Законы эйнштейна теория относительности. Общая теория относительности

Теория относительности Эйнштейна — всегда представлялась чем то абстрактным и непонятным для меня. Попробуем описать теорию относительности Эйнштейна простыми словами. Представьте, как вы находитесь на улице в сильный дождь и ветер дует вам на спину. Если вы начнете быстро бежать, капли дождя не будут попадать на спину. Капли будут медленнее или вовсе не достигать вашей спины, это научно доказанный факт, да и сами вы сможете проверить это в ливень. А теперь представим, если бы вы обернулись и побежали против ветра с дождем, капли будут сильнее попадать на одежду и лицо, чем если бы вы просто стояли.

Ранее ученые думали, что свет действует как дождь в ветреную погоду. Они думали, что если Земля двигается вокруг Солнца, а Солнце двигается вокруг галактики, то возможно измерить скорость их движения в пространстве. По их мнению, все что им остается сделать это измерить скорость света и то как она изменяется относительно двух тел.

Ученые это сделали и обнаружили что-то очень странное . Скорость света была такой же, несмотря ни на что, как бы тела не двигались и не важно в каком направлении проводить измерения.

Это было очень странно. Если брать ситуацию с ливнем, то при обычных обстоятельствах капли дождя будут воздействовать на вас сильнее или слабее в зависимости от ваших передвижений. Согласитесь, было бы очень странно, если бы ливень с одинаковой силой дул вам в спину, как при беге, так и при остановке.

Ученые обнаружили, что свет не имеет такие же свойства, как капли дождя или что-то другое во вселенной. Независимо от того, как быстро вы двигаетесь, и независимо от того, в каком направлении вы направляетесь, скорость света всегда будет одинаковой . Это очень запутанно и только Альберт Эйнштейн смог пролить свет на эту несправедливость.

Эйнштейн и еще один ученый, Хендрик Лоренц выяснили, что есть только один способ объяснить, как все это может быть. Это возможно только в том случае, если время замедляется.

Представьте, что произойдет, если время замедлится для вас, а вы при этом не знаете, что двигаетесь медленнее.Вам будет казаться, что все остальное происходит быстрее , всё вокруг вас будут двигаться, как в фильме в быстрой перемотке.

Итак, теперь давайте представим, что вы снова при ливне с ветром. Как такое возможно, что дождь будет воздействует на вас одинаково, даже если вы бежите? Выходит если бы вы пытались убежать от дождя, то ваше время бы замедлилось, а дождь — ускорился . Капли дождя попадали бы вам на спину с такой же скоростью. Ученые называют это расширение времени. Независимо от того, насколько быстро вы двигаетесь, ваше время замедляется, по крайней мере для скорости света это выражение справедливо.

Двоякость измерений

Другое, что Эйнштейн и Лоренц выяснили, это то, что два человека при разных обстоятельствах могут получить разные расчетные значения и самое странное, что они оба будут правы. Это еще один побочный эффект того, что свет всегда движется с одинаковой скоростью.

Проведем мысленный эксперимент

Представьте, что вы стоите в центре своей комнаты, и вы установили лампу прямо посередине комнаты. Теперь представьте, что скорость света очень медленна, и вы можете видеть, как он распространяется, представьте, что вы включили лампу.

Как только вы включите лампу, свет начнет расходится и освещать. Поскольку обе стены находятся на одном и том же расстоянии, свет достигнет обе стены одновременно.

Теперь представьте, что в вашей комнате есть большое окно, и ваш знакомый проезжает мимо. Он увидит уже другое. Для него это будет выглядеть так, как будто ваша комната движется вправо и когда вы включите лампу, он увидит, что левая стена движется к свету. а правая стена отодвигается от света. Он увидит, что свет сначала попал в левую стену, а потом на правую. Ему покажется, что свет не осветил обе стены одновременно.

Согласно теории относительности Эйнштейна, обе точки зрения будут правы . С вашей точки зрения, свет попадает в обе стены одновременно. С точки зрения вашего знакомого это не так. В этом нет ничего плохого.

