Штаны пифагора. Теорема Пифагора: история вопроса, доказательства, примеры практического применения

Римский архитектор Витрувий особо выделял теорему Пифагора «из многочисленных открытий, оказавших услуги развитию человеческой жизни», и призывал относиться к ней с величайшим почтением. Было это ещё в I веке до н. э. На рубеже XVI-XVII веков знаменитый немецкий астроном Иоганн Кеплер назвал её одним из сокровищ геометрии, сравнимым с мерой золота. Вряд ли во всей математике найдётся более весомое и значимое утверждение, ведь по числу научных и практических приложений теореме Пифагора нет равных.

Теорема Пифагора для случая равнобедренного прямоугольного треугольника.

Наука и жизнь // Иллюстрации

Иллюстрация к теореме Пифагора из «Трактата об измерительном шесте» (Китай, III век до н. э.) и реконструированное на его основе доказательство.

Наука и жизнь // Иллюстрации

С. Перкинс. Пифагор.

Чертёж к возможному доказательству Пифагора.

«Мозаика Пифагора» и разбиение ан-Найризи трёх квадратов в доказательстве теоремы Пифагора.

П. де Хох. Хозяйка и служанка во внутреннем дворике. Около 1660 года.

Я. Охтервелт. Бродячие музыканты в дверях богатого дома. 1665 год.

Пифагоровы штаны

Теорема Пифагора едва ли не самая узнаваемая и, несомненно, самая знаменитая в истории математики. В геометрии она применяется буквально на каждом шагу. Несмотря на простоту формулировки, эта теорема отнюдь не очевидна: глядя на прямоугольный треугольник со сторонами a < b < c, усмотреть соотношение a 2 + b 2 = c 2 невозможно. Однажды известный американский логик и популяризатор науки Рэймонд Смаллиан, желая подвести учеников к открытию теоремы Пифагора, начертил на доске прямоугольный треугольник и по квадрату на каждой его стороне и сказал: «Представьте, что эти квадраты сделаны из кованого золота и вам предлагают взять себе либо один большой квадрат, либо два маленьких. Что вы выберете?» Мнения разделились пополам, возникла оживлённая дискуссия. Каково же было удивление учеников, когда учитель объяснил им, что никакой разницы нет! Но стоит только потребовать, чтобы катеты были равны, - и утверждение теоремы станет явным (рис. 1). И кто после этого усомнится, что «пифагоровы штаны» во все стороны равны? А вот те же самые «штаны», только в «сложенном» виде (рис. 2). Такой чертёж использовал герой одного из диалогов Платона под названием «Менон», знаменитый философ Сократ, разбирая с мальчиком-рабом задачу на построение квадрата, площадь которого в два раза больше площади данного квадрата. Его рассуждения, по сути, сводились к доказательству теоремы Пифагора, пусть и для конкретного треугольника.

Фигуры, изображённые на рис. 1 и 2, напоминают простейший орнамент из квадратов и их равных частей - геометрический рисунок, известный с незапамятных времён. Им можно сплошь покрыть плоскость. Математик назвал бы такое покрытие плоскости многоугольниками паркетом, или замощением . При чём тут Пифагор? Оказывается, он первым решил задачу о правильных паркетах, с которой началось изучение замощений различных поверхностей. Так вот, Пифагор показал, что плоскость вокруг точки могут покрыть без пробелов равные правильные многоугольники только трёх видов: шесть треугольников, четыре квадрата и три шестиугольника.

4000 лет спустя

История теоремы Пифагора уходит в глубокую древность. Упоминания о ней содержатся ещё в вавилонских клинописных текстах времён царя Хаммурапи (XVIII век до н. э.), то есть за 1200 лет до рождения Пифагора. Теорема применялась как готовое правило во многих задачах, самая простая из которых - нахождение диагонали квадрата по его стороне. Не исключено, что соотношение a 2 + b 2 = c 2 для произвольного прямоугольного треугольника вавилоняне получили, попросту «обобщив» равенство a 2 + a 2 = c 2 . Но им это простительно - для практической геометрии древних, сводившейся к измерениям и вычислениям, строгих обоснований не требовалось.

Теперь, почти 4000 лет спустя, мы имеем дело с теоремой-рекордсменом по количеству всевозможных доказательств. Между прочим, их коллекционирование - давняя традиция. Пик интереса к теореме Пифагора пришёлся на вторую половину XIX - начало XX столетия. И если первые коллекции содержали не более двух-трёх десятков доказательств, то к концу XIX века их число приблизилось к 100, а ещё через полвека превысило 360, и это только тех, что удалось собрать по разным источникам. Кто только не брался за решение этой нестареющей задачи - от именитых учёных и популяризаторов науки до конгрессменов и школьников. И что примечательно, в оригинальности и простоте решения иные любители не уступали профессионалам!

Самым древним из дошедших до нас доказательствам теоремы Пифагора около 2300 лет. Одно из них - строгое аксиоматическое - принадлежит древнегреческому математику Евклиду, жившему в IV-III веках до н. э. В I книге «Начал» теорема Пифагора значится как «Предложение 47». Самые наглядные и красивые доказательства построены на перекраивании «пифагоровых штанов». Они выглядят как хитроумная головоломка на разрезание квадратов. Но заставьте фигуры правильно двигаться - и они откроют вам секрет знаменитой теоремы.

Вот какое изящное доказательство получается на основе чертежа из одного древнекитайского трактата (рис. 3), и сразу проясняется его связь с задачей об удвоении площади квадрата.

Именно такое доказательство пытался объяснить своему младшему другу семилетний Гвидо, не по годам смышлёный герой новеллы английского писателя Олдоса Хаксли «Маленький Архимед». Любопытно, что рассказчик, наблюдавший эту картину, отметил простоту и убедительность доказательства, поэтому приписал его... самому Пифагору. А вот главный герой фантастической повести Евгения Велтистова «Электроник - мальчик из чемодана» знал 25 доказательств теоремы Пифагора, в том числе данное Евклидом; правда, ошибочно назвал его простейшим, хотя на самом деле в современном издании «Начал» оно занимает полторы страницы!

