Какие частицы двигаться со скоростью света. Нейтрино движется быстрее скорости света! Явление черенковского излучения

Со школьной скамьи нас учили - превысить скорость света невозможно, и поэтому перемещение человека в космическом пространстве является большой неразрешимой проблемой (как долететь до ближайшей солнечной системы, если свет сможет преодолеть это расстояние только за несколько тысяч лет?). Возможно, американские ученые нашли способ летать на сверхскоростях, не только не обманув, но и следуя фундаментальным законам Альберта Эйнштейна. Во всяком случае так утверждает автор проекта двигателя деформации пространства Гарольд Уайт.

Мы в редакции сочли новость совершенно фантастической, поэтому сегодня, в преддверии Дня космонавтики, публикуем репортаж Константина Какаеса для журнала Popular Science о феноменальном проекте NASA, в случае успеха которого человек сможет отправиться за пределы Солнечной системы.

В сентябре 2012 года несколько сотен ученых, инженеров и космических энтузиастов собрались вместе для второй публичной встречи группы под названием 100 Year Starship. Группой руководит бывший астронавт Май Джемисон, и основана она DARPA. Цель конференции - «сделать возможным путешествие человека за пределы Солнечной системы к другим звездам в течение ближайших ста лет». Большинство участников конференции признают, что подвижки в пилотируемом изучении космического пространства слишком незначительны. Несмотря на миллиарды долларов, затраченных в последние несколько кварталов, космические агентства могут почти столько же, сколько могли в 1960-х. Собственно, 100 Year Starship созвана, чтобы все это исправить.

Но ближе к делу. Спустя несколько дней конференции ее участники дошли до самых фантастических тем: регенерация органов, проблема организованной религии на борту корабля и так далее. Одна из наиболее любопытных презентаций на собрании 100 Year Starship называлась «Механика деформационного поля 102», и провел ее Гарольд «Сонни» Уайт из NASA. Ветеран агентства, Уайт руководит продвинутой импульсной программой в космическом центре Джонсона (JSC). Вместе с пятью коллегами он создал «Дорожную карту космических двигательных систем», которая озвучивает цели NASA в ближайших космических путешествиях. На плане перечисляются все виды двигательных проектов: от усовершенствованных химических ракет до далеко идущих разработок, вроде антиматерии или ядерных машин. Но область исследований Уайта самая футуристичная из всех: она касается двигателя деформации пространства.

так обычно изображают пузырь Алькубьерре

Согласно плану, такой двигатель обеспечит перемещения в пространстве со скоростью, превышающей скорость света. Общепризнанно, что это невозможно, поскольку является явным нарушением теории относительности Эйнштейна. Но Уайт утверждает обратное. В качестве подтверждения своих слов он апеллирует к так называемым пузырям Алькубьерре (уравнения, выходящие из теории Эйнштейна, согласно которым тело в космическом пространстве способно достигать сверхсветовых скоростей, в отличие от тела в нормальных условиях). В презентации он рассказал, как недавно сумел добиться теоретических результатов, которые напрямую ведут к созданию реального двигателя деформации пространства.

Понятно, что звучит это все совершенно фантастически: подобные разработки - это настоящая революция, которая развяжет руки всем астрофизикам мира. Вместо того, чтобы тратить 75 тысяч лет на путешествие к Альфа-Центавре, ближайшей к нашей звездной системе, астронавты на корабле с таким двигателем смогут совершить это путешествие за пару недель.


В свете закрытия программы запуска шаттлов и все возрастающей роли частных полетов к околоземной орбите NASA заявляет, что переориентируется на далекоидущие, намного более смелые планы, выходящие далеко за рамки путешествий на Луну. Достичь этих целей можно только с помощью развития новых двигательных систем - чем быстрее, тем лучше. Несколько дней спустя после конференции глава NASA Чарльз Болден, повторил слова Уайта: «Мы хотим перемещаться быстрее скорости света и без остановок на Марсе».

ОТКУДА МЫ ЗНАЕМ ПРО ЭТОТ ДВИГАТЕЛЬ

Первое популярное использование выражения «двигатель деформации пространства» датируется 1966 годом, когда Джен Родденберри выпустил «Звездный путь». Следующие 30 лет этот двигатель существовал только как часть этого фантастического сериала. Физик по имени Мигель Алькубьерре посмотрел один из эпизодов этого сериала как раз в тот момент, когда трудился над докторской в области общей теории относительности и задавался вопросом, возможно ли создание двигателя деформации пространства в реальности. В 1994 году он опубликовал документ, излагающий эту позицию.


Алькубьерре представил в космосе пузырь. В передней части пузыря время-пространство сокращается, а в задней - расширяется (как было при Большом взрыве, по мнению физиков). Деформация заставит корабль гладко скользить в космическом пространстве, как если бы он серфил на волне, несмотря на окружающий шум. В принципе деформированный пузырь может двигаться сколько угодно быстро; ограничения в скорости света, по теории Эйнштейна, распространяются только в контексте пространства-времени, но не в таких искажениях пространства-времени. Внутри пузыря, как предполагал Алькубьерре, пространство-время не изменится, а космическим путешественникам не будет нанесено никакого вреда.

Уравнения Эйнштейна в общей теории относительности сложно решить в одном направлении, выясняя, как материя искривляет пространство, но это осуществимо. Используя их, Алькубьерре определил, что распределение материи есть необходимое условие для создания деформированного пузыря. Проблема только в том, что решения приводили к неопределенной форме материи под названием отрицательная энергия.