Вот почему ученые говорят, что «одновременность относительна». Если вы измеряете две вещи, которые должны произойти одновременно, то тот, кто движется с другой скоростью или в другом направлении, не сможет их измерить одинаково с вами.

Нам это кажется очень странным, потому что скорость света для нас мгновенная, и мы двигаемся очень медленно по сравнению с ней. Поскольку скорость света настолько велика, мы не замечаем скорость распространения света, до тех пор пока не будем проводить специальные эксперименты.

Чем быстрее движется предмет, тем он короче и меньше

Еще один очень странный побочный эффект того, что скорость света не изменяется. При скорости света движущиеся вещи становятся короче.

Опять же, давайте представим, что скорость света очень медленная. Представьте, что вы едете в поезде, и вы установили лампу посередине вагона. Теперь представьте, что вы включили лампу, как в комнате.

Свет будет распространяться и одновременно достигнет стен спереди и сзади вагона. Таким образом вы можете даже измерить длину вагона, измерив, сколько времени потребовалось свету достигнуть обеих сторон.

Проведем расчеты:

Представим себе, что для прохождения 10 метров требуется 1 секунда и чтобы свет распространился от лампы до стены вагона потребуется 1 секунда. Это значит, что лампа находится на расстоянии 10 метров от обеих сторон вагона. Так как 10 + 10 = 20, то значит длина вагона 20 метров.

Теперь давайте представим, что ваш знакомый находится на улице, наблюдая, как поезд проходит мимо. Помните, что он видит вещи по другому. Задняя стена вагона движется к лампе, а передняя отодвигается от нее. Таким образом для него свет не будет касаться передней и задней части стены вагона одновременно. Сначала свет дойдет до задней части, а потом до передней.

Таким образом если вы и ваш знакомый измерите скорость распространения света от лампы до стен, вы получите разные значения, при этом с точки зрения науки оба расчета будут верны. Только для вас, согласно измерениям, длина вагона будет одного размера, а для знакомого длина вагона будет меньше .

Помните, все дело в том, каким образом и при каких условиях вы производите измерения. Если бы вы оказались внутри летящей ракеты, которая движется со скоростью света, вы бы не почувствовали ничего необычного, в отличие от измеряющих ваше движение людей на земле. Вы не смогли бы понять, что время для вас идет медленнее или что передняя и задняя часть корабля вдруг стали ближе друг к другу.

При этом, если бы вы летели на ракете, то вам казалось бы так, как будто все планеты и звезды пролетают мимо вас со скоростью света. В таком случае если вы попробуете измерить их время и размер, то по логике для них время должно замедлится, а размеры уменьшаться, правильно?

Все это было очень странно и непонятно, но Эйнштейн предложил решение и объединил все эти явления в одну теорию относительности .

Говорят, что прозрение пришло к Альберту Эйнштейну в одно мгновение. Ученый якобы ехал на трамвае по Берну (Швейцария), взглянул на уличные часы и внезапно осознал, что если бы трамвай сейчас разогнался до скорости света, то в его восприятии эти часы остановились бы — и времени бы вокруг не стало. Это и привело его к формулировке одного из центральных постулатов относительности — что различные наблюдатели по-разному воспринимают действительность, включая столь фундаментальные величины, как расстояние и время.

Говоря научным языком, в тот день Эйнштейн осознал, что описание любого физического события или явления зависит от системы отсчета , в которой находится наблюдатель. Если пассажирка трамвая, например, уронит очки, то для нее они упадут вертикально вниз, а для пешехода, стоящего на улице, очки будут падать по параболе, поскольку трамвай движется, в то время как очки падают. У каждого своя система отсчета.

Но хотя описания событий при переходе из одной системы отсчета в другую меняются, есть и универсальные вещи, остающиеся неизменными. Если вместо описания падения очков задаться вопросом о законе природы, вызывающем их падение, то ответ на него будет один и тот же и для наблюдателя в неподвижной системе координат, и для наблюдателя в движущейся системе координат. Закон распределенного движения в равной мере действует и на улице, и в трамвае. Иными словами, в то время как описание событий зависит от наблюдателя, законы природы от него не зависят, то есть, как принято говорить на научном языке, являются инвариантными. В этом и заключается принцип относительности .

