Рентгеновское излучение свойства. Как быть после рентгена? Виды рентгеновского излучения

ЛЕКЦИЯ

РЕНТГЕНОВСКОЕ ИЗЛУЧЕНИЕ

2. Тормозное рентгеновское излучение, его спектральные свойства.

3. Характеристическое рентгеновское излучение (для ознакомления).

4. Взаимодействие рентгеновского излучения с веществом.

5.Физические основы использования рентгеновского излучения в медицине.

Рентгеновское излучение (X – лучи) открыты К. Рентгеном который в 1895 г. стал первым Нобелевским лауреатом по физике.

1. Природа рентгеновского излучения

Рентгеновское излучение – электромагнитные волны с длинной от 80 до 10 –5 нм. Длинноволновое рентгеновское излучение перекрывается коротковолновым УФ излучением, коротковолновое – длинноволновым g -излучением.

Рентгеновское излучение получают в рентгеновских трубках. рис.1.

К – катод

1 – пучок электронов

2 –рентгеновское излучение

Рис. 1. Устройство рентгеновской трубки.

Трубка представляет собой стеклянную колбу (с возможно высоким вакуумом: давление в ней порядка 10 –6 мм.рт.ст.) с двумя электродами: анодом А и катодом К, к которым приложено высокое напряжение U (несколько тысяч вольт). Катод является источником электронов (за счет явления термоэлектронной эмиссии). Анод – металлический стержень, имеет наклонную поверхность для того, чтобы направлять возникающее рентгеновское излучение под углом к оси трубки. Он изготовляется из хорошо теплопроводящего материала для отвода теплоты, образующейся при бомбардировке электронов. На скошенном торце имеется пластинка из тугоплавкого металла (например, вольфрама).

Сильный разогрев анода обусловлен тем, что основное количество электронов в катодном пучке, попав на анод, испытывает многочисленные столкновения с атомами вещества и передает им большую энергию.

Под действием высокого напряжения электроны, испущенные раскаленной нитью катода, ускоряются до больших энергий. Кинетическая энергия электрона равна mv 2 /2. Она равна энергии, которую он приобретает, двигаясь в электростатическом поле трубки:

mv 2 /2 = eU (1)

где m , e – масса и заряд электрона, U – ускоряющее напряжение.

Процессы приводящие к возникновению тормозного рентгеновского излучения обусловлены интенсивным торможением электронов в веществе анода электростатическим полем атомного ядра и атомарных электронов.

Механизм возникновения можно представить следующим образом. Движущиеся электроны – это некоторый ток, образующий свое магнитное поле. Замедление электронов – снижение силы тока и, соответственно, изменение индукции магнитного поля, которое вызовет возникновение переменного электрического поля, т.е. появление электромагнитной волны.

Таким образом, когда заряженная частица влетает в вещество, она тормозится, теряет свою энергию и скорость и излучает электромагнитные волны.

2. Спектральные свойства тормозного рентгеновского излучения .

Итак, в случае торможения электрона в веществе анода возникает тормозное рентгеновское излучение.

Спектр тормозного рентгеновского излучения является сплошным . Причина этого в следующем.

При торможении электронов у каждого из них часть энергии идет на нагрев анода (Е 1 = Q ), другая часть на создание фотона рентгеновского излучения (Е 2 = hv ), иначе, eU = hv + Q . Соотношение между этими частями случайное.

Таким образом, непрерывный спектр тормозного рентгеновского излучения образуется благодаря торможению множества электронов, каждый из которых испускает один квант рентгеновского излучения hv (h ) строго определенной величины. Величина этого кванта различна для разных электронов. Зависимость потока энергии рентгеновского излучения от длины волны l , т.е. спектр рентгеновского излучения представлен на рис.2.



Рис.2. Спектр тормозного рентгеновского излучения: а) при различном напряжении U в трубке; б) при различной температуре Т катода.

Коротковолновое (жесткое) излучение обладает большей проникающей способностью, чем длинноволновое (мягкое). Мягкое излучение сильнее поглощается веществом.

Со стороны коротких длин волн спектр резко обрывается на определенной длине волны l m i n . Такое коротковолновое тормозное излучение возникает тогда, когда энергия, приобретенная электроном в ускоряющем поле, полностью переходит в энергию фотона (Q = 0):

eU = hv max = hc/ l min , l min = hc/(eU), (2)

l min (нм) = 1,23/ U кВ

Спектральный состав излучения зависит от величины напряжения на рентгеновской трубке, с увеличением напряжения значение l m i n смещается в сторону коротких длин волн (рис. 2 a ).

При изменении температуры Т накала катода возрастает эмиссия электронов. Следовательно, увеличивается ток I в трубке, но спектральный состав излучения не изменяется (рис. 2б).

Поток энергии Ф * тормозного излучения прямо пропорционален квадрату напряжения U между анодом и катодом, силе тока I в трубке и атомному номеру Z вещества анода:

Ф = kZU 2 I . (3)

где k = 10 –9 Вт/(В 2 А).

3. Характеристическое рентгеновское излучение (для ознакомления).

Увеличение напряжения на рентгеновской трубке приводит к тому, что на фоне сплошного спектра появляется линейчатый, который соответствует характеристическому рентгеновскому излучению. Это излучение специфично для материала анода.

Механизм его возникновения таков. При большом напряжении ускоренные электроны (с большой энергией) проникают в глубь атома и выбивают из его внутренних слоев электроны. На свободные места переходят электроны с верхних уровней, в результате чего высвечиваются фотоны характеристического излучения.

Спектры характеристического рентгеновского излучения отличаются от оптических спектров.

– Однотипность.

Однотипностьхарактеристических спектров обусловлена тем, что внутренние электронные слои у разных атомов одинаковы и отличаются только энергетически из–за силового воздействия со стороны ядер, которое увеличивается с возрастанием порядкового номера элемента. Поэтому характеристические спектры сдвигаются в сторону больших частот с увеличением заряда ядра. Опытно это было подтверждено сотрудником Рентгена – Мозли , который измерил частоты рентгеновских переходов для 33 элементов. Им был установлен закон.

ЗАКОН МОЗЛИ корень квадратный из частоты характеристического излучения есть линейная функция порядкового номера элемента:

A × (Z – В ), (4)

где v – частота спектральной линии, Z – атомный номер испускающего элемента. А, В – константы.

Важность закона Мозли заключается в том, что по этой зависимости можно по измеренной частоте рентгеновской линии точно узнать атомный номер исследуемого элемента. Это сыграло большую роль в размещении элементов в периодической системе.

Независимость от химического соединения.

Характеристические рентгеновские спектры атома не зависят от химического соединения, в которое входит атом элемента. Например, рентгеновский спектр атома кислорода одинаков для О 2, Н 2 О, в то время как оптические спектры этих соединений отличаются. Эта особенность рентгеновского спектра атома послужила основанием для названия "характеристическое излучение ".

4. Взаимодействие рентгеновского излучения с веществом

Воздействие рентгеновского излучения на объекты определяется первичными процессами взаимодействия рентгеновского фотона с электронами атомов и молекул вещества.