Первый математик

Пифагора Самосского (570-495 годы до н. э.), чьё имя давно и неразрывно связано с замечательной теоремой, в известном смысле можно назвать первым математиком. Именно с него математика начинается как точная наука, где всякое новое знание - результат не наглядных представлений и вынесенных из опыта правил, а итог логических рассуждений и выводов. Лишь так можно раз и навсегда установить истинность любого математического предложения. До Пифагора дедуктивный метод применял только древнегреческий философ и учёный Фалес Милетский, живший на рубеже VII-VI веков до н. э. Он высказал саму идею доказательства, но применял его не систематически, избирательно, как правило, к очевидным геометрическим утверждениям типа «диаметр делит круг пополам». Пифагор продвинулся гораздо дальше. Считается, что он ввёл первые определения, аксиомы и методы доказательства, а также создал первый курс геометрии, известный древним грекам под названием «Предание Пифагора». А ещё он стоял у истоков теории чисел и стереометрии.

Другая важная заслуга Пифагора - основание славной школы математиков, которая более столетия определяла развитие этой науки в Древней Греции. С его именем связывают и сам термин «математика» (от греческого слова μαθημa - учение, наука), объединивший четыре родственные дисциплины созданной Пифагором и его приверженцами - пифагорейцами - системы знаний: геометрию, арифметику, астрономию и гармонику.

Отделить достижения Пифагора от достижений его учеников невозможно: следуя обычаю, они приписывали собственные идеи и открытия своему Учителю. Никаких сочинений ранние пифагорейцы не оставили, все сведения они передавали друг другу устно. Так что 2500 лет спустя историкам не остаётся ничего иного, кроме как реконструировать утраченные знания по переложениям других, более поздних авторов. Отдадим должное грекам: они хоть и окружали имя Пифагора множеством легенд, однако не приписывали ему ничего такого, чего он не мог бы открыть или развить в теорию. И носящая его имя теорема не исключение.

Такое простое доказательство

Неизвестно, Пифагор сам обнаружил соотношение между длинами сторон в прямоугольном треугольнике или позаимствовал это знание. Античные авторы утверждали, что сам, и любили пересказывать легенду о том, как в честь своего открытия Пифагор принёс в жертву быка. Современные историки склонны считать, что он узнал о теореме, познакомившись с математикой вавилонян. Не знаем мы и о том, в каком виде Пифагор формулировал теорему: арифметически, как принято сегодня, - квадрат гипотенузы равен сумме квадратов катетов, или геометрически, в духе древних, - квадрат, построенный на гипотенузе прямоугольного треугольника, равновелик сумме квадратов, построенных на его катетах.

Считается, что именно Пифагор дал первое доказательство теоремы, носящей его имя. Оно, конечно, не сохранилось. По одной из версий, Пифагор мог воспользоваться разработанным в его школе учением о пропорциях. На нём основывалась, в частности, теория подобия, на которую опираются рассуждения. Проведём в прямоугольном треугольнике с катетами a и b высоту к гипотенузе c. Получим три подобных треугольника, включая исходный. Их соответствующие стороны пропорциональны, a: с = m: a и b: c = n: b, откуда a 2 = c · m и b 2 = c · n. Тогда a 2 + b 2 = = c · (m + n) = c 2 (рис. 4).

Это всего лишь реконструкция, предложенная одним из историков науки, но доказательство, согласитесь, совсем простое: занимает всего-то несколько строк, не нужно ничего достраивать, перекраивать, вычислять... Неудивительно, что его не раз переоткрывали. Оно содержится, например, в «Практике геометрии» Леонардо Пизанского (1220), и его до сих пор приводят в учебниках.

Такое доказательство не противоречило представлениям пифагорейцев о соизмеримости: изначально они считали, что отношение длин любых двух отрезков, а значит, и площадей прямолинейных фигур, можно выразить с помощью натуральных чисел. Никакие другие числа они не рассматривали, не допускали даже дробей, заменив их отношениями 1: 2, 2: 3 и т. д. Однако, по иронии судьбы, именно теорема Пифагора привела пифагорейцев к открытию несоизмеримости диагонали квадрата и его стороны. Все попытки численно представить длину этой диагонали - у единичного квадрата она равна √2 - ни к чему не привели. Проще оказалось доказать, что задача неразрешима. На такой случай у математиков есть проверенный метод - доказательство от противного. Кстати, и его приписывают Пифагору.

Существование отношения, не выражаемого натуральными числами, положило конец многим представлениям пифагорейцев. Стало ясно, что известных им чисел недостаточно для решения даже несложных задач, что уж говорить обо всей геометрии! Это открытие стало поворотным моментом в развитии греческой математики, её центральной проблемой. Сначала оно привело к разработке учения о несоизмеримых величинах - иррациональностях, а затем - и к расширению понятия числа. Иными словами, с него началась многовековая история исследования множества действительных чисел.

Мозаика Пифагора

Если покрыть плоскость квадратами двух разных размеров, окружив каждый малый квадрат четырьмя большими, получится паркет «мозаика Пифагора». Такой рисунок издавна украшает каменные полы, напоминая о древних доказательствах теоремы Пифагора (отсюда его название). По-разному накладывая на паркет квадратную сетку, можно получить разбиения квадратов, построенных на сторонах прямоугольного треугольника, которые предлагались разными математиками. Например, если расположить сетку так, чтобы все её узлы совпали с правыми верхними вершинами малых квадратов, проявятся фрагменты чертежа к доказательству средневекового персидского математика ан-Найризи, которое он поместил в комментариях к «Началам» Евклида. Легко видеть, что сумма площадей большого и малого квадратов, исходных элементов паркета, равна площади одного квадрата наложенной на него сетки. А это означает, что указанное разбиение действительно пригодно для укладки паркета: соединяя в квадраты полученные многоугольники, как показано на рисунке, можно заполнить ими без пробелов и перекрытий всю плоскость.