Как любую гипотезу, принцип относительности нужно было проверить путем соотнесения его с реальными природными явлениями. Из принципа относительности Эйнштейн вывел две отдельные (хотя и родственные) теории. Специальная, или частная, теория относительности исходит из положения, что законы природы одни и те же для всех систем отсчета, движущихся с постоянной скоростью. Общая теория относительности распространяет этот принцип на любые системы отсчета, включая те, что движутся с ускорением. Специальная теория относительности была опубликована в 1905 году, а более сложная с точки зрения математического аппарата общая теория относительности была завершена Эйнштейном к 1916 году.

Специальная теория относительности

Большинство парадоксальных и противоречащих интуитивным представлениям о мире эффектов, возникающих при движении со скоростью, близкой к скорости света, предсказывается именно специальной теорией относительности. Самый известный из них — эффект замедления хода часов, или эффект замедления времени. Часы, движущиеся относительно наблюдателя, идут для него медленнее, чем точно такие же часы у него в руках.

Время в системе координат, движущейся со скоростями, близкими к скорости света, относительно наблюдателя растягивается, а пространственная протяженность (длина) объектов вдоль оси направления движения — напротив, сжимается. Этот эффект, известный как сокращение Лоренца—Фицджеральда , был описан в 1889 году ирландским физиком Джорджем Фицджеральдом (George Fitzgerald, 1851-1901) и дополнен в 1892 году нидерландцем Хендриком Лоренцем (Hendrick Lorentz, 1853-1928). Сокращение Лоренца—Фицджеральда объясняет, почему опыт Майкельсона—Морли по определению скорости движения Земли в космическом пространстве посредством замеров «эфирного ветра» дал отрицательный результат. Позже Эйнштейн включил эти уравнения в специальную теорию относительности и дополнил их аналогичной формулой преобразования для массы, согласно которой масса тела также увеличивается по мере приближения скорости тела к скорости света. Так, при скорости 260 000 км/с (87% от скорости света) масса объекта с точки зрения наблюдателя, находящегося в покоящейся системе отсчета, удвоится.

Со времени Эйнштейна все эти предсказания, сколь бы противоречащими здравому смыслу они ни казались, находят полное и прямое экспериментальное подтверждение. В одном из самых показательных опытов ученые Мичиганского университета поместили сверхточные атомные часы на борт авиалайнера, совершавшего регулярные трансатлантические рейсы, и после каждого его возвращения в аэропорт приписки сверяли их показания с контрольными часами. Выяснилось, что часы на самолете постепенно отставали от контрольных все больше и больше (если так можно выразиться, когда речь идет о долях секунды). Последние полвека ученые исследуют элементарные частицы на огромных аппаратных комплексах, которые называются ускорителями. В них пучки заряженных субатомных частиц (таких как протоны и электроны) разгоняются до скоростей, близких к скорости света, затем ими обстреливаются различные ядерные мишени. В таких опытах на ускорителях приходится учитывать увеличение массы разгоняемых частиц — иначе результаты эксперимента попросту не будут поддаваться разумной интерпретации. И в этом смысле специальная теория относительности давно перешла из разряда гипотетических теорий в область инструментов прикладной инженерии, где используется наравне с законами механики Ньютона.

Возвращаясь к законам Ньютона, я хотел бы особо отметить, что специальная теория относительности, хотя она внешне и противоречит законам классической ньютоновской механики, на самом деле практически в точности воспроизводит все обычные уравнения законов Ньютона, если ее применить для описания тел, движущихся со скоростью значительно меньше, чем скорость света. То есть, специальная теория относительности не отменяет ньютоновской физики, а расширяет и дополняет ее.