Говоря простым языком, гравитация - это сила притяжения между двумя объектами. Каждый объект вне зависимости от его размеров оказывает некоторую силу притяжения на окружающую материю. По мнению Эйнштейна, эта сила является искривлением пространства-времени. Отрицательная энергия, однако, гравитационно отрицательна, то есть отталкивающа. Вместо того чтобы соединять время и пространство, отрицательная энергия отталкивает и разобщает их. Грубо говоря, чтобы такая модель работала, Алькубьерре необходима отрицательная энергия, чтобы расширять пространство-время позади корабля.

Несмотря на то, что никто и никогда особенно не измерял отрицательную энергию, согласно квантовой механике, она существует, а ученые научились создавать ее в лабораторных условиях. Один из способов ее воссоздания - через Казимиров эффект: две параллельно проводящие пластины, расположенные близко друг к другу, создают некоторое количество отрицательной энергии. Слабое место модели Алькубьерре в том, что для ее осуществления требуется огромное количество отрицательной энергии, на несколько порядков выше, чем, по оценкам ученых, ее можно произвести.

Уайт говорит, что он нашел, как пойти в обход этого ограничения. В компьютерном симуляторе Уайт изменил геометрию деформационного поля так, что в теории он мог бы производить деформированный пузырь, используя в миллионы раз меньше отрицательной энергии, чем требовалось по оценкам Алькубьерра, и, возможно, достаточно мало, чтобы космический корабль мог нести средства его производства. «Открытия, - говорит Уайт, - меняют метод Алькубьерре с непрактичного на вполне правдоподобный».

РЕПОРТАЖ ИЗ ЛАБОРАТОРИИ УАЙТА

Космический центр Джонсона расположился рядом с лагунами Хьюстона, откуда открывается путь к заливу Гальвестон. Центр немного напоминает пригородный кампус колледжа, только направленный на подготовку астронавтов. В день моего посещения Уайт встречает меня в здании 15, многоэтажном лабиринте коридоров, офисов и лабораторий, в которых проводятся испытания двигателя. На Уайте рубашка поло с эмблемой Eagleworks (так он называет свои эксперименты по созданию двигателя), на которой вышит орел, парящий над футуристическим космическим кораблем.


Уайт начинал свою карьеру с работы инженером - проводил исследования в составе роботической группы. Со временем он взял на себя командование всем крылом, занимающимся роботами на МКС, одновременно заканчивая писать докторскую в области физики плазмы. Только в 2009-м он сменил свои интересы на изучение движения, и эта тема захватила его настолько, что стала основной причиной, по которой он отправился работать на NASA.

«Он довольно необычный человек, - говорит его босс Джон Эпплуайт, возглавляющий отделение двигательных систем. - Он совершенно точно большой фантазер, но одновременно и талантливый инженер. Он умеет превращать свои фантазии в реальный инженерный продукт». Примерно в то же время, когда он присоединился к NASA, Уайт попросил разрешения открыть собственную лабораторию, посвященную продвинутым двигательным системам. Он сам и придумал название Eagleworks и даже попросил NASA создать логотип для его специализации. Тогда и началась эта работа.

Уайт ведет меня к своему офису, который делит с коллегой, занимающимся поисками воды на Луне, а после ведет вниз к Eagleworks. На ходу он рассказывает мне про свою просьбу открыть лабораторию и называет это «долгим трудным процессом поиска продвинутого движения, чтобы помочь человеку исследовать космос».

Уайт демонстрирует мне объект и показывает его центральную функцию - нечто, что он называет «квантовый вакуумный плазменный двигатель» (QVPT). Это приспособление внешне похоже на огромный красный бархатный пончик с проводами, плотно оплетающими сердцевину. Это одна из двух инициатив Eagleworks (вторая - деформационный двигатель). Еще это секретная разработка. Когда я спрашиваю, что это, Уайт отвечает, что может сказать только, что эта технология даже круче, чем деформационный двигатель). Согласно отчету NASA за 2011 год, написанному Уайтом, аппарат использует квантовые флуктации в пустом пространстве в качестве источника топлива, а значит, космический корабль, приводимый в движение QVPT, не требует топлива.


Двигатель использует квантовые флуктации в пустом пространстве в качестве источника топлива,
а значит, космический корабль,
приводимый в движение QVPT, не требует топлива.

Когда девайс работает, система Уайта выглядит кинематографически идеально: цвет лазера красный, и два луча скрещены, как сабли. Внутри кольца находятся четыре керамических конденсатора, сделанных из титаната бария, который Уайт заряжает до 23 тысяч вольт. Уайт провел последние два с половиной года, разрабатывая эксперимент, и он говорит, что конденсаторы демонстрируют огромную потенциальную энергию. Однако, когда я спрашиваю, как создать отрицательную энергию, необходимую для деформированного пространства-времени, он уклоняется от ответа. Он объясняет, что подписал соглашение о неразглашении, и потому не может раскрывать подробности. Я спрашиваю, с кем он заключал эти соглашения. Он говорит: «С людьми. Они приходят и хотят поговорить. Больше подробностей я вам сообщить не могу».

ПРОТИВНИКИ ИДЕИ ДВИГАТЕЛЯ

Пока что теория деформированного путешествия довольно интуитивна - деформация времени и пространства, чтобы создать движущийся пузырь, - и в ней есть несколько значительных недостатков. Даже если Уайт значительно уменьшит количество отрицательной энергии, запрашиваемой Алькубьерре, ее все равно потребуется больше, чем способны произвести ученые, заявляет Лоуренс Форд, физик-теоретик в университете Тафтс, за последние 30 лет написавший множество статей на тему отрицательной энергии. Форд и другие физики заявляют, что есть фундаментальные физические ограничения, причем дело не столько в инженерных несовершенствах, сколько в том, что такое количество отрицательной энергии не может существовать в одном месте длительное время.