Потенциал к творчеству обычно приписывают гуманитарным дисциплинам, естественно научным оставляя анализ, практический подход и сухой язык формул и цифр. Математику к гуманитарным предметам никак не отнесешь. Но без творчеств в «царице всех наук» далеко не уедешь – об этом людям известно с давних пор. Со времен Пифагора, например.

Школьные учебники, к сожалению, обычно не объясняют, что в математике важно не только зубрить теоремы, аксиомы и формулы. Важно понимать и чувствовать ее фундаментальные принципы. И при этом попробовать освободить свой ум от штампов и азбучных истин – только в таких условиях рождаются все великие открытия.

К таким открытиям можно отнести и то, которое сегодня мы знаем как теорему Пифагора. С его помощью мы попробуем показать, что математика не только может, но и должна быть увлекательной. И что это приключение подходит не только ботаникам в толстых очках, а всем, кто крепок умом и силен духом.

Из истории вопроса

Строго говоря, хоть теорема и называется «теоремой Пифагора», сам Пифагор ее не открывал. Прямоугольный треугольник и его особенные свойства изучались задолго до него. Есть две полярных точки зрения на этот вопрос. По одной версии Пифагор первым нашел полноценное доказательство теоремы. По другой доказательство не принадлежит авторству Пифагора.

Сегодня уже не проверишь, кто прав, а кто заблуждается. Известно лишь, что доказательства Пифагора, если оно когда-либо существовало, не сохранилось. Впрочем, высказываются предположения, что знаменитое доказательство из «Начал» Евклида может принадлежать как раз Пифагору, и Евклид его только зафиксировал.

Также сегодня известно, что задачи о прямоугольном треугольнике встречаются в египетских источниках времен фараона Аменемхета I, на вавилонских глиняных табличках периода правления царя Хаммурапи, в древнеиндийском трактате «Сульва сутра» и древнекитайском сочинении «Чжоу-би суань цзинь».

Как видите, теорема Пифагора занимала умы математиков с древнейших времен. Подтверждением служит и около 367 разнообразных доказательств, существующих сегодня. В этом с ней не может тягаться ни одна другая теорема. Среди знаменитых авторов доказательств можно вспомнить Леонардо да Винчи и двадцатого президента США Джеймса Гарфилда. Все это говорит о чрезвычайной важности этой теоремы для математики: из нее выводится или так или иначе с нею связано большинство теорем геометрии.

Доказательства теоремы Пифагора

В школьных учебниках в основном приводят алгебраические доказательства. Но суть теоремы в геометрии, так что давайте рассмотрим в первую очередь те доказателства знаменитой теоремы, которые опираются на эту науку.

Доказательство 1

Для самого простого доказательства теоремы Пифагора для прямоугольного треугольника нужно задать идеальные условия: пусть треугольник будет не только прямоугольным, но и равнобедренным. Есть основания полагать, что именно такой треугольник первоначально рассматривали математики древности.

Утверждение «квадрат, построенный на гипотенузе прямоугольного треугольника, равновелик сумме квадратов, построенных на его катетах» можно проиллюстрировать следующим чертежом:

Посмотрите на равнобедренный прямоугольный треугольник ABC: На гипотенузе АС можно построить квадрат, состоящий из четырех треугольников, равных исходному АВС. А на катетах АВ и ВС построено по квадрату, каждый из которых содержит по два аналогичных треугольника.

Кстати, этот чертеж лег в основу многочисленных анекдотов и карикатур, посвященных теореме Пифагора. Самый знаменитый, пожалуй, это «Пифагоровы штаны во все стороны равны» :

Доказательство 2

Этот метод сочетает в себе алгебру и геометрию и может рассматриваться как вариант древнеиндийского доказательства математика Бхаскари.

Постройте прямоугольный треугольник со сторонами a, b и c (рис.1). Затем постройте два квадрата со сторонами, равными сумме длин двух катетов, – (a+b) . В каждом из квадратов выполните построения, как на рисунках 2 и 3.

В первом квадрате постройте четыре таких же треугольника, как на рисунке 1. В результате получаться два квадрата: один со стороной a, второй со стороной b .

Во втором квадрате четыре построенных аналогичных треугольника образуют квадрат со стороной, равной гипотенузе c .

Сумма площадей построенных квадратов на рис.2 равна площади построенного нами квадрата со стороной с на рис.3. Это легко проверить, высчитав площади квадратов на рис. 2 по формуле. А площадь вписанного квадрата на рисунке 3. путем вычитания площадей четырех равных между собой вписанных в квадрат прямоугольных треугольников из площади большого квадрата со стороной (a+b) .

Записав все это, имеем: a 2 +b 2 =(a+b) 2 – 2ab . Раскройте скобки, проведите все необходимые алгебраические вычисления и получите, что a 2 +b 2 = a 2 +b 2 . При этом площадь вписанного на рис.3. квадрата можно вычислить и по традиционной формуле S=c 2 . Т.е. a 2 +b 2 =c 2 – вы доказали теорему Пифагора.

Доказательство 3

Само же древнеиндийское доказательство описано в XII веке в трактате «Венец знания» («Сиддханта широмани») и в качестве главного аргумента автор использует призыв, обращенный к математическим талантам и наблюдательности учеников и последователей: «Смотри!».

Но мы разберем это доказательство более подробно:

Внутри квадрата постройте четыре прямоугольных треугольника так, как это обозначено на чертеже. Сторону большого квадрата, она же гипотенуза, обозначим с . Катеты треугольника назовем а и b . В соответствии с чертежом сторона внутреннего квадрата это (a-b) .

Используйте формулу площади квадрата S=c 2 , чтобы вычислить площадь внешнего квадрата. И одновременно высчитайте ту же величину, сложив площадь внутреннего квадрата и площади всех четырех прямоугольных треугольников: (a-b) 2 2+4*1\2*a*b .

Вы можете использовать оба варианта вычисления площади квадрата, чтобы убедиться: они дадут одинаковый результат. И это дает вам право записать, что c 2 =(a-b) 2 +4*1\2*a*b . В результате решения вы получите формулу теоремы Пифагора c 2 =a 2 +b 2 . Теорема доказана.