Принцип относительности помогает также понять, почему именно скорость света, а не какая-нибудь другая, играет столь важную роль в этой модели строения мира — этот вопрос задают многие из тех, кто впервые столкнулся с теорией относительности. Скорость света выделяется и играет особую роль универсальной константы, потому что она определена естественнонаучным законом. В силу принципа относительности скорость света в вакууме c одинакова в любой системе отсчета. Это, казалось бы, противоречит здравому смыслу, поскольку получается, что свет от движущегося источника (с какой бы скоростью он ни двигался) и от неподвижного доходит до наблюдателя одновременно. Однако это так.

Благодаря своей особой роли в законах природы скорость света занимает центральное место и в общей теории относительности.

Общая теория относительности

Общая теория относительности применяется уже ко всем системам отсчета (а не только к движущимися с постоянной скоростью друг относительно друга) и выглядит математически гораздо сложнее, чем специальная (чем и объясняется разрыв в одиннадцать лет между их публикацией). Она включает в себя как частный случай специальную теорию относительности (и, следовательно, законы Ньютона). При этом общая теория относительности идёт значительно дальше всех своих предшественниц. В частности, она дает новую интерпретацию гравитации.

Общая теория относительности делает мир четырехмерным: к трем пространственным измерениям добавляется время. Все четыре измерения неразрывны, поэтому речь идет уже не о пространственном расстоянии между двумя объектами, как это имеет место в трехмерном мире, а о пространственно-временных интервалах между событиями, которые объединяют их удаленность друг от друга — как по времени, так и в пространстве. То есть пространство и время рассматриваются как четырехмерный пространственно-временной континуум или, попросту, пространство-время . В этом континууме наблюдатели, движущиеся друг относительно друга, могут расходиться даже во мнении о том, произошли ли два события одновременно — или одно предшествовало другому. К счастью для нашего бедного разума, до нарушения причинно-следственных связей дело не доходит — то есть существования систем координат, в которых два события происходят не одновременно и в разной последовательности, даже общая теория относительности не допускает.


Закон всемирного тяготения Ньютона говорит нам, что между любыми двумя телами во Вселенной существует сила взаимного притяжения. С этой точки зрения Земля вращается вокруг Солнца, поскольку между ними действуют силы взаимного притяжения. Общая теория относительности, однако, заставляет нас взглянуть на это явление иначе. Согласно этой теории, гравитация — это следствие деформации («искривления») упругой ткани пространства-времени под воздействием массы (при этом чем тяжелее тело, например Солнце, тем сильнее пространство-время «прогибается» под ним и тем, соответственно, сильнее его гравитационное поле). Представьте себе туго натянутое полотно (своего рода батут), на которое помещен массивный шар. Полотно деформируется под тяжестью шара, и вокруг него образуется впадина в форме воронки. Согласно общей теории относительности, Земля обращается вокруг Солнца подобно маленькому шарику, пущенному кататься вокруг конуса воронки, образованной в результате «продавливания» пространства-времени тяжелым шаром — Солнцем. А то, что нам кажется силой тяжести, на самом деле является, по сути чисто внешнем проявлением искривления пространства-времени, а вовсе не силой в ньютоновском понимании. На сегодняшний день лучшего объяснения природы гравитации, чем дает нам общая теория относительности, не найдено.

Проверить общую теорию относительности трудно, поскольку в обычных лабораторных условиях ее результаты практически полностью совпадают с тем, что предсказывает закон всемирного тяготения Ньютона. Тем не менее несколько важных экспериментов были произведены, и их результаты позволяют считать теорию подтвержденной. Кроме того, общая теория относительности помогает объяснить явления, которые мы наблюдаем в космосе, — например, незначительные отклонения Меркурия от стационарной орбиты, необъяснимые с точки зрения классической механики Ньютона, или искривление электромагнитного излучения далеких звезд при его прохождении в непосредственной близости от Солнца.