Другая сложность: для создания деформационного шара, который двигается быстрее света, ученым потребуется произвести отрицательную энергию вокруг космического корабля и в том числе над ним. Уайт не считает, что это проблема; он весьма туманно отвечает, что двигатель, скорее всего, будет работать благодаря некоему имеющемуся «аппарату, который создает необходимые условия». Однако создание этих условий перед кораблем будет означать обеспечение постоянной поставки отрицательной энергии, перемещаемой быстрей скорости света, что снова противоречит общей теории относительности.

Наконец, двигатель деформации пространства ставит концептуальный вопрос. В общей теории относительности путешествие на сверхсветовой скорости эквивалентно путешествию во времени. Если такой двигатель реален, Уайт создает машину времени.

Эти препятствия рождают некоторые серьезные сомнения. «Не думаю, что известная нам физика и ее законы позволяют допустить, что он чего-то добьется своими экспериментами», - говорит Кен Олум, физик из университета Тафтс, который также участвовал в дебатах насчет экзотического движения на собрании «100-летия звездного корабля». Ноа Грэхам, физик из колледжа Миддлбёри, читавший две работы Уайта по моей просьбе, написал мне e-mail: «Не вижу ценных научных доказательств, помимо отсылок к его предыдущим работам».

Алькубьерре, ныне физик в Национальном автономном университете Мексики, и сам высказывает сомнение. «Даже если я стою на космическом корабле и у меня есть в наличии отрицательная энергия, мне ни за что не поместить ее туда, куда требуется, - говорит он мне по телефону из своего дома в Мехико. - Нет, идея-то волшебная, мне нравится, я же ее сам и написал. Но в ней есть пара серьезных недостатков, которые я уже сейчас, с годами, вижу, и я не знаю ни единого способа их исправить».

БУДУЩЕЕ СВЕРХСКОРОСТЕЙ

Слева от главных ворот Джонсонского научного центра лежит на боку ракета «Сатурн-В», ее ступени разъединены для демонстрации внутреннего содержимого. Он гигантский - размер одного из множества двигателей равен размеру маленького автомобиля, а сама ракета на пару футов длиннее, чем футбольное поле. Это, конечно, вполне красноречивое свидетельство особенностей космического плавания. Кроме того, ей 40 лет, и время, которое она представляет - когда NASA было частью огромного национального плана по отправлению человека не Луну, - давно прошло. Сегодня JSC - это просто место, которое когда-то было великим, но с тех пор покинуло космический авангард.

Прорыв в движении может означать новую эру для JSC и NASA, и в какой-то степени часть этой эры начинается уже сейчас. Зонд Dawn («Рассвет»), запущенный в 2007-м, изучает кольцо астероидов при помощи ионных двигателей. В 2010-м японцы ввели в эксплуатацию «Икар», первый межпланетный звездный корабль, приводимый в движение солнечным парусом, еще один вид экспериментального движения. И в 2016-м ученые планируют испытать VASMIR, систему, работающую на плазме, сделанную специально для высокой двигательной тяги в ISS. Но когда эти системы, возможно, доставят астронавтов на Марс, они все еще не будут способны забросить их за пределы Солнечной системы. Чтобы добиться этого, по словам Уайта, NASA потребуется пойти на более рискованные проекты.


Деформационный двигатель - возможно, самое притянутое за уши из насовских усилий по созданию проектов движения. Научное сообщество заявляет, что Уайт не может создать его. Эксперты заявляют, что он работает против законов природы и физики. Несмотря на это, за проектом стоит NASA. «Его субсидируют не на том высоком государственном уровне, на котором должны были бы, - говорит Апплуайт. - Я думаю, что у дирекции есть какой-то особенный интерес в том, чтобы он продолжал свою работу; это одна из тех теоретических концепций, в случае успехов которых игра меняется полностью».

В январе Уайт собрал свой деформационный интерферометр и двинулся к следующей цели. Eagleworks перерос собственный дом. Новая лаборатория больше и, как он заявляет с энтузиазмом, «сейсмически изолирована», имея в виду, что он защищен от колебаний. Но, возможно, лучшее в новой лаборатории (и самое впечатляющее) - то, что NASA создало Уайту такие же условия, что были у Нила Армстронга и Базза Олдрина на Луне. Что ж, посмотрим.

Скорость больше скорости света в вакууме - это реальность. Теория относительности Эйнштейна запрещает лишь сверхсветовую передачу информации. Поэтому есть довольно много случаев, когда объекты могут двигаться быстрее света и ничего при этом не нарушать. Начнем с теней и солнечных зайчиков.

Если создать на далекой стене тень от пальца, на который светите фонариком, а потом пальцем пошевелите, то тень задвигается гораздо быстрее пальца. Если стена расположена очень далеко, то движение тени будет отставать от движения пальца, так как свет должен будет еще долететь от пальца до стены, но все равно скорость движения тени будет во столько же раз больше. То есть, скорость движения тени не ограничена скоростью света.

Кроме теней быстрее света могут двигаться и «солнечные зайчики». Например, пятнышко от лазерного луча, направленного на Луну. Расстояние до Луны 385 000 км. Если слегка поводить лазером сдвинув его едва лишь на 1 см, то он успеет пробежать Луну со скоростью примерно на треть больше световой.