Рентгеновское излучение в веществе поглощается или рассеивается . При этом могут происходить различные процессы, которые определяются соотношением энергии рентгеновского фотона hv и энергии ионизации А и (энергия ионизации А и – энергия, необходимая для удаления внутренних электронов за пределы атома или молекулы).

а) Когерентное рассеяние (рассеяние длинноволнового излучения) происходит тогда, когда выполняется соотношение

hv < А и.

У фотонов вследствие взаимодействия с электронами изменяется только направление движения (рис.3а), но энергия hv и длина волны не меняются (поэтому это рассеяние называется когерентным ). Так как энергия фотона и атома не изменяются, то когерентное рассеяние не влияет на биологические объекты, но при создании защиты от рентгеновского излучения следует учитывать возможность изменения первичного направления пучка.

б) Фотоэффект происходит тогда, когда

hv ³ А и .

При этом могут быть реализованы два случая.

1. Фотон поглощается, электрон отрывается от атома (рис. 3б). Происходит ионизация. Оторвавшийся электрон приобретает кинетическую энергию: E к = hv – A и . Если кинетическая энергия велика, то электрон может ионизировать соседние атомы путем соударения, образуя новые вторичные электроны.

2. Фотон поглощается, но его энергии не достаточно для отрыва электрона, и может происходить возбуждение атома или молекулы (рис.3в). Это часто приводит к последующему излучению фотона в области видимого излучения (рентгенолюминесценция), а в тканях – к активации молекул и фотохимическим реакциям. Фотоэффект происходит, в основном, на электронах внутренних оболочек атомов с высоким Z .

в) Некогерентное рассеяние (эффект Комптона, 1922 г.) происходит тогда, когда энергия фотона намного больше энергии ионизации

hv » А и.

При этом электрон отрывается от атома (такие электроны называются электронами отдачи ), приобретает некоторую кинетическую энергию E к , энергия самого фотона уменьшается (рис. 4г):

hv = hv " + А и + Е к. (5)

Образующееся таким образом излучение с измененной частотой (длиной) называется вторичным , оно рассеивается по всем направлениям.

Электроны отдачи, если они имеют достаточную кинетическую энергию, могут ионизировать соседние атомы путем соударения. Таким образом, в результате некогерентного рассеяния образуется вторичное рассеянное рентгеновское излучение и происходит ионизация атомов вещества.

Указанные (а,б,в) процессы могут вызвать рад последующих. Например (рис. 3д), если при фотоэффекте происходит отрыв от атома электронов на внутренних оболочках, то на их место могут переходить электроны с более высоких уровней, что сопровождается вторичным характеристическим рентгеновским излучением данного вещества. Фотоны вторичного излучения, взаимодействуя с электронами соседних атомов, могут, в свою очередь, вызывать вторичные явления.

когерентное рассеяние

hv < А И

энергия и длина волны остаются неизменными

фотоэффект

hv ³ А и

фотон поглощается, е – отрывается от атома – ионизация

hv = А и + Е к

атом А возбуждается при поглощении фотона, R – рентгенолюминесценция

некогерентное рассеяние

hv » А и

hv = hv "+А и +Е к

вторичные процессы при фотоэффекте


Рис. 3 Механизмы взаимодействие рентгеновского излучения с веществом


Физические основы использования рентгеновского излучения в медицине

При падении рентгеновского излучения на тело оно незначительно отражается от его поверхности, а в основном проходит вглубь, при этом частично поглощается и рассеивается, частично проходит насквозь.

Закон ослабления.

Поток рентгеновского излучения ослабляется в веществе по закону:

Ф = Ф 0 е – m × х (6)

где m – линейный коэффициент ослабления, который существенно зависит от плотности вещества. Он равен сумме трех слагаемых, соответствующих когерентному рассеянию m 1, некогерентному m 2 и фотоэффекту m 3 :

m = m 1 + m 2 + m 3 . (7)

Вклад каждого слагаемого определяется энергией фотона. Ниже приведены соотношения этих процессов для мягких тканей (воды).

Энергия, кэВ

Фотоэффект

Комптон - эффект

100 %

Пользуются массовым коэффициентом ослабления, который не зависит от плотности вещества r :

m m = m / r . (8)

Массовый коэффициент ослабления зависит от энергии фотона и от атомного номера вещества – поглотителя:

m m = k l 3 Z 3 . (9)

Массовые коэффициенты ослабления кости и мягкой ткани (воды) отличаются: m m кости / m m воды = 68.

Если на пути рентгеновских лучей поместить неоднородное тело и перед ним поставить флуоресцирующий экран, то это тело, поглощая и ослабляя излучение, образует на экране тень. По характеру этой тени можно судить о форме, плотности, структуре, а во многих случаях и о природе тел. Т.е. существенное различие поглощения рентгеновского излучения разными тканями позволяет в теневой проекции видеть изображение внутренних органов.

Если исследуемый орган и окружающие ткани одинаково ослабляют рентгеновское излучение, то применяют контрастные вещества. Так, например, наполнив желудок и кишечник кашеобразной массой сульфата бария (BaS 0 4), можно видеть их теневое изображение (соотношение коэффициентов ослабления равно 354).


Использование в медицине.

В медицине используется рентгеновское излучение с энергией фотонов от 60 до 100-120 кэВ при диагностике и 150-200 кэВ при терапии.

Рентгенодиагностика распознавание заболеваний при помощи просвечивания тела рентгеновским излучением.

Рентгенодиагностику используют в различных вариантах, которые приведены ниже.



1. При рентгеноскопии рентгеновская трубка расположена позади пациента. Перед ним располагается флуоресцирующий экран. На экране наблюдается теневое (позитивное) изображение. В каждом отдельном случае подбирается соответствующая жесткость излучения, так чтобы оно проходило через мягкие ткани, но достаточно поглощалось плотными. В противном случае получается однородная тень. На экране сердце, ребра видны темными, легкие – светлыми.

2. При рентгенографии объект помещается на кассете, в которую вложена пленка со специальной фотоэмульсией. Рентгеновская трубка располагается над объектом. Получаемая рентгенограмма дает негативное изображение, т.е. обратное по контрасту с картиной, наблюдаемой при просвечивании. В данном методе имеет место большая четкость изображения, чем в (1), поэтому наблюдаются детали, которые трудно рассмотреть при просвечивании.

Перспективным вариантом данного метода является рентгеновская томография и "машинный вариант" – компьютерная томография.

3. При флюорографии, на чувствительной малоформатной пленке фиксируется изображение с большого экрана. При рассматривании снимки рассматриваются на специальном увеличителе.

Рентгенотерапия – использование рентгеновского излучения для уничтожения злокачественных образований.

Биологическое действие излучения заключается в нарушении жизнедеятельности, особенно быстро размножающихся клеток.