На самом деле результаты, которые предсказывает общая теория относительности, заметно отличаются от результатов, предсказанных законами Ньютона, только при наличии сверхсильных гравитационных полей. Это значит, что для полноценной проверки общей теории относительности нужны либо сверхточные измерения очень массивных объектов, либо черные дыры, к которым никакие наши привычные интуитивные представления неприменимы. Так что разработка новых экспериментальных методов проверки теории относительности остается одной из важнейших задач экспериментальной физики.

ОТО и РТГ: некоторые акценты

1. В бесчисленных книгах – монографиях, учебниках и научно-популярных изданиях, а также в различного типа статьях – читатели привыкли видеть упоминания об общей теории относительности (ОТО) как об одном из величайших достижений нашего века, о замечательной теории, о непременном орудии современной физики и астрономии. Между тем из статьи А. А. Логунова они узнают, что, по его мнению, от ОТО нужно отказаться, что она плоха, непоследовательна и противоречива. Поэтому ОТО требует замены некоторой другой теорией и, конкретно, построенной А. А. Логуновым и его сотрудниками релятивистской теорией гравитации (РТГ).

Возможна ли такая ситуация, когда очень многие ошибаются в оценке ОТО, существующей и изучаемой уже более 70 лет, а лишь несколько человек во главе с А. А. Логуновым действительно выяснили, что ОТО нужно отбросить? Большинство читателей ожидают, вероятно, ответа: такое невозможно. На самом же деле я могу ответить только прямо противоположным образом: и «такое» в принципе возможно, ибо речь идет не о религии, а о науке.

Основатели и пророки различных религий и вероучений создавали и создают свои «священные книги», содержание которых объявляется истиной в последней инстанции. Если кто-то засомневался, тем хуже для него, он становится еретиком с вытекающими отсюда последствиями, нередко даже кровавыми. А лучше вообще не думать, а верить, следуя известной формуле одного из церковных деятелей: «Верую, ибо нелепо». Научное мировоззрение в корне противоположно: оно требует ничего не принимать на веру, позволяет сомневаться во всем, не признает догм. Под влиянием новых фактов и соображений не только можно, но и нужно, если это оправданно, изменять свою точку зрения, заменять несовершенную теорию более совершенной или, скажем, как-то обобщать старую теорию. Аналогична ситуация и в отношении личностей. Основатели вероучений считаются непогрешимыми, и, например, у католиков даже живой человек – «царствующий» папа римский – объявлен непогрешимым. Наука не знает непогрешимых. Большое, иногда даже исключительное, уважение, которое физики (буду для определенности говорить о физиках) испытывают к великим представителям их профессии, особенно к таким титанам, как Исаак Ньютон и Альберт Эйнштейн, не имеет ничего общего с канонизацией святых, с обожествлением. И великие физики – люди, а у всех людей есть свои слабости. Если же говорить о науке, которая нас здесь только и интересует, то и самые великие физики далеко не всегда и не во всем были правы, почтение к ним и признание их заслуг основано не на непогрешимости, а на том, что им удавалось обогатить науку замечательными достижениями, видеть дальше и глубже их современников.


2. Теперь необходимо остановиться на требованиях, предъявляемых к фундаментальным физическим теориям. Во-первых, такая теория должна быть полной в области ее применимости, или, как буду условно говорить для краткости, должна быть последовательной. Во-вторых, физическая теория должна быть адекватна физической реальности, или, проще говоря, согласовываться с опытами и наблюдениями. Можно было бы упомянуть и другие требования, в первую очередь соблюдение законов и правил математики, но всё это подразумевается.