Подобные вещи могут происходить и в природе. Например, световой луч от пульсара, нейтронной звезды, может прочесывать облако пыли. Яркая вспышка порождает расширяющееся оболочку из света или другого излучения. Когда она пересекает поверхность облака, то создается световое кольцо, увеличивающееся быстрее скорости света.

Все это примеры вещей, движущихся быстрее света, но которые не являлись физическими телами. При помощи тени или зайчика нельзя передать сверхсветовое сообщение, так что и общение быстрее света не получается.

А вот уже пример, который связан с физическими телами. Забегая вперед, скажем, что опять же сверхсветовых сообщений не получится.

В системе отсчёта, связанной с вращающимся телом, удалённые объекты могут двигаться со сверхсветовой скоростью. Например, Альфа Центавра в системе отсчёта, связанной с Землёй, движется со скоростью, более чем в 9600 раз превышающей скорость света, «проходя» расстояние около 26 световых лет в сутки. И точно такой же пример с Луной. Встаньте к ней лицом и повернитесь вокруг своей оси за пару секунд. За это время она повернулась вокруг вас на примерно на 2,4 миллиона километров, то есть в 4 раза быстрее скорости света. Ха-ха, скажете вы, так это ж не она вертелась, а я…А вспомните, что в теории относительности все системы отсчета независимы, включая и вращающиеся. Так что, с какой стороны еще посмотреть…

И что же делать? Ну на самом деле, никаких противоречий здесь нет, ведь опять же, это явление не может быть использовано для сверхсветовой передачи сообщений. Кроме того заметьте, в своей окрестности Луна не превышает скорости света. А именно на превышение локальной скорости света все запреты и накладываются в общей теории относительности.

В сентябре 2011 года физик Антонио Эредитато поверг мир в шок. Его заявление могло перевернуть наше понимание Вселенной. Если данные, собранные 160 учеными проекта OPERA, были правильными, наблюдалось невероятное. Частицы - в этом случае нейтрино - двигались быстрее света. Согласно теории относительности Эйнштейна, это невозможно. И последствия такого наблюдения были бы невероятными. Возможно, пришлось бы пересмотреть самые основы физики.

Хотя Эредитато говорил, что он и его команда были «крайне уверены» в своих результатах, они не говорили о том, что данные были совершенно точными. Напротив, они попросили других ученых помочь им разобраться в том, что происходит.

В конце концов, оказалось, что результаты OPERA были ошибочными. Из-за плохо подключенного кабеля возникла проблема синхронизации, и сигналы с GPS-спутников были неточными. Была неожиданная задержка в сигнале. Как следствие, измерения времени, которое потребовалось нейтрино на преодоление определенной дистанции, показали лишние 73 наносекунды: казалось, что нейтрино пролетели быстрее, чем свет.

Несмотря на месяцы тщательной проверки до начала эксперимента и перепроверку данных впоследствии, ученые серьезно ошиблись. Эредитато ушел в отставку, вопреки замечаниям многих о том, что подобные ошибки всегда происходили из-за чрезвычайной сложности устройства ускорителей частиц.

Почему предположение - одно только предположение - что нечто может двигаться быстрее света, вызвало такой шум? Насколько мы уверены, что ничто не может преодолеть этот барьер?


Давайте сначала разберем второй из этих вопросов. Скорость света в вакууме составляет 299 792,458 километра в секунду - для удобства, это число округляют до 300 000 километров в секунду. Это весьма быстро. Солнце находится в 150 миллионах километров от Земли, и свет от него доходит до Земли всего за восемь минут и двадцать секунд.

Может ли какое-нибудь из наших творений конкурировать в гонке со светом? Один из самых быстрых искусственных объектов среди когда-либо построенных, космический зонд «Новые горизонты», просвистел мимо Плутона и Харона в июле 2015 года. Он достиг скорости относительно Земли в 16 км/c. Намного меньше 300 000 км/с.

Тем не менее у нас были крошечные частицы, которые двигались весьма быстро. В начале 1960-х годов Уильям Бертоцци в Массачусетском технологическом институте экспериментировал с ускорением электронов до еще более высоких скоростей.

Поскольку электроны имеют отрицательный заряд, их можно разгонять - точнее, отталкивать - применяя тот же отрицательный заряд к материалу. Чем больше энергии прикладывается, тем быстрее разгоняются электроны.

Можно было бы подумать, что нужно просто увеличивать прилагаемую энергию, чтобы разогнаться до скорости в 300 000 км/с. Но оказывается, что электроны просто не могут двигаться так быстро. Эксперименты Бертоцци показали, что использование большей энергии не приводит к прямо пропорциональному увеличению скорости электронов.

Вместо этого нужно было прикладывать огромные количества дополнительной энергии, чтобы хоть немного изменить скорость движения электронов. Она приближалась к скорости света все ближе и ближе, но никогда ее не достигла.

Представьте себе движение к двери небольшими шажочками, каждый из которых преодолевает половину расстояния от вашей текущей позиции до двери. Строго говоря, вы никогда не доберетесь до двери, поскольку после каждого вашего шага у вас будет оставаться дистанция, которую нужно преодолеть. Примерно с такой проблемой Бертоцци столкнулся, разбираясь со своими электронами.

Но свет состоит из частиц под названием фотоны. Почему эти частицы могут двигаться на скорости света, а электроны - нет?