Доказательство 4

Это любопытное древнекитайское доказательство получило название «Стул невесты» - из-за похожей на стул фигуры, которая получается в результате всех построений:

В нем используется чертеж, который мы уже видели на рис.3 во втором доказательстве. А внутренний квадрат со стороной с построен так же, как в древнеиндийском доказательстве, приведенном выше.

Если мысленно отрезать от чертежа на рис.1 два зеленых прямоугольных треугольника, перенести их к противоположным сторонам квадрата со стороной с и гипотенузами приложить к гипотенузам сиреневых треугольников, получится фигура под названием «стул невесты» (рис.2). Для наглядности можно то же самое проделать с бумажными квадратами и треугольниками. Вы убедитесь, что «стул невесты» образуют два квадрата: маленькие со стороной b и большой со стороной a .

Эти построения позволили древнекитайским математикам и нам вслед за ними прийти к выводу, что c 2 =a 2 +b 2 .

Доказательство 5

Это еще один способ найти решение для теоремы Пифагора, опираясь на геометрию. Называется он «Метод Гарфилда».

Постройте прямоугольный треугольник АВС . Нам надо доказать, что ВС 2 =АС 2 +АВ 2 .

Для этого продолжите катет АС и постройте отрезок CD , который равен катету АВ . Опустите перпендикулярный AD отрезок ED . Отрезки ED и АС равны. Соедините точки Е и В , а также Е и С и получите чертеж, как на рисунке ниже:

Чтобы доказать терему, мы вновь прибегаем к уже опробованному нами способу: найдем площадь получившейся фигуры двумя способами и приравняем выражения друг к другу.

Найти площадь многоугольника ABED можно, сложив площади трех треугольников, которые ее образуют. Причем один из них, ЕСВ , является не только прямоугольным, но и равнобедренным. Не забываем также, что АВ=CD , АС=ED и ВС=СЕ – это позволит нам упростить запись и не перегружать ее. Итак, S ABED =2*1/2(AB*AC)+1/2ВС 2 .

При этом очевидно, что ABED – это трапеция. Поэтому вычисляем ее площадь по формуле: S ABED =(DE+AB)*1/2AD . Для наших вычислений удобней и наглядней представить отрезок AD как сумму отрезков АС и CD .

Запишем оба способа вычислить площадь фигуры, поставив между ними знак равенства: AB*AC+1/2BC 2 =(DE+AB)*1/2(AC+CD) . Используем уже известное нам и описанное выше равенство отрезков, чтобы упростить правую часть записи: AB*AC+1/2BC 2 =1/2(АВ+АС) 2 . А теперь раскроем скобки и преобразуем равенство: AB*AC+1/2BC 2 =1/2АС 2 +2*1/2(АВ*АС)+1/2АВ 2 . Закончив все преобразования, получим именно то, что нам и надо: ВС 2 =АС 2 +АВ 2 . Мы доказали теорему.

Конечно, этот список доказательств далеко не полный. Теорему Пифагора также можно доказать с помощью векторов, комплексных чисел, дифференциальный уравнений, стереометрии и т.п. И даже физики: если, например, в аналогичные представленным на чертежах квадратные и треугольные объемы залить жидкость. Переливая жидкость, можно доказать равенство площадей и саму теорему в итоге.

Пару слов о Пифагоровых тройках

Этот вопрос мало или вообще не изучается в школьной программе. А между тем он является очень интересным и имеет большое значение в геометрии. Пифагоровы тройки применяются для решения многих математических задач. Представление о них может пригодиться вам в дальнейшем образовании.

Так что же такое Пифагоровы тройки? Так называют натуральные числа, собранные по трое, сумма квадратов двух из которых равна третьему числу в квадрате.

Пифагоровы тройки могут быть:

  • примитивными (все три числа – взаимно простые);
  • не примитивными (если каждое число тройки умножить на одно и то же число, получится новая тройка, которая не является примитивной).

Еще до нашей эры древних египтян завораживала мания чисел Пифагоровых троек: в задачах они рассматривали прямоугольный треугольник со сторонами 3,4 и 5 единиц. К слову, любой треугольник, стороны которого равны числам из пифагоровой тройки, по умолчанию является прямоугольным.

Примеры Пифагоровых троек: (3, 4, 5), (6, 8, 10), (5, 12, 13), (9, 12, 15), (8, 15, 17), (12, 16, 20), (15, 20, 25), (7, 24, 25), (10, 24, 26), (20, 21, 29), (18, 24, 30), (10, 30, 34), (21, 28, 35), (12, 35, 37), (15, 36, 39), (24, 32, 40), (9, 40, 41), (27, 36, 45), (14, 48, 50), (30, 40, 50) и т.д.

Практическое применение теоремы

Теорема Пифагора находит применение не только в математике, но и в архитектуре и строительстве, астрономии и даже литературе.

Сначала про строительство: теорема Пифагора находит в нем широкое применение в задачах разного уровня сложности. Например, посмотрите на окно в романском стиле:

Обозначим ширину окна как b , тогда радиус большой полуокружности можно обозначить как R и выразить через b: R=b/2 . Радиус меньших полуокружностей также выразим через b: r=b/4 . В этой задаче нас интересует радиус внутренней окружности окна (назовем его p ).

Теорема Пифагора как раз и пригодиться, чтобы вычислить р . Для этого используем прямоугольный треугольник, который на рисунке обозначен пунктиром. Гипотенуза треугольника состоит из двух радиусов: b/4+p . Один катет представляет собой радиус b/4 , другой b/2-p . Используя теорему Пифагора, запишем: (b/4+p) 2 =(b/4) 2 +(b/2-p) 2 . Далее раскроем скобки и получим b 2 /16+ bp/2+p 2 =b 2 /16+b 2 /4-bp+p 2 . Преобразуем это выражение в bp/2=b 2 /4-bp . А затем разделим все члены на b , приведем подобные, чтобы получить 3/2*p=b/4 . И в итоге найдем, что p=b/6 – что нам и требовалось.