КОМПЬЮТЕРНАЯ ТОМОГРАФИЯ (КТ)

Метод рентгеновской компьютерной томографии основан на реконструкции изображения оп ределенного сечения тела пациента путем регистрации большого количества рентгеновских проекций этого сечения, выполненных под разными углами. Информация от датчиков, регистрирующих эти проекции, поступает в компьютер, который по специальному программе вычисляет распределение плотно сти образца в исследуемом сечении и отображает его на экране дисплея. Полученное таким образом изображение сечения тела пациента характеризуется прекрасной четкостью и высокой информативностью. Программа позволяет при необходимости увеличить контраст изображения в десятки и даже сотни раз. Это расширяет диагностические возможности метода.

Видеографы (аппараты с цифровой обработкой рентгеновского изображения) в современной стоматологии.

В стоматологии именно рентгенологическое исследование является основным диагностическим методом. Однако ряд традиционных организационно–технических особенностей рентгенодиагностики делают ее не вполне комфортной как для пациента, так и для стоматологических клиник. Это, прежде всего, необходимость контакта пациента с ионизирующим излучением, создающим часто значительнуюлучевую нагрузку на организм, это также необходимость фотопроцесса, а следовательно, необходимость фотореактивов, в том числе токсичных. Это, наконец, громоздкий архив, тяжелые папки и конверты с рентгеновскими пленками.

Кроме того, современный уровень развития стоматологии делает недостаточной субъективную оценку рентгенограмм человеческим глазом. Как оказалось, из многообразия оттенков серого тона, содержащегося в рентгеновском изображении, глаз воспринимает только 64.

Очевидно, что для получения четкого и подробного изображения твердых тканей зубо–челюстной системы при минимальной лучевой нагрузке нужны иные решения. Поиск привел к созданию, так называемых, радиографических систем, видеографов – систем цифровой рентгенографии.

Без технических подробностей принцип действия таких систем состоит в следующем. Рентгеновское излучение поступает через объект не на фоточувствительную пленку, а на специальный внутриоральный датчик (специальную электронную матрицу). Соответствующий сигнал от матрицы передается на преобразующее его в цифровую форму оцифровывающее устройство (аналого-цифровой преобразователь, АЦП), связанное с компьютером. Специальное программное обеспечение строит на экране компьютера рентгеновское изображение и позволяет обработать его, сохранять на жестком или гибком носителе информации (винчестере, дискетах), в виде файла распечатывать его как картинку.

В цифровой системе рентгеновское изображение представляет собой совокупность точек, имеющих различные цифровые значения градации серого тона. Предусмотренная программой оптимизация отображения информации дает возможность получить оптимальный по яркости и контрастности кадр при относительно малой дозе облучения.

В современных системах, созданными, например, фирмами Trophy (Франция) или Schick (США) при формировании кадра используется 4096 оттенков серого, время экспозиции зависит от объекта исследования и, в среднем, составляет сотые – десятые доли секунды, снижение лучевой нагрузки по отношению к пленке – до 90 % для внутриоральных систем, до 70 % для панорамных видеографов.

При обработке изображений видеографы позволяют:

1. Получать позитивные и негативные изображения, изображения в псевдоцвете, рельефные изображения.

2. Повышать контраст и увеличивать интересующий фрагмент изображения.

3. Оценивать изменение плотности зубных тканей и костных структур, контролировать однородность заполнения каналов.

4. В эндодонтии определять длину канала любой кривизны, а в хирургии подбирать размер имплантата с точностью 0,1 мм.

5. Уникальная система Caries detector с элементами искусственного интеллекта при анализе снимка позволяет обнаружить кариес в стадии пятна, кариес корня и скрытый кариес.


* «Ф» в формуле (3) относится ко всему интервалу излучаемых длин волн и часто называется «Интегральный поток энергии».

ЛЕКЦИЯ

РЕНТГЕНОВСКОЕ ИЗЛУЧЕНИЕ

    Природа рентгеновского излучения

    Тормозное рентгеновское излучение, его спектральные свойства.

    Характеристическое рентгеновское излучение (для ознакомления).

    Взаимодействие рентгеновского излучения с веществом.

    Физические основы использования рентгеновского излучения в медицине.

Рентгеновское излучение (X – лучи) открыты К. Рентгеном который в 1895 г. стал первым Нобелевским лауреатом по физике.

    Природа рентгеновского излучения

Рентгеновское излучение – электромагнитные волны с длинной от 80 до 10 –5 нм. Длинноволновое рентгеновское излучение перекрывается коротковолновым УФ излучением, коротковолновое – длинноволновым-излучением.

Рентгеновское излучение получают в рентгеновских трубках. рис.1.

К – катод

1 – пучок электронов

2 –рентгеновское излучение

Рис. 1. Устройство рентгеновской трубки.

Трубка представляет собой стеклянную колбу (с возможно высоким вакуумом: давление в ней порядка 10 –6 мм.рт.ст.) с двумя электродами: анодом А и катодом К, к которым приложено высокое напряжение U (несколько тысяч вольт). Катод является источником электронов (за счет явления термоэлектронной эмиссии). Анод – металлический стержень, имеет наклонную поверхность для того, чтобы направлять возникающее рентгеновское излучение под углом к оси трубки. Он изготовляется из хорошо теплопроводящего материала для отвода теплоты, образующейся при бомбардировке электронов. На скошенном торце имеется пластинка из тугоплавкого металла (например, вольфрама).

Сильный разогрев анода обусловлен тем, что основное количество электронов в катодном пучке, попав на анод, испытывает многочисленные столкновения с атомами вещества и передает им большую энергию.

Под действием высокого напряжения электроны, испущенные раскаленной нитью катода, ускоряются до больших энергий. Кинетическая энергия электрона равна mv 2 /2. Она равна энергии, которую он приобретает, двигаясь в электростатическом поле трубки:

mv 2 /2 = eU (1)

где m, e – масса и заряд электрона, U – ускоряющее напряжение.

Процессы приводящие к возникновению тормозного рентгеновского излучения обусловлены интенсивным торможением электронов в веществе анода электростатическим полем атомного ядра и атомарных электронов.

Механизм возникновения можно представить следующим образом. Движущиеся электроны – это некоторый ток, образующий свое магнитное поле. Замедление электронов – снижение силы тока и, соответственно, изменение индукции магнитного поля, которое вызовет возникновение переменного электрического поля, т.е. появление электромагнитной волны.

Таким образом, когда заряженная частица влетает в вещество, она тормозится, теряет свою энергию и скорость и излучает электромагнитные волны.

    Спектральные свойства тормозного рентгеновского излучения .

Итак, в случае торможения электрона в веществе анода возникает тормозное рентгеновское излучение.

Спектр тормозного рентгеновского излучения является сплошным . Причина этого в следующем.

При торможении электронов у каждого из них часть энергии идет на нагрев анода (Е 1 = Q), другая часть на создание фотона рентгеновского излучения (Е 2 = hv), иначе, eU = hv + Q. Соотношение между этими частями случайное.

Таким образом, непрерывный спектр тормозного рентгеновского излучения образуется благодаря торможению множества электронов, каждый из которых испускает один квант рентгеновского излучения hv (h) строго определенной величины. Величина этого кванта различна для разных электронов. Зависимость потока энергии рентгеновского излучения от длины волны , т.е. спектр рентгеновского излучения представлен на рис.2.