Поясним сказанное на примере классической, нерелятивистской механики – механики Ньютона в применении к простейшей в принципе задаче о движении некоторой «точечной» частицы. Как известно, роль такой частицы в задачах небесной механики может играть целая планета или ее спутник. Пусть в момент t 0 частица находится в точке A с координатами x iA (t 0 ) и имеет скорость v iA (t 0 ) (здесь i = l, 2, 3, ибо положение точки в пространстве характеризуется тремя координатами, а скорость является вектором). Тогда, если известны все действующие на частицу силы, законы механики позволяют определить положение B и скорость частицы v i в любой последующий момент времени t , то есть найти вполне определенные величины x iB (t ) и v iB (t ). А что было бы, если бы используемые законы механики не давали однозначного ответа и, скажем, в нашем примере предсказывали, что частица в момент t может находиться либо в точке B , либо в совсем другой точке C ? Ясно, что такая классическая (неквантовая) теория была бы неполна, или, по упомянутой терминологии, непоследовательна. Ее либо нужно было бы дополнить, сделав однозначной, либо вообще отбросить. Механика Ньютона, как сказано, последовательна – на находящиеся в области ее компетенции и применимости вопросы она дает однозначные и вполне определенные ответы. Удовлетворяет механика Ньютона и второму упомянутому требованию – получаемые на ее основе результаты (и, конкретно, значения координат x i (t ) и скорости v i (t )) согласуются с наблюдениями и опытами. Именно поэтому вся небесная механика – описание движения планет и их спутников – до поры до времени целиком базировалась, и с полным успехом, на ньютоновской механике.

3. Но вот в 1859 году Леверье обнаружил, что движение самой близкой к Солнцу планеты – Меркурия несколько отличается от предсказываемого механикой Ньютона. Конкретно оказалось, что, перигелий – ближайшая к Солнцу точка эллиптической орбиты планеты – поворачивается с угловой скоростью на 43 угловых секунды в столетие , отличающейся от той, которую следовало бы ожидать при учете всех известных возмущений от других планет и их спутников. Еще ранее Леверье и Адамс столкнулись с аналогичной, по сути дела, ситуацией при анализе движения Урана – наиболее удаленной от Солнца планеты из всех известных в то время. И они нашли объяснение расхождению вычислений с наблюдениями, предположив, что на движение Урана оказывает влияние еще более удаленная планета, названная Нептуном. В 1846 году Нептун действительно был обнаружен на предсказанном месте, и это событие заслуженно считается триумфом ньютоновской механики. Довольно естественно, что Леверье попытался объяснить и упомянутую аномалию в движении Меркурия существованием еще неизвестной планеты – в данном случае некоей планеты Вулкан, движущейся еще ближе к Солнцу. Но во второй раз «фокус не удался» – никакого Вулкана не существует. Тогда начали пытаться изменять ньютоновский закон всемирного тяготения, согласно которому гравитационная сила в применении к системе Солнце – планета изменяется по закону

где ε – некоторая небольшая величина. Кстати сказать, аналогичный прием используется (правда, без успеха) и в наши дни для объяснения некоторых неясных вопросов астрономии (речь идет о проблеме скрытой массы; см. например, цитируемую ниже книгу автора «О физике и астрофизике», с. 148). Но чтобы гипотеза переросла в теорию, нужно исходить из каких-то принципов, указать значение параметра ε, построить последовательную теоретическую схему. Этого никому не удалось, и вопрос о повороте перигелия Меркурия оставался открытым вплоть до 1915 года. Именно тогда, в разгар первой мировой войны, когда лишь столь немногих интересовали абстрактные проблемы физики и астрономии, Эйнштейн завершил (после примерно 8 лет напряженных усилий) создание общей теории относительности. Освещен этот последний этап в построении фундамента ОТО был в трех коротких статьях, доложенных и написанных в ноябре 1915 года. Во второй из них, доложенной 11 ноября, Эйнштейн на основании ОТО вычислил дополнительный по сравнению с ньютоновским поворот перигелия Меркурия, который оказался равным (в радианах за один оборот планеты вокруг Солнца)