С помощью теоремы можно вычислить длину стропила для двускатной крыши. Определить, какой высоты вышка мобильной связи нужна, чтобы сигнал достигал определенного населенного пункта. И даже устойчиво установить новогоднюю елку на городской площади. Как видите, эта теорема живет не только на страницах учебников, но и часто бывает полезна в реальной жизни.

Что касается литературы, то теорема Пифагора вдохновляла писателей со времен античности и продолжает это делать в наше время. Например, немецкого писателя девятнадцатого века Адельберта фон Шамиссо она вдохновила на написание сонета:

Свет истины рассеется не скоро,
Но, воссияв, рассеется навряд
И, как тысячелетия назад,
Не вызовет сомнения и спора.

Мудрейшие, когда коснется взора
Свет истины, богов благодарят;
И сто быков, заколоты, лежат –
Ответный дар счастливца Пифагора.

С тех пор быки отчаянно ревут:
Навеки всполошило бычье племя
Событие, помянутое тут.

Им кажется: вот-вот настанет время,
И сызнова их в жертву принесут
Какой-нибудь великой теореме.

(перевод Виктора Топорова)

А в двадцатом веке советский писатель Евгений Велтистов в книге «Приключения Электроника» доказательствам теоремы Пифагора отвел целую главу. И еще полглавы рассказу о двухмерном мире, какой мог бы существовать, если бы теорема Пифагора стала основополагающим законом и даже религией для отдельно взятого мира. Жить в нем было бы гораздо проще, но и гораздо скучнее: например, там никто не понимает значения слов «круглый» и «пушистый».

А еще в книге «Приключения Электроника» автор устами учителя математики Таратара говорит: «Главное в математике – движение мысли, новые идеи». Именно этот творческий полет мысли порождает теорема Пифагора – не зря у нее столько разнообразных доказательств. Она помогает выйти за границы привычного, и на знакомые вещи посмотреть по-новому.

Заключение

Эта статья создана, чтобы вы могли заглянуть за пределы школьной программы по математике и узнать не только те доказательства теоремы Пифагора, которые приведены в учебниках «Геометрия 7-9» (Л.С. Атанасян, В.Н. Руденко) и «Геометрия 7-11» (А.В. Погорелов), но и другие любопытные способы доказать знаменитую теорему. А также увидеть примеры, как теорема Пифагора может применяться в обычной жизни.

Во-первых, эта информация позволит вам претендовать на более высокие баллы на уроках математики – сведения по предмету из дополнительных источников всегда высоко оцениваются.

Во-вторых, нам хотелось помочь вам прочувствовать, насколько математика интересная наука. Убедиться на конкретных примерах, что в ней всегда есть место творчеству. Мы надеемся, что теорема Пифагора и эта статья вдохновят вас на самостоятельные поиски и волнующие открытия в математике и других науках.

Расскажите нам в комментариях, показались ли вам приведенные в статье доказательства интересными. Пригодились ли вам эти сведения в учебе. Напишите нам, что думаете о теореме Пифагора и этой статье – нам будет приятно обсудить все это с вами.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Пифагоровы штаны Шуточное название теоремы Пифагора, возникшее в силу того, что построенные на сторонах прямоугольника и расходящиеся в разные стороны квадраты напоминают покрой штанов. Геометрию я любил… и на вступительном экзамене в университет получил даже от Чумакова, профессора математики, похвалу за то, что без доски, чертя руками по воздуху, объяснял свойства параллельных линий и пифагоровых штанов (Н. Пирогов. Дневник старого врача).

Фразеологический словарь русского литературного языка. - М.: Астрель, АСТ . А. И. Фёдоров . 2008 .

Смотреть что такое "Пифагоровы штаны" в других словарях:

    Штаны - получить на Академике рабочий купон на скидку SuperStep или выгодно штаны купить с бесплатной доставкой на распродаже в SuperStep

    Пифагоровы штаны - … Википедия

    Пифагоровы штаны - Жарг. шк. Шутл. Теорема Пифагора, устанавливающая соотношение между площадями квадратов, построенных на гипотенузе и катетах прямоугольного треугольника. БТС, 835 … Большой словарь русских поговорок

    пифагоровы штаны - Шутливое название теоремы Пифагора, устанавливающей соотношение между площадями квадратов, построенных на гипотенузе и катетах прямоугольного треугольника, что внешне на рисунках выглядит как покрой штанов … Словарь многих выражений

    пифагоровы штаны(выдумать) - иноск.: о человеке даровитом Ср. Это несомненности мудрец. В древности он наверное выдумал бы Пифагоровы штаны... Салтыков. Пестрые письма. Пифагоровы штаны (геом.): в прямоугольнике квадрат гипотенузы равняется квадратам катетов (учение… … Большой толково-фразеологический словарь Михельсона

    Пифагоровы штаны на все стороны равны - Число пуговиц известно. Почему же хую тесно? (грубо) о штанах и мужском половом органе. Пифагоровы штаны на все стороны равны. Чтобы это доказать, надо снять и показать 1) о теореме Пифагора; 2) о широких штанах … Живая речь. Словарь разговорных выражений

    Пифагоровы штаны выдумать - Пиѳагоровы штаны (выдумать) иноск. о человѣкѣ даровитомъ. Ср. Это несомнѣнности мудрецъ. Въ древности онъ навѣрное выдумалъ бы пиѳагоровы штаны... Салтыковъ. Пестрыя письма. Пиѳагоровы штаны (геом.): въ прямоугольникѣ квадратъ гипотенузы… … Большой толково-фразеологический словарь Михельсона (оригинальная орфография)

    Пифагоровы штаны во все стороны равны - Шутливое доказательство теоремы Пифагора; также в шутку о мешковатых брюках приятеля … Словарь народной фразеологии

    Присл., груб …

    ПИФАГОРОВЫ ШТАНЫ НА ВСЕ СТОРОНЫ РАВНЫ (ЧИСЛО ПУГОВИЦ ИЗВЕСТНО. ПОЧЕМУ ЖЕ ХУЮ ТЕСНО? / ЧТОБЫ ЭТО ДОКАЗАТЬ, НАДО СНЯТЬ И ПОКАЗАТЬ) - присл., груб … Толковый словарь современных разговорных фразеологизмов и присловий