Рис.2. Спектр тормозного рентгеновского излучения: а) при различном напряжении U в трубке; б) при различной температуре Т катода.

Коротковолновое (жесткое) излучение обладает большей проникающей способностью, чем длинноволновое (мягкое). Мягкое излучение сильнее поглощается веществом.

Со стороны коротких длин волн спектр резко обрывается на определенной длине волны  m i n . Такое коротковолновое тормозное излучение возникает тогда, когда энергия, приобретенная электроном в ускоряющем поле, полностью переходит в энергию фотона (Q = 0):

eU = hv max = hc/ min ,  min = hc/(eU), (2)

 min (нм) = 1,23/UкВ

Спектральный состав излучения зависит от величины напряжения на рентгеновской трубке, с увеличением напряжения значение  m i n смещается в сторону коротких длин волн (рис. 2a).

При изменении температуры Т накала катода возрастает эмиссия электронов. Следовательно, увеличивается ток I в трубке, но спектральный состав излучения не изменяется (рис. 2б).

Поток энергии Ф  тормозного излучения прямо пропорционален квадрату напряжения U между анодом и катодом, силе тока I в трубке и атомному номеру Z вещества анода:

Ф = kZU 2 I. (3)

где k = 10 –9 Вт/(В 2 А).

    Характеристическое рентгеновское излучение (для ознакомления).

Увеличение напряжения на рентгеновской трубке приводит к тому, что на фоне сплошного спектра появляется линейчатый, который соответствует характеристическому рентгеновскому излучению. Это излучение специфично для материала анода.

Механизм его возникновения таков. При большом напряжении ускоренные электроны (с большой энергией) проникают в глубь атома и выбивают из его внутренних слоев электроны. На свободные места переходят электроны с верхних уровней, в результате чего высвечиваются фотоны характеристического излучения.

Спектры характеристического рентгеновского излучения отличаются от оптических спектров.

– Однотипность.

Однотипность характеристических спектров обусловлена тем, что внутренние электронные слои у разных атомов одинаковы и отличаются только энергетически из–за силового воздействия со стороны ядер, которое увеличивается с возрастанием порядкового номера элемента. Поэтому характеристические спектры сдвигаются в сторону больших частот с увеличением заряда ядра. Опытно это было подтверждено сотрудником Рентгена – Мозли , который измерил частоты рентгеновских переходов для 33 элементов. Им был установлен закон.

ЗАКОН МОЗЛИ корень квадратный из частоты характеристического излучения есть линейная функция порядкового номера элемента:

= A  (Z – В), (4)

где v – частота спектральной линии, Z – атомный номер испускающего элемента. А, В – константы.

Важность закона Мозли заключается в том, что по этой зависимости можно по измеренной частоте рентгеновской линии точно узнать атомный номер исследуемого элемента. Это сыграло большую роль в размещении элементов в периодической системе.

    Независимость от химического соединения.

Характеристические рентгеновские спектры атома не зависят от химического соединения, в которое входит атом элемента. Например, рентгеновский спектр атома кислорода одинаков для О 2, Н 2 О, в то время как оптические спектры этих соединений отличаются. Эта особенность рентгеновского спектра атома послужила основанием для названия "характеристическое излучение ".

    Взаимодействие рентгеновского излучения с веществом

Воздействие рентгеновского излучения на объекты определяется первичными процессами взаимодействия рентгеновского фотона с электронами атомов и молекул вещества.

Рентгеновское излучение в веществе поглощается или рассеивается . При этом могут происходить различные процессы, которые определяются соотношением энергии рентгеновского фотона hv и энергии ионизации А и (энергия ионизации А и – энергия, необходимая для удаления внутренних электронов за пределы атома или молекулы).

а) Когерентное рассеяние (рассеяние длинноволнового излучения) происходит тогда, когда выполняется соотношение

У фотонов вследствие взаимодействия с электронами изменяется только направление движения (рис.3а), но энергия hv и длина волны не меняются (поэтому это рассеяние называется когерентным ). Так как энергия фотона и атома не изменяются, то когерентное рассеяние не влияет на биологические объекты, но при создании защиты от рентгеновского излучения следует учитывать возможность изменения первичного направления пучка.

б) Фотоэффект происходит тогда, когда

При этом могут быть реализованы два случая.

    Фотон поглощается, электрон отрывается от атома (рис. 3б). Происходит ионизация. Оторвавшийся электрон приобретает кинетическую энергию: E к = hv – A и. Если кинетическая энергия велика, то электрон может ионизировать соседние атомы путем соударения, образуя новые вторичные электроны.

    Фотон поглощается, но его энергии не достаточно для отрыва электрона, и может происходить возбуждение атома или молекулы (рис.3в). Это часто приводит к последующему излучению фотона в области видимого излучения (рентгенолюминесценция), а в тканях – к активации молекул и фотохимическим реакциям. Фотоэффект происходит, в основном, на электронах внутренних оболочек атомов с высоким Z.

в) Некогерентное рассеяние (эффект Комптона, 1922 г.) происходит тогда, когда энергия фотона намного больше энергии ионизации

При этом электрон отрывается от атома (такие электроны называются электронами отдачи ), приобретает некоторую кинетическую энергию E к, энергия самого фотона уменьшается (рис. 4г):

hv = hv" + А и + Е к. (5)

Образующееся таким образом излучение с измененной частотой (длиной) называется вторичным , оно рассеивается по всем направлениям.

Электроны отдачи, если они имеют достаточную кинетическую энергию, могут ионизировать соседние атомы путем соударения. Таким образом, в результате некогерентного рассеяния образуется вторичное рассеянное рентгеновское излучение и происходит ионизация атомов вещества.

Указанные (а,б,в) процессы могут вызвать рад последующих. Например (рис. 3д), если при фотоэффекте происходит отрыв от атома электронов на внутренних оболочках, то на их место могут переходить электроны с более высоких уровней, что сопровождается вторичным характеристическим рентгеновским излучением данного вещества. Фотоны вторичного излучения, взаимодействуя с электронами соседних атомов, могут, в свою очередь, вызывать вторичные явления.

когерентное рассеяние

энергия и длина волны остаются неизменными

фотоэффект

фотон поглощается, е – отрывается от атома – ионизация

hv = А и + Е к

атом А возбуждается при поглощении фотона, R – рентгенолюминесценция

некогерентное рассеяние

hv = hv"+А и +Е к

вторичные процессы при фотоэффекте

Рис. 3 Механизмы взаимодействие рентгеновского излучения с веществом

Физические основы использования рентгеновского излучения в медицине

При падении рентгеновского излучения на тело оно незначительно отражается от его поверхности, а в основном проходит вглубь, при этом частично поглощается и рассеивается, частично проходит насквозь.

Закон ослабления.

Поток рентгеновского излучения ослабляется в веществе по закону:

Ф = Ф 0 е –   х (6)

где  – линейный коэффициент ослабления, который существенно зависит от плотности вещества. Он равен сумме трех слагаемых, соответствующих когерентному рассеянию  1, некогерентному  2 и фотоэффекту  3:

 =  1 +  2 +  3 . (7)

Вклад каждого слагаемого определяется энергией фотона. Ниже приведены соотношения этих процессов для мягких тканей (воды).