и c = 3·10 10 см · с –1 – скорость света. При переходе к последнему выражению (1) использован третий закон Кеплера

a 3 = GM T 2
4π 2

где T – период обращения планеты. Если в формулу (1) подставить лучшие известные сейчас значения всех величин, а также произвести элементарный пересчет от радианов за оборот к повороту в угловых секундах (знак ″) за столетие, то придем к значению Ψ = 42″.98 / столетие. Наблюдения сходятся с этим результатом с достигнутой сейчас точностью около ± 0″.1 / столетие (Эйнштейн в своей первой работе использовал менее точные данные, но в пределах ошибок получил полное согласие теории с наблюдениями). Формула (1) приведена выше, во-первых, чтобы стала ясна ее простота, столь часто отсутствующая в математически сложных физических теориях, в том числе во многих случаях и в ОТО. Во-вторых, и это главное, из (1) ясно, что поворот перигелия следует из ОТО без необходимости привлекать какие-либо новые неизвестные постоянные или параметры. Поэтому полученный Эйнштейном результат стал подлинным триумфом ОТО.

В лучшей из мне известных биографий Эйнштейна высказывается и обосновывается мнение, что объяснение поворота перигелия Меркурия явилось «самым сильным эмоциональным событием за всю научную жизнь Эйнштейна, а быть может, и за всю его жизнь». Да, это был «звездный час» Эйнштейна. Но именно для него самого. По ряду причин (достаточно упомянуть о войне) для самой ОТО для выхода на мировую арену как этой теории, так и ее создателя «звездным часом» стало другое событие, происшедшее 4 года спустя – в 1919 г. Дело в том, что в той же работе, в которой была получена формула (1), Эйнштейн сделал важное предсказание: лучи света, проходящие вблизи Солнца, обязаны искривляться, причем их отклонение должно составлять

α = 4GM = 1″.75 r ,
c 2 r r
(2)

где r – ближайшее расстояние между лучом и центром Солнца, а r ☼ = 6.96·10 10 см – радиус Солнца (точнее, радиус солнечной фотосферы); таким образом, максимальное отклонение, которое можно наблюдать, составляет 1.75 угловых секунды. Как ни мал такой угол (примерно под таким углом взрослый человек виден с расстояния в 200 км), он мог быть измерен уже в то время оптическим методом путем фотографирования звезд на небе в окрестности Солнца . Именно такие наблюдения были произведены двумя английскими экспедициями во время полного солнечного затмения 29 мая 1919 года. Эффект отклонения лучей в поле Солнца был при этом установлен со всей определенностью и находится в согласии с формулой (2), хотя точность измерений в связи с малостью эффекта была невелика. Однако отклонение вдвое меньшее, чем согласно (2), т. е. на 0″.87, было исключено. Последнее весьма важно, ибо отклонение на 0″.87 (при r = r ☼) можно получить уже из ньютоновской теории (сама возможность отклонения света в поле тяжести была отмечена еще Ньютоном, а выражение для угла отклонения, вдвое меньшее, чем согласно формуле (2), было получено в 1801 году; другое дело, что это предсказание было забыто и Эйнштейн о нём не знал). 6 ноября 1919 года результаты экспедиций были доложены в Лондоне на совместном заседании Королевского общества и Королевского астрономического общества. Какое они произвели впечатление, ясно из того, что сказал на этом заседании председательствовавший Дж. Дж. Томсон: «Это самый важный результат, полученный в связи с теорией гравитации со времен Ньютона… Он представляет собой одно из величайших достижений человеческой мысли».

Эффекты ОТО в Солнечной системе, как мы видели, весьма малы. Объясняется это тем, что гравитационное поле Солнца (не говоря уже о планетах) является слабым. Последнее означает, что ньютоновский гравитационный потенциал Солнца

Напомним теперь результат, известный из школьного курса физики: для круговых орбит планет |φ ☼ | = v 2 , где v – скорость планеты. Поэтому слабость гравитационного поля можно характеризовать более наглядным параметром v 2 /c 2 , который для Солнечной системы, как мы видели, не превосходит значения 2,12 ·10 – 6 . На земной орбите v = 3 ·10 6 см·с – 1 и v 2 /c 2 = 10 – 8 , для близких спутников Земли v ~ 8 ·10 5 см·с – 1 и v 2 /c 2 ~ 7 ·10 – 10 . Следовательно, проверка упомянутых эффектов ОТО даже с достигнутой сейчас точностью 0.1 %, то есть с погрешностью, не превосходящей 10 – 3 от измеряемой величины (скажем, отклонения световых лучей в поле Солнца), еще не позволяет всесторонне проверить ОТО с точностью до членов порядка