    штаны - сущ., мн., употр. сравн. часто Морфология: мн. что? штаны, (нет) чего? штанов, чему? штанам, (вижу) что? штаны, чем? штанами, о чём? о штанах 1. Штаны это предмет одежды, который имеет две короткие или длинные штанины и закрывает нижнюю часть… … Толковый словарь Дмитриева

Книги

  • Пифагоровы штаны , . В этой книге вы найдете фантастику и приключения, чудеса и выдумку. Смешное и грустное, обыкновенное и загадочное... А что ещё нужно для занимательного чтения? Главное, чтобы было…

В одном можно быть уверенным на все сто процентов, что на вопрос, чему равен квадрат гипотенузы, любой взрослый человек смело ответит: «Сумме квадратов катетов». Эта теорема прочно засела в сознании каждого образованного человека, но достаточно лишь попросить кого-либо ее доказать, и тут могут возникнуть сложности. Поэтому давайте вспомним и рассмотрим разные способы доказательства теоремы Пифагора.

Краткий обзор биографии

Теорема Пифагора знакома практически каждому, но почему-то биография человека, который произвел ее на свет, не так популярна. Это поправимо. Поэтому прежде чем изучить разные способы доказательства теоремы Пифагора, нужно кратко познакомиться с его личностью.

Пифагор - философ, математик, мыслитель родом из Сегодня очень сложно отличить его биографию от легенд, которые сложились в память об этом великом человеке. Но как следует из трудов его последователей, Пифагор Самосский родился на острове Самос. Его отец был обычный камнерез, а вот мать происходила из знатного рода.

Судя по легенде, появление на свет Пифагора предсказала женщина по имени Пифия, в чью честь и назвали мальчика. По ее предсказанию рожденный мальчик должен был принести много пользы и добра человечеству. Что вообще-то он и сделал.

Рождение теоремы

В юности Пифагор переехал с в Египет, чтобы встретиться там с известными египетскими мудрецами. После встречи с ними он был допущен к обучению, где и познал все великие достижения египетской философии, математики и медицины.

Вероятно, именно в Египте Пифагор вдохновился величеством и красотой пирамид и создал свою великую теорию. Это может шокировать читателей, но современные историки считают, что Пифагор не доказывал свою теорию. А лишь передал свое знание последователям, которые позже и завершили все необходимые математические вычисления.

Как бы там ни было, сегодня известна не одна методика доказательства данной теоремы, а сразу несколько. Сегодня остается лишь гадать, как именно древние греки производили свои вычисления, поэтому здесь рассмотрим разные способы доказательства теоремы Пифагора.

Теорема Пифагора

Прежде чем начинать какие-либо вычисления, нужно выяснить, какую теорию предстоит доказать. Теорема Пифагора звучит так: «В треугольнике, у которого один из углов равен 90 о, сумма квадратов катетов равна квадрату гипотенузы».

Всего существует 15 разных способов доказательства теоремы Пифагора. Это достаточно большая цифра, поэтому уделим внимание самым популярным из них.

Способ первый

Сначала обозначим, что нам дано. Эти данные будут распространяться и на другие способы доказательств теоремы Пифагора, поэтому стоит сразу запомнить все имеющееся обозначения.

Допустим, дан прямоугольный треугольник, с катетами а, в и гипотенузой, равной с. Первый способ доказательства основывается на том, что из прямоугольного треугольника нужно дорисовать квадрат.

Чтобы это сделать, нужно к катету длиной а дорисовать отрезок равный катету в, и наоборот. Так должно получиться две равные стороны квадрата. Остается только нарисовать две параллельные прямые, и квадрат готов.

Внутри получившейся фигуры нужно начертить еще один квадрат со стороной равной гипотенузе исходного треугольника. Для этого от вершин ас и св нужно нарисовать два параллельных отрезка равных с. Таким образом, получиться три стороны квадрата, одна из которых и есть гипотенуза исходного прямоугольного треугольники. Остается лишь дочертить четвертый отрезок.

На основании получившегося рисунка можно сделать вывод, что площадь внешнего квадрата равна (а+в) 2 . Если заглянуть внутрь фигуры, можно увидеть, что помимо внутреннего квадрата в ней имеется четыре прямоугольных треугольника. Площадь каждого равна 0,5ав.

Поэтому площадь равна: 4*0,5ав+с 2 =2ав+с 2

Отсюда (а+в) 2 =2ав+с 2

И, следовательно, с 2 =а 2 +в 2

Теорема доказана.

Способ два: подобные треугольники

Данная формула доказательства теоремы Пифагора была выведена на основании утверждения из раздела геометрии о подобных треугольниках. Оно гласит, что катет прямоугольного треугольника - среднее пропорциональное для его гипотенузы и отрезка гипотенузы, исходящего из вершины угла 90 о.

Исходные данные остаются те же, поэтому начнем сразу с доказательства. Проведем перпендикулярный стороне АВ отрезок СД. Основываясь на вышеописанном утверждении катеты треугольников равны:

АС=√АВ*АД, СВ=√АВ*ДВ.

Чтобы ответить на вопрос, как доказать теорему Пифагора, доказательство нужно проложить возведением в квадрат обоих неравенств.

АС 2 =АВ*АД и СВ 2 =АВ*ДВ

Теперь нужно сложить получившиеся неравенства.

АС 2 + СВ 2 =АВ*(АД*ДВ), где АД+ДВ=АВ

Получается, что:

АС 2 + СВ 2 =АВ*АВ

И, следовательно:

АС 2 + СВ 2 =АВ 2

Доказательство теоремы Пифагора и различные способы ее решения нуждаются в разностороннем подходе к данной задаче. Однако этот вариант является одним из простейших.

Еще одна методика расчетов

Описание разных способов доказательства теоремы Пифагора могут ни о чем не сказать, до тех самых пор пока самостоятельно не приступишь к практике. Многие методики предусматривают не только математические расчеты, но и построение из исходного треугольника новых фигур.

В данном случае необходимо от катета ВС достроить еще один прямоугольный треугольник ВСД. Таким образом, теперь имеется два треугольника с общим катетом ВС.