Энергия, кэВ

Фотоэффект

Комптон - эффект

Пользуются массовым коэффициентом ослабления, который не зависит от плотности вещества :

 m = /. (8)

Массовый коэффициент ослабления зависит от энергии фотона и от атомного номера вещества – поглотителя:

 m = k 3 Z 3 . (9)

Массовые коэффициенты ослабления кости и мягкой ткани (воды) отличаются:  m кости / m воды = 68.

Если на пути рентгеновских лучей поместить неоднородное тело и перед ним поставить флуоресцирующий экран, то это тело, поглощая и ослабляя излучение, образует на экране тень. По характеру этой тени можно судить о форме, плотности, структуре, а во многих случаях и о природе тел. Т.е. существенное различие поглощения рентгеновского излучения разными тканями позволяет в теневой проекции видеть изображение внутренних органов.

Если исследуемый орган и окружающие ткани одинаково ослабляют рентгеновское излучение, то применяют контрастные вещества. Так, например, наполнив желудок и кишечник кашеобразной массой сульфата бария (BaS0 4), можно видеть их теневое изображение (соотношение коэффициентов ослабления равно 354).

Использование в медицине.

В медицине используется рентгеновское излучение с энергией фотонов от 60 до 100-120 кэВ при диагностике и 150-200 кэВ при терапии.

Рентгенодиагностика распознавание заболеваний при помощи просвечивания тела рентгеновским излучением.

Рентгенодиагностику используют в различных вариантах, которые приведены ниже.

    При рентгеноскопии рентгеновская трубка расположена позади пациента. Перед ним располагается флуоресцирующий экран. На экране наблюдается теневое (позитивное) изображение. В каждом отдельном случае подбирается соответствующая жесткость излучения, так чтобы оно проходило через мягкие ткани, но достаточно поглощалось плотными. В противном случае получается однородная тень. На экране сердце, ребра видны темными, легкие – светлыми.

    При рентгенографии объект помещается на кассете, в которую вложена пленка со специальной фотоэмульсией. Рентгеновская трубка располагается над объектом. Получаемая рентгенограмма дает негативное изображение, т.е. обратное по контрасту с картиной, наблюдаемой при просвечивании. В данном методе имеет место большая четкость изображения, чем в (1), поэтому наблюдаются детали, которые трудно рассмотреть при просвечивании.

Перспективным вариантом данного метода является рентгеновская томография и "машинный вариант" – компьютерная томография.

3. При флюорографии, на чувствительной малоформатной пленке фиксируется изображение с большого экрана. При рассматривании снимки рассматриваются на специальном увеличителе.

Рентгенотерапия – использование рентгеновского излучения для уничтожения злокачественных образований.

Биологическое действие излучения заключается в нарушении жизнедеятельности, особенно быстро размножающихся клеток.

КОМПЬЮТЕРНАЯ ТОМОГРАФИЯ (КТ)

Метод рентгеновской компьютерной томографии основан на реконструкции изображения определенного сечения тела пациента путем регистрации большого количества рентгеновских проекций этого сечения, выполненных под разными углами. Информация от датчиков, регистрирующих эти проекции, поступает в компьютер, который по специальному программе вычисляет распределение плотно сти образца в исследуемом сечении и отображает его на экране дисплея. Полученное таким образом изображение сечения тела пациента характеризуется прекрасной четкостью и высокой информативностью. Программа позволяет при необходимости увеличить контраст изображения в десятки и даже сотни раз. Это расширяет диагностические возможности метода.

Видеографы (аппараты с цифровой обработкой рентгеновского изображения) в современной стоматологии.

В стоматологии именно рентгенологическое исследование является основным диагностическим методом. Однако ряд традиционных организационно–технических особенностей рентгенодиагностики делают ее не вполне комфортной как для пациента, так и для стоматологических клиник. Это, прежде всего, необходимость контакта пациента с ионизирующим излучением, создающим часто значительную лучевую нагрузку на организм, это также необходимость фотопроцесса, а следовательно, необходимость фотореактивов, в том числе токсичных. Это, наконец, громоздкий архив, тяжелые папки и конверты с рентгеновскими пленками.

Кроме того, современный уровень развития стоматологии делает недостаточной субъективную оценку рентгенограмм человеческим глазом. Как оказалось, из многообразия оттенков серого тона, содержащегося в рентгеновском изображении, глаз воспринимает только 64.

Очевидно, что для получения четкого и подробного изображения твердых тканей зубо–челюстной системы при минимальной лучевой нагрузке нужны иные решения. Поиск привел к созданию, так называемых, радиографических систем, видеографов – систем цифровой рентгенографии.

Без технических подробностей принцип действия таких систем состоит в следующем. Рентгеновское излучение поступает через объект не на фоточувствительную пленку, а на специальный внутриоральный датчик (специальную электронную матрицу). Соответствующий сигнал от матрицы передается на преобразующее его в цифровую форму оцифровывающее устройство (аналого-цифровой преобразователь, АЦП), связанное с компьютером. Специальное программное обеспечение строит на экране компьютера рентгеновское изображение и позволяет обработать его, сохранять на жестком или гибком носителе информации (винчестере, дискетах), в виде файла распечатывать его как картинку.

В цифровой системе рентгеновское изображение представляет собой совокупность точек, имеющих различные цифровые значения градации серого тона. Предусмотренная программой оптимизация отображения информации дает возможность получить оптимальный по яркости и контрастности кадр при относительно малой дозе облучения.

В современных системах, созданными, например, фирмами Trophy (Франция) или Schick (США) при формировании кадра используется 4096 оттенков серого, время экспозиции зависит от объекта исследования и, в среднем, составляет сотые – десятые доли секунды, снижение лучевой нагрузки по отношению к пленке – до 90 % для внутриоральных систем, до 70 % для панорамных видеографов.

При обработке изображений видеографы позволяют:

    Получать позитивные и негативные изображения, изображения в псевдоцвете, рельефные изображения.

    Повышать контраст и увеличивать интересующий фрагмент изображения.

    Оценивать изменение плотности зубных тканей и костных структур, контролировать однородность заполнения каналов.

    В эндодонтии определять длину канала любой кривизны, а в хирургии подбирать размер имплантата с точностью 0,1 мм.

    Уникальная система Caries detector с элементами искусственного интеллекта при анализе снимка позволяет обнаружить кариес в стадии пятна, кариес корня и скрытый кариес.

«Ф» в формуле (3) относится ко всему интервалу излучаемых длин волн и часто называется «Интегральный поток энергии».

Огромную роль в современной медицине играет рентгеновское излучение, история открытия рентгена берет свое начало еще в 19 веке.

Рентгеновское излучение представляет собой электромагнитные волны, которые образуются при участии электронов. При сильном ускорении заряженных частиц создается искусственное рентгеновское излучение. Оно проходит через специальное оборудование:

  • ускорители заряженных частиц.