«По мере того как объекты движутся все быстрее и быстрее, они становятся все тяжелее - чем тяжелее они становятся, тем труднее им разогнаться, поэтому вы никогда на наберете скорость света», говорит Роджер Рассул, физик из Университета Мельбурна в Австралии. «У фотона нет массы. Если бы у него была масса, он не мог бы двигаться со скоростью света».

Фотоны особенные. У них не только отсутствует масса, что обеспечивает им полную свободу перемещений в космическом вакууме, им еще и разгоняться не нужно. Естественная энергия, которой они располагают, перемещается волнами, как и они, поэтому в момент их создания они уже обладают максимальной скоростью. В некотором смысле проще думать о свете как о энергии, а не как о потоке частиц, хотя, по правде говоря, свет является и тем и другим.

Тем не менее свет движется намного медленнее, чем мы могли бы ожидать. Хотя интернет-техники любят говорить о коммуникациях, которые работают «на скорости света» в оптоволокне, свет движется на 40% медленнее в стекле этого оптоволокна, чем в вакууме.

В реальности, фотоны движутся на скорости 300 000 км/с, но сталкиваются с определенной интерференцией, помехами, вызванными другими фотонами, которые испускаются атомами стекла, когда проходит главная световая волна. Понять это может быть нелегко, но мы хотя бы попытались.


Точно так же, в рамках специальных экспериментов с отдельными фотонами, удавалось замедлить их весьма внушительно. Но для большинства случаев будет справедливо число в 300 000. Мы не видели и не создавали ничего, что могло бы двигаться так же быстро, либо еще быстрее. Есть особые моменты, но прежде чем мы их коснемся, давайте затронем другой наш вопрос. Почему так важно, чтобы правило скорости света выполнялось строго?

Ответ связан с человеком по имени , как часто бывает в физике. Его специальная теория относительности исследует множество последствий его универсальных пределов скорости. Одним из важнейших элементов теории является идея того, что скорость света постоянна. Независимо от того, где вы и как быстро движетесь, свет всегда движется с одинаковой скоростью.

Но из этого вытекает несколько концептуальных проблем.

Представьте себе свет, который падает от фонарика на зеркало на потолке стационарного космического аппарата. Свет идет вверх, отражается от зеркала и падает на пол космического аппарата. Скажем, он преодолевает дистанцию в 10 метров.

Теперь представим, что этот космический аппарат начинает движение с колоссальной скоростью во многие тысячи километров в секунду. Когда вы включаете фонарик, свет ведет себя как прежде: светит вверх, попадает в зеркало и отражается в пол. Но чтобы это сделать, свету придется преодолеть диагональное расстояние, а не вертикальное. В конце концов, зеркало теперь быстро движется вместе с космическим аппаратом.

Соответственно, увеличивается дистанция, которую преодолевает свет. Скажем, на 5 метров. Выходит 15 метров в общем, а не 10.

И несмотря на это, хотя дистанция увеличилась, теории Эйнштейна утверждают, что свет по-прежнему будет двигаться с той же скоростью. Поскольку скорость — это расстояние, деленное на время, раз скорость осталась прежней, а расстояние увеличилось, время тоже должно увеличиться. Да, само время должно растянуться. И хотя это звучит странно, но это было подтверждено экспериментально.


Этот феномен называется замедлением времени. Время движется медленнее для людей, которые передвигаются в быстро движущемся транспорте, относительно тех, кто неподвижен.

К примеру, время идет на 0,007 секунды медленнее для астронавтов на Международной космической станции, которая движется со скоростью 7,66 км/с относительно Земли, если сравнивать с людьми на планете. Еще интереснее ситуация с частицами вроде вышеупомянутых электронов, которые могут двигаться близко к скорости света. В случае с этими частицами, степень замедления будет огромной.

Стивен Кольтхаммер, физик-экспериментатор из Оксфордского университета в Великобритании, указывает на пример с частицами под названием мюоны.

Мюоны нестабильны: они быстро распадаются на более простые частицы. Так быстро, что большинство мюонов, покидающих Солнце, должны распадаться к моменту достижения Земли. Но в реальности мюоны прибывают на Землю с Солнца в колоссальных объемах. Физики долгое время пытались понять почему.

«Ответом на эту загадку является то, что мюоны генерируются с такой энергией, что движутся на скорости близкой к световой, - говорит Кольтхаммер. - Их ощущение времени, так сказать, их внутренние часы идут медленно».

Мюоны «остаются в живых» дольше, чем ожидалось, относительно нас, благодаря настоящему, естественному искривлению времени. Когда объекты движутся быстро относительно других объектов, их длина также уменьшается, сжимается. Эти последствия, замедление времени и уменьшение длины, представляют собой примеры того, как изменяется пространство-время в зависимости от движения вещей - меня, тебя или космического аппарата - обладающих массой.


Что важно, как говорил Эйнштейн, на свет это не влияет, поскольку у него нет массы. Вот почему эти принципы идут рука об руку. Если бы предметы могли двигаться быстрее света, они бы подчинялись фундаментальным законам, которые описывают работу Вселенной. Это ключевые принципы. Теперь мы можем поговорить о нескольких исключениях и отступлениях.

С одной стороны, хотя мы не видели ничего, что двигалось бы быстрее света, это не означает, что этот предел скорости нельзя теоретически побить в весьма специфических условиях. К примеру, возьмем расширение самой Вселенной. Галактики во Вселенной удаляются друг от друга на скорости, значительно превышающей световую.