Зная, что площади подобных фигур имеют соотношение как квадраты их сходных линейных размеров, то:

S авс * с 2 - S авд *в 2 =S авд *а 2 - S всд *а 2

S авс *(с 2 -в 2)=а 2 *(S авд -S всд)

с 2 -в 2 =а 2

с 2 =а 2 +в 2

Поскольку из разных способов доказательств теоремы Пифагора для 8 класса этот вариант едва ли подойдет, можно воспользоваться следующей методикой.

Самый простой способ доказать теорему Пифагора. Отзывы

Как полагают историки, этот способ был впервые использован для доказательства теоремы еще в древней Греции. Он является самым простым, так как не требует абсолютно никаких расчетов. Если правильно начертить рисунок, то доказательство утверждения, что а 2 +в 2 =с 2 , будет видно наглядно.

Условия для данного способа будет немного отличаться от предыдущего. Чтобы доказать теорему, предположим, что прямоугольный треугольник АВС - равнобедренный.

Гипотенузу АС принимаем за сторону квадрата и дочерчиваем три его стороны. Кроме этого необходимо провести две диагональные прямые в получившемся квадрате. Таким образом, чтобы внутри него получилось четыре равнобедренных треугольника.

К катетам АВ и СВ так же нужно дочертить по квадрату и провести по одной диагональной прямой в каждом из них. Первую прямую чертим из вершины А, вторую - из С.

Теперь нужно внимательно всмотреться в получившийся рисунок. Поскольку на гипотенузе АС лежит четыре треугольника, равные исходному, а на катетах по два, это говорит о правдивости данной теоремы.

Кстати, благодаря данной методике доказательства теоремы Пифагора и появилась на свет знаменитая фраза: «Пифагоровы штаны во все стороны равны».

Доказательство Дж. Гарфилда

Джеймс Гарфилд - двадцатый президент Соединенных Штатов Америки. Кроме того, что он оставил свой след в истории как правитель США, он был еще и одаренным самоучкой.

В начале своей карьеры он был обычным преподавателем в народной школе, но вскоре стал директором одного из высших учебных заведений. Стремление к саморазвитию и позволило ему предложить новую теорию доказательства теоремы Пифагора. Теорема и пример ее решения выглядит следующим образом.

Сначала нужно начертить на листе бумаги два прямоугольных треугольника таким образом, чтобы катет одного из них был продолжением второго. Вершины этих треугольников нужно соединить, чтобы в конечном итоге получилась трапеция.

Как известно, площадь трапеции равна произведению полусуммы ее оснований на высоту.

S=а+в/2 * (а+в)

Если рассмотреть получившуюся трапецию, как фигуру, состоящую из трех треугольников, то ее площадь можно найти так:

S=ав/2 *2 + с 2 /2

Теперь необходимо уравнять два исходных выражения

2ав/2 + с/2=(а+в) 2 /2

с 2 =а 2 +в 2

О теореме Пифагора и способах ее доказательства можно написать не один том учебного пособия. Но есть ли в нем смысл, когда эти знания нельзя применить на практике?

Практическое применение теоремы Пифагора

К сожалению, в современных школьных программах предусмотрено использование данной теоремы только в геометрических задачах. Выпускники скоро покинут школьные стены, так и не узнав, а как они могут применить свои знания и умения на практике.

На самом же деле использовать теорему Пифагора в своей повседневной жизни может каждый. Причем не только в профессиональной деятельности, но и в обычных домашних делах. Рассмотрим несколько случаев, когда теорема Пифагора и способы ее доказательства могут оказаться крайне необходимыми.

Связь теоремы и астрономии

Казалось бы, как могут быть связаны звезды и треугольники на бумаге. На самом же деле астрономия - это научная сфера, в которой широко используется теорема Пифагора.

Например, рассмотрим движение светового луча в космосе. Известно, что свет движется в обе стороны с одинаковой скоростью. Траекторию АВ, которой движется луч света назовем l . А половину времени, которое необходимо свету, чтобы попасть из точки А в точку Б, назовем t . И скорость луча - c . Получается, что: c*t=l

Если посмотреть на этот самый луч из другой плоскости, например, из космического лайнера, который движется со скоростью v, то при таком наблюдении тел их скорость изменится. При этом даже неподвижные элементы станут двигаться со скоростью v в обратном направлении.

Допустим, комический лайнер плывет вправо. Тогда точки А и В, между которыми мечется луч, станут двигаться влево. Причем, когда луч движется от точки А в точку В, точка А успевает переместиться и, соответственно, свет уже прибудет в новую точку С. Чтобы найти половину расстояния, на которое сместилась точка А, нужно скорость лайнера умножить на половину времени путешествия луча (t").

А чтобы найти, какое расстояние за это время смог пройти луч света, нужно обозначить половину пути новой буковой s и получить следующее выражение:

Если представить, что точки света С и В, а также космический лайнер - это вершины равнобедренного треугольника, то отрезок от точки А до лайнера разделит его на два прямоугольных треугольника. Поэтому благодаря теореме Пифагора можно найти расстояние, которое смог пройти луч света.

Этот пример, конечно, не самый удачный, так как только единицам может посчастливиться опробовать его на практике. Поэтому рассмотрим более приземленные варианты применения этой теоремы.

Радиус передачи мобильного сигнала

Современную жизнь уже невозможно представить без существования смартфонов. Но много ли было бы от них прока, если бы они не могли соединять абонентов посредством мобильной связи?!

Качество мобильной связи напрямую зависит от того, на какой высоте находиться антенна мобильного оператора. Для того чтобы вычислить, каком расстоянии от мобильной вышки телефон может принимать сигнал, можно применить теорему Пифагора.

Допустим, нужно найти приблизительную высоту стационарной вышки, чтобы она могла распространять сигнал в радиусе 200 километров.

АВ (высота вышки) = х;

ВС (радиус передачи сигнала) = 200 км;

ОС (радиус земного шара) = 6380 км;

ОВ=ОА+АВОВ=r+х

Применив теорему Пифагора, выясним, что минимальная высота вышки должна составить 2,3 километра.