История открытия

Изобрел данные лучи 1895 году немецкий ученый Рентген: во время работы с катодолучевой трубкой он обнаружил эффект флуоресценции платино-цианистого бария. Тогда и произошло описание таких лучей и их удивительной способности проникать сквозь ткани организма. Лучи стали называться икс-лучами (х-лучи). Позже в России их стали именовать рентгеновскими.

Х-лучи способны проникать даже сквозь стены. Так Рентген осознал, что сделал величайшее открытие в области медицины. Именно с этого времени стали формироваться отдельные разделы в науке, такие как рентгенология и радиология.

Лучи способны проникать сквозь мягкие ткани, но задерживаются, длина их определяется препятствием твердой поверхности. Мягкие ткани в человеческом организме — это кожа, а твердые — это кости. В 1901 году ученому присудили Нобелевскую премию.

Однако еще до открытия Вильгельма Конрада Рентгена подобной темой были заинтересованы и другие ученые. В 1853 году французский физик Антуан-Филибер Масон изучал высоковольтный разряд между электродами в стеклянной трубке. Содержащийся в ней газ при низком давлении начал выпускать красноватое свечение. Откачивание лишнего газа из трубки привело к распаду свечения на сложную последовательность отдельных светящихся слоев, оттенок которых зависел от количества газа.

В 1878 году Уильям Крукс (английский физик) высказал предположение о том, что флуоресценция возникает вследствие ударения лучей о стеклянную поверхность трубки. Но все эти исследования не были нигде опубликованы, поэтому Рентген не догадывался о подобных открытиях. После опубликования своих открытий в 1895 году в научном журнале, где ученый писал о том, что все тела прозрачны для этих лучей, хотя и в весьма различной степени, подобными экспериментами заинтересовались и другие ученые. Они подтвердили изобретение Рентгена, и в дальнейшем начались разработки и усовершенствование икс-лучей.

Сам Вильгельм Рентген опубликовал еще две научные работы по теме икс-лучей в 1896 и 1897 годах, после чего занялся другой деятельностью. Таким образом, изобрели несколько ученых, но именно Рентген опубликовал научные труды по этому поводу.


Принципы получения изображения

Особенности этого излучения определены самой природой их появления. Излучение происходит за счет электромагнитной волны. К основным ее свойствам относятся:

  1. Отражение. Если волна попадет на поверхность перпендикулярно, то она не отразится. В некоторых ситуациях свойством отражения обладает алмаз.
  2. Способность проникать в ткани. Помимо этого, лучи могут проходить сквозь непрозрачные поверхности таких материалов, как дерево, бумага и т.п.
  3. Поглощаемость. Поглощаемость зависит от плотности материала: чем он плотнее, тем икс-лучи больше его поглощают.
  4. У некоторых веществ происходит флуоресценция, то есть свечение. Как только излучение прекращается, свечение тоже проходит. Если оно продолжается и после прекращения действия лучей, то этот эффект имеет название фосфоресценция.
  5. Рентгеновские лучи могут засветить фотопленку, так же как и видимый свет.
  6. Если луч прошел сквозь воздух, то происходит ионизация в атмосфере. Такое состояние называют электропроводным, и определяется оно с помощью дозиметра, которым устанавливается норма дозировки облучения.

Излучение — вред и польза

Когда было сделано открытие, ученый-физик Рентген не мог и представить, насколько опасно его изобретение. В былые времена все устройства, которые продуцировали излучение, были далеки от совершенства и в итоге получались большие дозы выпущенных лучей. Люди не понимали опасности такого излучения. Хотя некоторые ученые уже тогда выдвигали версии о вреде рентгеновских лучей.


Х-лучи, проникая в ткани, оказывают на них действие биологического характера. Единица измерения дозы радиации — рентген в час. Основное влияние оказывается на ионизирующие атомы, которые находятся внутри тканей. Действуют эти лучи непосредственно на структуру ДНК живой клетки. К последствиям неконтролируемого излучения можно отнести:

  • мутация клеток;
  • появление опухолей;
  • лучевые ожоги;
  • лучевая болезнь.

Противопоказания к проведению рентгенологических исследований:

  1. Больные в тяжелом состоянии.
  2. Период беременности из-за негативного влияния на плод.
  3. Больные с кровотечением или открытым пневмотораксом.

Как работает рентген и где применяется

  1. В медицине. Рентгенодиагностика применяется для просвечивания живых тканей с целью выявления некоторых нарушений внутри организма. Рентгенотерапия проводится для устранения опухолевых образований.
  2. В науке. Выявляется строение веществ и природа рентгеновских лучей. Этими вопросами занимаются такие науки, как химия, биохимия, кристаллография.
  3. В промышленности. Для выявления нарушений в металлических изделиях.
  4. Для безопасности населения. Рентгенологические лучи установлены в аэропортах и других общественных местах с целью просвечивания багажа.


Медицинское использование рентгенологического излучения. В медицине и стоматологии широко применяются рентгеновские лучи в следующих целях:

  1. Для диагностирования болезней.
  2. Для мониторинга метаболических процессов.
  3. Для лечения многих заболеваний.

Применение рентген-лучей в лечебных целях

Помимо выявления переломов костей, рентгеновские лучи широко применяются и в лечебных целях. Специализированное применение х-лучей заключается в достижении следующих целей:

  1. Для уничтожения раковых клеток.
  2. Для уменьшения размера опухоли.
  3. Для снижения болевых ощущений.

Например, радиоактивный йод, применяемый при эндокринологических заболеваниях, активно используется при раке щитовидной железы, тем самым помогая многим людям избавиться от этой страшной болезни. В настоящее время для диагностики сложных заболеваний рентгеновские лучи подключаются к компьютерам, в итоге появляются новейшие методы исследования, такие как и компьютерная осевая томография.

Такое сканирование предоставляет врачам цветные снимки, на которых можно увидеть внутренние органы человека. Для выявления работы внутренних органов достаточно небольшой дозы излучения. Также широкое применение рентгеновские лучи нашли и в физиопроцедурах.


Основные свойства рентгеновских лучей

  1. Проникающая способность. Все тела для рентгеновского луча прозрачны, и степень прозрачности зависит от толщины тела. Именно благодаря этому свойству луч стал применяться в медицине для выявления работы органов, наличия переломов и инородных тел в организме.
  2. Они способны вызывать свечение некоторых предметов. Например, если на картон нанести барий и платину, то, пройдя через сканирование лучами, он будет светиться зеленовато-желтым. Если поместить руку между трубкой рентгена и экраном, то свет проникнет больше в кость, чем в ткани, поэтому на экране высветится ярче всего костная ткань, а мышечная менее ярко.
  3. Действие на фотопленку. Х-лучи могут подобно свету делать пленку темной, это позволяет фотографировать ту теневую сторону, которая получается при исследовании рентгеновскими лучами тел.
  4. Рентгеновские лучи могут ионизировать газы. Это позволяет не только находить лучи, но и выявлять их интенсивность, измеряя ток ионизации в газе.
  5. Оказывают биохимическое воздействие на организм живых существ. Благодаря этому свойству рентгеновские лучи нашли свое широкое применение в медицине: они могут лечить как кожные заболевания, так и болезни внутренних органов. В этом случае выбирается нужная дозировка излучения и срок действия лучей. Длительное и чрезмерное применение такого лечения весьма вредно и губительно для организма.