Другая интересная ситуация касается частиц, которые разделяют одни и те же свойства в одно и то же время, независимо от того, как далеко находятся друг от друга. Это так называемая «квантовая запутанность». Фотон будет вращаться вверх и вниз, случайно выбирая из двух возможных состояний, но выбор направления вращения будет точно отражаться на другом фотоне где-либо еще, если они запутаны.


Два ученых, каждый из которых изучает свой собственный фотон, получат один и тот же результат одновременно, быстрее, чем могла бы позволить скорость света.

Однако в обоих этих примерах важно отметить, что никакая информация не перемещается быстрее скорости света между двумя объектами. Мы можем вычислить расширение Вселенной, но не можем наблюдать объекты быстрее света в ней: они исчезли из поля зрения.

Что касается двух ученых с их фотонами, хотя они могли бы получить один результат одновременно, они не могли бы дать об этом знать друг другу быстрее, чем перемещается свет между ними.

«Это не создает нам никаких проблем, поскольку если вы способны посылать сигналы быстрее света, вы получаете причудливые парадоксы, в соответствии с которыми информация может каким-то образом вернуться назад во времени», говорит Кольтхаммер.

Есть и другой возможный способ сделать путешествия быстрее света технически возможными: разломы в пространстве-времени, которые позволят путешественнику избежать правил обычного путешествия.


Джеральд Кливер из Университета Бейлор в Техасе считает, что однажды мы сможем построить космический аппарат, путешествующий быстрее света. Который движется через червоточину. Червоточины - это петли в пространстве-времени, прекрасно вписывающиеся в теории Эйншейна. Они могли бы позволить астронавту перескочить из одного конца Вселенной в другой с помощью аномалии в пространстве-времени, некой формы космического короткого пути.

Объект, путешествующий через червоточину, не будет превышать скорость света, но теоретически может достичь пункта назначения быстрее, чем свет, который идет по «обычному» пути. Но червоточины могут быть вообще недоступными для космических путешествий. Может ли быть другой способ активно исказить пространство-время, чтобы двигаться быстрее 300 000 км/c относительно кого-нибудь еще?

Кливер также исследовал идею «двигателя Алькубьерре», в 1994 году. Он описывает ситуацию, в которой пространство-время сжимается перед космическим аппаратом, толкая его вперед, и расширяется позади него, также толкая его вперед. «Но потом, - говорит Кливер, - возникли проблемы: как это сделать и сколько понадобится энергии».

В 2008 году он и его аспирант Ричард Обоузи рассчитали, сколько понадобится энергии.

«Мы представили корабль 10 м х 10 м х 10 м - 1000 кубометров - и подсчитали, что количество энергии, необходимое для начала процесса, будет эквивалентно массе целого Юпитера».

После этого, энергия должна постоянно «подливаться», чтобы процесс не завершился. Никто не знает, станет ли это когда-нибудь возможно, либо на что будут похожи необходимые технологии. «Я не хочу, чтобы меня потом столетиями цитировали, будто я предсказывал что-то, чего никогда не будет, - говорит Кливер, - но пока я не вижу решений».

Итак, путешествия быстрее скорости света остаются фантастикой на текущий момент. Пока единственный способ - погрузиться в глубокий анабиоз. И все же не все так плохо. В большинстве случаев мы говорили о видимом свете. Но в реальности свет - это намного большее. От радиоволн и микроволн до видимого света, ультрафиолетового излучения, рентгеновских лучей и гамма-лучей, испускаемых атомами в процессе распада - все эти прекрасные лучи состоят из одного и того же: фотонов.

Разница в энергии, а значит - в длине волны. Все вместе, эти лучи составляют электромагнитный спектр. То, что радиоволны, к примеру, движутся со скоростью света, невероятно полезно для коммуникаций.


В своем исследовании Кольтхаммер создает схему, которая использует фотоны для передачи сигналов из одной части схемы в другую, так что вполне заслуживает права прокомментировать полезность невероятной скорости света.

«Сам факт того, что мы построили инфраструктуру Интернета, к примеру, а до него и радио, основанную на свете, имеет отношение к легкости, с которой мы можем его передавать», отмечает он. И добавляет, что свет выступает как коммуникационная сила Вселенной. Когда электроны в мобильном телефоне начинают дрожать, фотоны вылетают и приводят к тому, что электроны в другом мобильном телефоне тоже дрожат. Так рождается телефонный звонок. Дрожь электронов на Солнце также испускает фотоны - в огромных количествах - которые, конечно, образуют свет, дающий жизни на Земле тепло и, кхм, свет.

Свет — это универсальный язык Вселенной. Его скорость - 299 792,458 км/с - остается постоянной. Между тем, пространство и время податливы. Возможно, нам стоит задумываться не о том, как двигаться быстрее света, а как быстрее перемещаться по этому пространству и этому времени? Зреть в корень, так сказать?

Физики обнаружили, что частицы света (фотоны) могут жить около 1 триллиона лет, а после распада выделяют в свою очередь очень легкие частицы, которые могут двигаться быстрее света! С течением времени многие частицы подвержены естественному распаду. Например, неустойчивые радиоактивные атомы в определенный момент распадаются на мелкие частицы и выделяют всплеск энергии.

Буквально недавно ученые были уверены, что фотоны не распадаются, поскольку считалось, что они не имеют массы. Тем не менее, в настоящее время ученые предполагают, что фотоны обладают массой, просто она настолько мала, что не может быть измерена с помощью современных приборов.

