоэктазов и определения их локализации и формы. Иногда ее применяют для. лучшей ориентировки при трансбронхиальной биопсии, а также при больших фиброзных изменениях, если другие методы не позволяют выяснить особенности патологии.

Основными противопоказаниями являются острые воспалительные процессы в органах дыхания, легочные кровотечения.

Плеврография . Рентгенологическое исследование контрастированной плевральной полости применяют главным образом у больных с эмпиемой плевры для уточнения границ гнойной полости.

Вначале производят плевральную пункцию и аспирируют плевральное содержимое. Затем под контролем рентгенотелевидения в плевральную полость вводят 30-40 мл теплого рентгеноконтрастного вещества (пропилйодон, урографин, верографин). Снимки делают в разных проекциях, меняя положение больного. После окончания исследования контрастное вещество с остатками плеврального содержимого отсасывают.

Фистулография . Метод используют для обследования больных с различными видами торакальных свищей, в том числе с торакальными и торакобронхиальными.

Свищевои ход заполняют рентгеноконтрастным веществом и затем проводят рентгенографию. В процессе исследования и после анализа снимков выявляют анатомические особенности свища, устанавливают его сообщение с плевральной полостью и бронхиальным деревом.

Перед фистулографией целесообразно с помощью зондирования установить направление свищевого хода. Контрастное вещество вводят в свищ шприцем под контролем рентгенотелевидения. Применяют йодолипол, масляный и водные растворы пропиолйодона. Рентгенограммы производят в нескольких проекциях.

В случае проникновения контрастного препарата в бронхиальное дерево получается ретроградная фистулобронхография. После окончания исследования препарат через свищ по возможности отсасывают, а больной должен хорошо откашляться.