Следствием использования рентгеновских лучей стало спасение множества человеческих жизней. Рентген помогает не только своевременно диагностировать заболевание, методики лечения с применением лучевой терапии избавляют больных от различных патологий, начиная с гиперфункции щитовидной железы и заканчивая злокачественными опухолями костных тканей.

Краткая характеристика рентгеновского излучения

Рентгеновское излучение представляет собой электромагнитные волны (поток квантов, фотонов), энергия которых расположе- на на энергетической шкале между ультрафиолетовым излучением и гамма-излучением (рис. 2-1). Фотоны рентгеновского излучения имеют энергию от 100 эВ до 250 кэВ, что соответствует излучению с частотой от 3?10 16 Гц до 6?10 19 Гц и длиной волны 0,005-10 нм. Электромагнитные спектры рентгеновского излучения и гаммаизлучения в значительной степени перекрываются между собой.

Рис. 2-1. Шкала электромагнитных излучений

Основным отличием этих двух видов излучения является способ их возникновения. Рентгеновские лучи получаются при участии электронов (например, при торможении их потока), а гамма-лучи - при радиоактивном распаде ядер некоторых элементов.

Рентгеновские лучи могут генерироваться при торможении ускоренного потока заряженных частиц (так называемое тормозное излучение) или же при возникновении высокоэнергетичных переходов в электронных оболочках атомов (характеристическое излучение). В медицинских приборах для генерации рентгеновских лучей используются рентгеновские трубки (рис. 2-2). Их основными компонентами являются катод и массивный анод. Электроны, испускаемые вследствие разности электрических потенциалов между анодом и катодом, ускоряются, достигают анода, при столкновении с материалом которого тормозятся. Вследствие этого возникает тормозное рентгеновское излучение. Во время столкновения электронов с анодом происходит и второй процесс - выбиваются электроны из электронных оболочек атомов анода. Их места занимают электроны из других оболочек атома. В ходе этого процесса генерируется второй тип рентгеновского излучения - так называемое характеристическое рентгеновское излучение, спектр которого в значительной мере зависит от материала анода. Аноды чаще всего изготавливают из молибдена или вольфрама. Существуют специальные устройства для фокусировки и фильтрации рентгеновского излучения с целью улучшения получаемых изображений.

Рис. 2-2. Схема устройства рентгеновской трубки:

Свойствами рентгеновских лучей, обусловливающими их использование в медицине, являются проникающая способность, флюоресцирующее и фотохимическое действия. Проникающая способность рентгеновских лучей и их поглощение тканями человеческого тела и искусственными материалами являются важнейшими свойствами, которые обусловливают их применение в лучевой диагностике. Чем короче длина волны, тем большей проникающей способностью обладает рентгеновское излучение.

Различают «мягкое» рентгеновское излучение с малой энергией и частотой излучения (соответственно с наибольшей длиной волны) и «жесткое», обладающее высокой энергией фотонов и частотой излучения, имеющее короткую длину волны. Длина волны рентгеновского излучения (соответственно его «жесткость» и проникающая способность) зависит от величины напряжения, приложенного к рентгеновской трубке. Чем выше напряжение на трубке, тем больше скорость и энергия потока электронов и меньше длина волны у рентгеновских лучей.

При взаимодействии проникающего через вещество рентгеновского излучения в нем происходят качественные и количественные изменения. Степень поглощения рентгеновских лучей тканями различна и определяется показателями плотности и атомного веса элементов, составляющих объект. Чем выше плотность и атомный вес вещества, из которого состоит исследуемый объект (орган), тем больше поглощаются рентгеновские лучи. В человеческом теле имеются ткани и органы разной плотности (легкие, кости, мягкие ткани и т.д.), это объясняет различное поглощение рентгеновских лучей. На искусственной или естественной разности в поглощении рентгеновских лучей различными органами и тканями и основана визуализация внутренних органов и структур.

Для регистрации прошедшего через тело излучения используется его способность вызывать флюоресценцию некоторых соединений и оказывать фотохимическое действие на пленку. С этой целью исполь- зуются специальные экраны для рентгеноскопии и фотопленки для рентгенографии. В современных рентгеновских аппаратах для регистрации ослабленного излучения применяют специальные системы цифровых электронных детекторов - цифровые электронные панели. В этом случае рентгеновские методы называют цифровыми.

Из-за биологического действия рентгеновских лучей необходимо прибегать к защите пациентов при исследовании. Это достигается

максимально коротким временем облучения, заменой рентгеноскопии на рентгенографию, строго обоснованным применением ионизирующих методов, защитой с помощью экранирования пациента и персонала от воздействия излучения.

Рентгеновское излучение — разновидность высокоэнергетического электромагнитного излучения. Оно активно используется в различных отраслях медицины.

Рентгеновские лучи представляют собой электромагнитные волны, энергия фотонов которых на шкале электромагнитных волн находится между ультрафиолетовым излучением и гамма-излучением (от ~10 эВ до ~1 МэВ), что соответствует длинам волн от ~10^3 до ~10^−2 ангстрем (от ~10^−7 до ~10^−12 м). То есть это несравнимо более жесткое излучение, чем видимый свет, который находится на этой шкале между ультрафиолетом и инфракрасными («тепловыми») лучами.

Граница между рентгеном и гамма-излучением выделяется условно: их диапазоны пересекаются, гамма-лучи могут иметь энергию от 1 кэв. Различаются они по происхождению: гамма-лучи испускаются в ходе процессов, происходящих в атомных ядрах, рентгеновские же — при процессах, идущих с участием электронов (как свободных, так и находящихся в электронных оболочках атомов). При этом по самому фотону невозможно установить, в ходе какого процесса он возник, то есть деление на рентгеновский и гамма-диапазон во многом условно.

Рентгеновский диапазон делят на «мягкий рентген» и «жесткий». Граница между ними пролегает на уровне длины волны 2 ангстрема и 6 кэв энергии.

Генератор рентгеновского излучения представляет собой трубку, в которой создан вакуум. Там расположены электроды — катод, на который подается отрицательный заряд, и положительно заряженный анод. Напряжение между ними составляет десятки-сотни киловольт. Генерация рентгеновских фотонов происходит тогда, когда электроны «срываются» с катода и с высочайшей скоростью врезаются в поверхность анода. Возникающее при этом рентгеновское излучение называется «тормозным», его фотоны имеют различную длину волны.

Одновременно происходит генерация фотонов характеристического спектра. Часть электронов в атомах вещества анода возбуждается, то есть переходит на более высокие орбиты, а потом возвращается в нормальное состояние, излучая фотоны определенной длины волны. В стандартном генераторе возникают оба типа рентгеновского излучения.