Нынешний верхний предел массы фотона настолько мал, что составляет менее одной миллиардной, миллиардной, миллиардной доли массы протона. На основании этого показателя ученые подсчитали, что фотон в видимом спектре может жить около 1 триллиона лет. Однако этот чрезвычайно длительный срок жизни распространен не на все фотоны, он рассчитан в среднем. Существует вероятность того, что некоторые фотоны живут очень мало. Нашей Вселенной, появившейся в результате Большого Взрыва, в настоящее время около 13,7 миллиарда лет. И проводимые в настоящее время научные проекты предназначены не только для измерения послесвечения Большого Взрыва, но и для возможного обнаружения признаков раннего распада фотонов.

Если фотон сломать, в результате распада должны выделиться еще более легкие частицы, те, которые способны путешествовать в нашей Вселенной быстрее скорости света. Эти призрачные частицы (нейтрино) очень редко взаимодействуют с обычной материей. Бесчисленные потоки нейтрино мчатся каждую долю секунды не только сквозь космические просторы, звезды и тела, но и через каждого живущего на Земле человека, при этом не влияя на нашу материю.

При распаде каждый фотон выделяет два легких нейтрино, которые, будучи легче, чем свет, двигаются быстрее фотонов. Открытие нейтрино, казалось бы, нарушает закон теории относительности Эйнштейна о том, что ничто не может двигаться быстрее света, однако это не так, поскольку теория основана на том, что фотон не имеет массы тела. А в теории говорится, что никакая частица не может двигаться быстрее, чем безмассовая частица.

Кроме того, теория относительности Эйнштейна предполагает, что частицы движутся чрезвычайно быстро, находясь в искаженном временном пространстве. То есть, если бы они обладали сознанием, у них бы сложилось впечатление, что все происходящие вокруг них находится в режиме очень «замедленной съемки». Это означает, что в нашем временном пространстве фотоны должны жить около 1 триллиона лет, а в их временном потоке — всего лишь около трех лет.

Сергей Василенков

Мы частенько говорим о том, что скорость света максимальна в нашей Вселенной, и что нет ничего, что могло бы двигаться быстрее скорости света в вакууме. И уж тем более - мы. Приближаясь к околосветовой скорости, объект приобретает массу и энергию, которая либо его разрушает, либо противоречит общей теории относительности Эйнштейна. Допустим, мы поверим в это и будем искать обходные пути (вроде или будем разбираться ), чтобы лететь к ближайшей звезде не 75 000 лет, а пару недель. Но поскольку мало кто из нас обладает высшим физическим образованием, непонятно: почему на улицах говорят, что скорость света максимальна, постоянна и равна 300 000 км/с ?

Есть много простых и интуитивных объяснений, почему все так, но их можно начинать ненавидеть. Поиск в Интернете выведет вас на понятие «релятивистской массы» и на то, что она требует больше сил для ускорения объекта, который и так движется с высокой скоростью. Это привычный способ интерпретации математического аппарата специальной теории относительности, но он вводит многих в заблуждение, и особенно вас, наши дорогие читатели. Поскольку многие из вас (да и нас тоже) пробуют высокую физику на вкус, словно погружая один палец в ее соленую воду, прежде чем войти искупаться. В результате, становится куда более сложной и менее красивой, чем является на самом деле.

Давайте обсудим этот вопрос с точки зрения геометрической интерпретации, которая согласуется с общей теорией относительности. Она менее очевидна, но немногим сложнее, чем рисование стрелочек на бумаге, поэтому многие из вас с полуслова поймут теорию, которая скрывается за абстракциями вроде «силы» и откровенного вранья вроде «релятивистской массы».

Во-первых, давайте определим, что такое направление, чтобы четко обозначить свое место. «Вниз» - это направление. Оно определяется как направление, в котором падают вещи, когда вы их отпускаете. «Вверх» - это направление, противоположное направлению «вниз». Возьмите в руки компас и определите дополнительные направления: север, юг, запад и восток. Все эти направления определяются серьезными дядями как «ортонормированный (или ортогональный) базис», но об этом сейчас лучше не думать. Давайте предположим, что эти шесть направлений являются абсолютными, поскольку они будут существовать там, где мы будем разбирать наш сложный вопрос.

А теперь давайте добавим еще два направления: в будущее и в прошлое. Вы не можете с легкостью двигаться в этих направлениях по собственному желанию, но представить их для вас должно быть достаточно просто. Будущее - это направление, где наступает завтра; прошлое - направление, где находится вчера.

Эти восемь основных направлений - вверх, вниз, север, юг, запад, восток, прошлое и будущее - описывают фундаментальную геометрию Вселенной. Каждую пару этих направлений мы можем назвать «измерением», поэтому мы живем в четырехмерной Вселенной. Другой термин для определения этого четырехмерного понимания будет «пространство-время», но мы постараемся избежать использования этого термина. Просто запомните, что в нашем контексте «пространство-время» будет равнозначно понятию «Вселенная».

Пожалуйте на сцену. Давайте посмотрим на актеров.

Сидя сейчас перед компьютером, вы находитесь в движении. Вы его не чувствуете. Вам кажется, что вы в состоянии покоя. Но это только потому, что все вокруг относительно вас тоже движется. Нет, не подумайте, что мы говорим о том, что Земля кружится вокруг Солнца или Солнце движется по галактике и тянет нас за собой. Это, конечно, так, но мы сейчас не об этом. Под движением мы имеем в виду движение в направлении «будущее».