Теорема Пифагора в быту

Как ни странно, теорема Пифагора может оказаться полезной даже в бытовых делах, таких как определение высоты шкафа-купе, например. На первый взгляд, нет необходимости использовать такие сложные вычисления, ведь можно просто снять мерки с помощью рулетки. Но многие удивляются, почему в процессе сборки возникают определенные проблемы, если все мерки были сняты более чем точно.

Дело в том, что шкаф-купе собирается в горизонтальном положении и только потом поднимается и устанавливается к стене. Поэтому боковина шкафа в процессе подъема конструкции должна свободно проходить и по высоте, и по диагонали помещения.

Предположим, имеется шкаф-купе глубиной 800 мм. Расстояние от пола до потолка - 2600 мм. Опытный мебельщик скажет, что высота шкафа должна быть на 126 мм меньше, чем высота помещения. Но почему именно на 126 мм? Рассмотрим на примере.

При идеальных габаритах шкафа проверим действие теоремы Пифагора:

АС=√АВ 2 +√ВС 2

АС=√2474 2 +800 2 =2600 мм - все сходится.

Допустим, высота шкафа равна не 2474 мм, а 2505 мм. Тогда:

АС=√2505 2 +√800 2 =2629 мм.

Следовательно, этот шкаф не подойдет для установки в данном помещении. Так как при поднятии его в вертикальное положение можно нанести ущерб его корпусу.

Пожалуй, рассмотрев разные способы доказательства теоремы Пифагора разными учеными, можно сделать вывод, что она более чем правдива. Теперь можно использовать полученную информацию в своей повседневной жизни и быть полностью уверенным, что все расчеты будут не только полезны, но и верны.

Теорема Пифагора всем известна со школьной поры. Выдающийся математик доказал великую гипотезу, которой в настоящее время пользуются многие люди. Звучит правило так: квадрат длины гипотенузы прямоугольного треугольника равен сумме квадратов катетов. За многие десятилетия ни один математик не сумел переспорить данное правило. Ведь Пифагор долго шел к своей цели, чтобы в результате чертежи имели место в повседневной жизни.

  1. Небольшой стих к данной теореме, который придумали вскоре после доказательства, напрямую доказывает свойства гипотезы: «Пифагоровы штаны во все стороны равны» . Это двустрочье отложилось в памяти у многих людей – по сей день стихотворение вспоминают при вычислениях.
  2. Данная теорема получила название «Пифагоровы штаны» вследствие того, что при черчении по середине получался прямоугольный треугольник, по бокам которого располагались квадраты . С виду данное черчение напоминало штаны – отсюда и название гипотезы.
  3. Пифагор гордился разработанной теоремой, ведь данная гипотеза отличается от ею подобных максимальным количеством доказательств . Важно: уравнение было занесено в книгу рекордов Гиннесса вследствие 370 правдивых доказательств.
  4. Гипотезу доказывало огромное количество математиков и профессоров из разных стран многими способами . Английский математик Джонс вскоре оглашения гипотезы доказал ее при помощи дифференциального уравнения.
  5. В настоящее время никому неизвестно доказательство теоремы самим Пифагором . Факты о доказательствах математика сегодня не известны никому. Считается, что доказательство чертежей Евклидом - это и есть доказательство Пифагора. Однако некоторые ученые спорят с этим утверждением: многие считают, что Евклид самостоятельно доказал теорему, без помощи создателя гипотезы.
  6. Нынешние ученые обнаружили, что великий математик был не первым, кто открыл данную гипотезу . Уравнение было известно еще задолго до открытия Пифагором. Данный математик сумел лишь воссоединить гипотезу.
  7. Пифагор не давал уравнению название «Теорема Пифагора» . Это название закрепилось после «громкого двустрочья». Математик лишь хотел, чтобы его старания и открытия узнал весь мир и пользовался ими.
  8. Мориц Кантор - великий крупнейший математик нашел и разглядел на древнем папирусе записи с чертежами . Вскоре после этого Кантор понял, что данная теорема была известна египтянам еще 2300 лет до нашей эры. Только тогда ею никто не воспользовался и не стал пытаться доказать.
  9. Нынешние ученые считают, что гипотеза была известна еще в 8 веке до нашей эры . Индийские ученые того времени обнаружили приблизительное вычисление гипотенузы треугольника, наделенного прямыми углами. Правда в то время никто не смог доказать наверняка уравнение по приблизительным вычислениям.
  10. Великий математик Бартель Ван дер Варден после доказательства гипотезы заключил важный вывод : «Заслуга греческого математика считается не открытием направления и геометрии, а лишь ее обоснованием. В руках Пифагора были вычислительные формулы, которые основывались на предположениях, неточных вычислениях и смутных представлениях. Однако выдающемуся ученому удалось превратить из в точную науку».
  11. Известный стихотворец сказал, что в день открытия своего чертежа он воздвиг быкам славную жертву . Именно после открытия гипотезы пошли слухи, что жертвоприношение ста быков «пошло странствовать по страницам книг и изданий». Остряки по сей день шутят, что с тех пор все быки боятся нового открытия.
  12. Доказательство того, что не Пифагор придумал стихотворение про штаны, дабы доказать выдвинутые им чертежи: во времена жизни великого математика штанов еще не было . Они были придуманы через несколько десятилетий.
  13. Пекка, Лейбниц и еще несколько ученых пытались доказать ранее известную теорему, однако это никому не удавалось .
  14. Название чертежей «теорема Пифагора» означает «убеждение речью» . Так переводится слово Пифагор, которое взял математик в качестве псевдонима.
  15. Размышления Пифагора о собственном правиле: секрет сущего на земле кроется в цифрах . Ведь математик, опираясь на собственную гипотезу, изучил свойства чисел, выявил четность и нечетность, создал пропорции.

Мы надеемся Вам понравилась подборка с картинками - Интересные факты о теореме Пифагора: узнаем новое об известной теореме (15 фото) онлайн хорошего качества. Оставьте пожалуйста ваше мнение в комментариях! Нам важно каждое мнение.