История открытия

8 ноября 1895 года немецкий ученый Вильгельм Конрад Рентген обнаружил, что некоторые вещества под воздействием «катодных лучей», то есть потока электронов, генерируемого катодно-лучевой трубкой, начинают светиться. Он объяснил это явление воздействием неких X-лучей — так («икс-лучи») это излучение и сейчас называется на многих языках. Позже В.К. Рентген изучил открытое им явление. 22 декабря 1895 года он сделал доклад на эту тему в Вюрцбургском университете.

Позже выяснилось, что рентгеновское излучение наблюдалось и ранее, но тогда связанным с ним феноменам не придали большого значения. Катодно-лучевая трубка была изобретена уже давно, но до В.К. Рентгена никто не обращал особого внимания на почернение фотопластинок вблизи нее и т.п. явления. Неизвестна была и опасность, исходящая от проникающей радиации.

Виды и их влияние на организм

«Рентген» — самый мягкий тип проникающей радиации. Избыточное воздействие мягкого рентгена напоминает влияние ультрафиолетового облучения, но в более тяжелой форме. На коже образуется ожог, но поражение оказывается более глубоким, а заживает он намного медленнее.

Жесткий рентген представляет собой полноценную ионизирующую радиацию, способную привести к лучевой болезни. Рентгеновские кванты могут разрывать молекулы белков, из которых состоят ткани человеческого тела, а также молекулы ДНК генома. Но даже если рентгеновский квант разбивает молекулу воды, все равно: при этом образуются химически активные свободные радикалы H и OH, которые сами способны воздействовать на белки и ДНК. Лучевая болезнь протекает в тем более тяжелой форме, чем больше поражаются органы кроветворения.

Рентгеновские лучи обладают мутагенной и канцерогенной активностью. Это значит, что вероятность спонтанных мутаций в клетках при облучении возрастает, а иногда здоровые клетки могут перерождаться в раковые. Повышение вероятности появления злокачественных опухолей — стандартное следствие любого облучения, в том числе рентгеновского. Рентген является наименее опасным видом проникающей радиации, но он все равно может быть опасен.

Рентгеновское излучение: применение и как работает

Рентгеновское излучение применяется в медицине, а также в других сферах человеческой деятельности.

Рентгеноскопия и компьютерная томография

Наиболее частое применение рентгеновского излучения — рентгеноскопия. «Просвечивание» человеческого тела позволяет получить детальное изображение как костей (они видны наиболее четко), так и изображения внутренних органов.

Различная прозрачность тканей тела в рентгеновских лучах связана с их химическим составом. Особенности строения костей в том, что они содержат много кальция и фосфора. Другие же ткани состоят в основном из углерода, водорода, кислорода и азота. Атом фосфора превосходит по весу атом кислорода почти вдвое, а атом кальция — в 2,5 раза (углерод, азот и водород — еще легче кислорода). В связи с этим поглощение рентгеновских фотонов в костях оказывается намного выше.

Помимо двухмерных «снимков» рентгенография дает возможность создать трехмерное изображение органа: эта разновидность рентгенографии называется компьютерной томографией. Для этих целей применяется мягкий рентген. Объем облучения, полученный при одном снимке, невелик: он примерно равен облучению, получаемому при 2-часовом полете на самолете на высоте 10 км.

Рентгеновская дефектоскопия позволяет выявлять мелкие внутренние дефекты в изделиях. Для нее используется жесткий рентген, так как многие материалы (металл например) плохо «просвечиваются» из-за высокой атомной массы составляющего их вещества.

Рентгеноструктурный и рентгенофлуоресцентный анализ

У рентгеновских лучей свойства позволяют с их помощью детально рассматривать отдельные атомы. Рентгеноструктурный анализ активно применяется в химии (в том числе биохимии) и кристаллографии. Принцип его работы — дифракционное рассеивание рентгеновских лучей на атомах кристаллов или сложных молекул. При помощи рентгеноструктурного анализа была определена структура молекулы ДНК.

Рентгенофлуоресцентный анализ позволяет быстро определить химический состав вещества.

Существует множество форм радиотерапии, но все они подразумевают использование ионизирующей радиации. Радиотерапия делится на 2 типа: корпускулярный и волновой. Корпускулярный использует потоки альфа-частиц (ядер атомов гелия), бета-частиц (электронов), нейтронов, протонов, тяжелых ионов. Волновой использует лучи электромагнитного спектра — рентгеновские и гамма.

Используются радиотерапевтические методы прежде всего для лечения онкологических заболеваний. Дело в том, что радиация поражает в первую очередь активно делящиеся клетки, поэтому так страдают органы кроветворения (их клетки постоянно делятся, производя все новые эритроциты). Раковые клетки тоже постоянно делятся и более уязвимы для радиации, чем здоровая ткань.

Используется уровень облучения, который подавляет активность раковых клеток, умеренно влияя на здоровые. Под воздействием радиации происходит не разрушение клеток как таковое, а поражение их генома — молекул ДНК. Клетка с разрушенным геномом может некоторое время существовать, но уже не может делиться, то есть рост опухоли прекращается.

Рентгенотерапия — наиболее мягкая форма радиотерапии. Волновая радиация мягче корпускулярной, а рентген — мягче гамма-излучения.

При беременности

Использовать ионизирующую радиацию при беременности опасно. Рентгеновские лучи обладают мутагенной активностью и могут вызвать нарушения у плода. Рентгенотерапия несовместима с беременностью: она может применяться только в том случае, если уже решено производить аборт. Ограничения на рентгеноскопию мягче, но в первые месяцы она тоже строго запрещена.

В случае крайней необходимости рентгенологическое исследование заменяют магниторезонансной томографией. Но в первый триместр стараются избегать и ее (этот метод появился недавно, и с абсолютной уверенностью говорить об отсутствии вредных последствий).

Однозначная опасность возникает при облучении суммарной дозой не менее 1 мЗв (в старых единицах — 100 мР). При простом рентгеновском снимке (например, при прохождении флюорографии) пациентка получает примерно в 50 раз меньше. Для того, чтобы получить такую дозу за 1 раз, нужно подвергнуться детальной компьютерной томографии.

То есть сам по себе факт 1-2-кратного «рентгена» на ранней стадии беременности не грозит тяжелыми последствиями (но лучше не рисковать).

Лечение с помощью него

Рентгеновские лучи применяют прежде всего при борьбе со злокачественными опухолями. Этот метод хорош тем, что высокоэффективен: он убивает опухоль. Плох он тем, что здоровым тканям приходится немногим лучше, имеются многочисленные побочные эффекты. В особой опасности находятся органы кроветворения.

На практике применяются различные методы, позволяющие снизить воздействие рентгена на здоровые ткани. Лучи направляются под углом таким образом, чтобы в зоне их перекрещивания оказалась опухоль (благодаря этому основное поглощение энергии происходит как раз там). Иногда процедура производится в движении: тело пациента относительно источника излучения вращается вокруг оси, проходящей через опухоль. При этом здоровые ткани оказываются в зоне облучения лишь иногда, а больные — постоянно.

Рентген используется при лечении некоторых артрозов и подобных заболеваний, а также кожных болезней. При этом болевой синдром снижается на 50-90%. Так как излучение при этом используется более мягкое, побочных эффектов, аналогичных тем, что возникают при лечении опухолей, не наблюдается.