Представьте, что вы находитесь в вагоне поезда с закрытыми окнами. Вы не можете видеть улицу и, допустим, рельсы настолько безупречны, что вы не чувствуете, едет поезд или нет. Поэтому, просто сидя внутри поезда, вы не можете утверждать, едете вы или нет на самом деле. Выгляните на улицу - и поймете, что пейзаж проносится мимо. Но окна закрыты.

Есть только один способ узнать, двигаетесь вы или нет. Просто сидеть и ждать. Если поезд будет стоять на станции, ничего не произойдет. Но если поезд движется, рано или поздно вы приедете на новую станцию.

В этой метафоре вагон представляет собой все, что мы можем увидеть в окружающем нас мире - дом, кота Ваську, звезды на небе и т.п. «Следующая станция - Завтра».

Если вы будете сидеть неподвижно, а кот Васька безмятежно спать свои положенные в сутки часы, вы не почувствуете движения. Но завтра обязательно придет.

Вот что значит двигаться в направлении будущего. Только время покажет, что правда: движение или стоянка.

Пока вам должно было довольно просто все это представлять. Возможно, сложно думать о времени как о направлении и уж тем более о себе - как о проходящем сквозь время объекте. Но вы поймете. Теперь включите воображение.

Представьте, что когда вы едете в своем автомобиле, случается что-то страшное: отказывают тормоза. По странному совпадению в тот же момент заклинивает газ и коробку передач. Вы не можете ни ускориться, ни остановиться. Единственное, что у вас есть - рулевое колесо. Вы можете изменить направление движения, но не его скорость.

Конечно, первое, что вы сделаете, это попытаетесь въехать в мягкий куст и как-нибудь аккуратно остановить автомобиль. Но давайте пока не будем пользоваться таким приемом. Просто сосредоточимся на особенностях вашего неисправного автомобиля: вы можете изменить направление, но не скорость.

Вот так мы движемся сквозь Вселенную. У вас есть руль, но нет педали. Сидя и читая эту статью, вы катитесь в светлое будущее на максимальной скорости. И когда вы встаете, чтобы сделать себе чайку, вы изменяете направление движения в пространстве-времени, но не его скорость. Если вы будете очень быстро двигаться по пространству, время будет течь немного медленнее.

Это легко представить, нарисовав пару осей на бумаге. Ось, которая будет идти вверх и вниз - это ось времени, вверх - значит в будущее. Горизонтальная ось представляет пространство. Мы можем нарисовать только одно измерение пространства, поскольку лист бумаги двухмерен, но давайте просто представим, что это понятие относится ко всем трем измерениям пространства.

Нарисуйте стрелку с начала оси координат, где они сходятся, и направьте ее вверх вдоль вертикальной оси. Неважно, насколько длинной она будет, просто имейте в виду, что у нее будет только одна длина. Эта стрелка, которая сейчас направлена в будущее, представляет собой величину, которую физики называют «четыре-скоростью». Это скорость вашего передвижения по пространству-времени. Прямо сейчас вы находитесь в неподвижном состоянии, поэтому стрелка направлена только в будущее.

Если вы хотите двигаться сквозь пространство - направо по оси координат - вам нужно изменить вашу четыре-скорость и включить горизонтальный компонент. Получается, вам нужно повернуть стрелку. Но как только вы это сделаете, вы заметите, что стрелка уже не так уверенно указывает наверх, в будущее, как до этого. Теперь вы движетесь сквозь пространство, но вам пришлось пожертвовать движением в будущем, поскольку стрелка четыре-скорости может только вращаться, но никогда не растягиваться или сжиматься.

Отсюда начинается знаменитый эффект «замедления времени», о котором говорят все, хоть немного посвященные в специальную теорию относительности. Если вы движетесь в пространстве, вы не движетесь во времени так быстро, как могли бы, если бы сидели на месте. Ваши часы будут отсчитывать время медленнее, нежели часы человека, который не движется.

А теперь мы подходим к разрешению вопроса, почему фраза «быстрее света» не имеет смысла в нашей вселенной. Смотрите, что происходит, если вы хотите двигаться по пространству как можно быстрее. Вы поворачиваете стрелку четыре-скорости до упора, пока она не будет указывать вдоль горизонтальной оси. Мы помним, что стрелка не может растягиваться. Она может только вращаться. Итак, вы увеличили скорость в пространстве насколько это возможно. Но стало невозможным двигаться еще быстрее. Стрелку некуда повернуть, иначе она станет «прямее прямого» или «горизонтальнее горизонтального». Вот к этому понятию и приравнивайте «быстрее света». Это просто невозможно, как накормить тремя рыбками и семью хлебами огромный народ.

Вот почему в нашей вселенной ничто не может двигаться быстрее света. Потому что фраза «быстрее света» в нашей вселенной эквивалентна фразе «прямее прямого» или «горизонтальнее горизонтального».

Да, у вас осталось несколько вопросов. Почему векторы четыре-скорости могут лишь вращаться, но не растягиваться? На этот вопрос есть ответ, но он связан с инвариантностью скорости света, и мы оставим его на потом. И если вы просто поверите в это, то будете чуть менее информированы по этому вопросу, чем самые блестящие физики, когда-либо существовавшие на нашей планете.

Скептики могут усомниться, почему мы используем упрощенную модель геометрии пространства, говоря об эвклидовых вращениях и кругах. В реальном мире геометрия пространства-времени подчиняется геометрии Минковского, а повороты являются гиперболическими. Но простой вариант объяснения имеет право на жизнь.

Как и простое объяснение тому, .