Об измерениях с нужной точностью, скажем, отклонения лучей в пределах Солнечной системы можно пока только мечтать. Впрочем, проекты соответствующих экспериментов уже обсуждаются. В связи со сказанным физики и говорят, что ОТО проверена в основном лишь для слабого гравитационного поля. Но мы (я, во всяком случае) как-то даже довольно долго не замечали одного важного обстоятельства. Именно после запуска 4 октября 1957 года первого спутника Земли космическая навигация начала быстро развиваться. Для посадки приборов на Марс и Венеру, при пролете вблизи Фобоса и т. п. нужны уже расчеты с точностями до метров (при расстояниях от Земли порядка ста миллиардов метров), когда эффекты ОТО вполне существенны. Поэтому расчеты сейчас ведутся уже на основе вычислительных схем, органически учитывающих ОТО. Вспоминаю, как несколько лет назад один докладчик – специалист по космической навигации – даже не понимал моих вопросов о точности проверки ОТО. Он отвечал: мы же учитываем ОТО в наших инженерных расчетах, иначе и работать нельзя, все получается правильно, чего же еще желать? Желать, конечно, можно многого, но забывать, что ОТО уже не абстрактная теория, а используется при «инженерных расчетах», тоже не следует.

4. В свете всего изложенного критика ОТО А. А. Логуновым представляется особенно удивительной. Но в согласии со сказанным в начале настоящей статьи отметать эту критику без анализа нельзя. Еще в большей степени нельзя без детального анализа высказать суждение о предлагаемой А. А. Логуновым РТГ – релятивистской теории гравитации.

К сожалению, на страницах научно-популярных изданий проводить такой анализ совершенно невозможно. В своей статье А. А. Логунов, по сути дела, лишь декларирует и комментирует свою позицию. Никак иначе не могу поступить здесь и я.

Так вот, мы считаем, что ОТО является последовательной физической теорией – на все правильно и четко поставленные вопросы, допустимые в области ее применимости, ОТО дает однозначный ответ (последнее относится, в частности, к времени запаздывания сигналов при локации планет). Не страдает ОТО и какими-либо дефектами математического или логического характера . Нужно, правда, пояснить, что выше имеется в виду при употреблении местоимения «мы». «Мы» – это, конечно, и я сам, но также и все те советские и иностранные физики, с которыми мне приходилось обсуждать ОТО, а в ряде случаев и ее критику А. А. Логуновым. Великий Галилей еще четыре столетия тому назад говорил: в вопросах науки мнение одного бывает дороже мнения тысячи. Другими словами, большинством голосов научные споры не решаются. Но, с другой стороны, совершенно очевидно, что мнение многих физиков, вообще говоря, значительно убедительнее, или, лучше сказать, надежнее и весомее, мнения одного физика. Поэтому переход от «я» к «мы» имеет здесь важное значение.

Полезно и уместно будет, надеюсь, сделать еще несколько замечаний.

Почему А. А. Логунову так не нравится ОТО? Главная причина состоит в том, что в ОТО, вообще говоря, нет понятия об энергии и импульсе в привычной нам из электродинамики форме и, говоря его словами, имеет место отказ «от представления гравитационного поля как классического поля типа Фарадея-Максвелла, обладающего хорошо определенной плотностью энергии-импульса». Да, последнее в некотором смысле верно, но объясняется тем, что «в римановой геометрии в общем случае нет нужной симметрии относительно сдвигов и поворотов, то есть нет… группы движения пространства-времени». Геометрия же пространства-времени согласно ОТО – это риманова геометрия. Именно поэтому, в частности, лучи света отклоняются от прямой линии, проходя вблизи Солнца.

Одним из крупнейших достижений математики прошлого века стало создание и развитие Лобачевским, Бойяи, Гауссом, Риманом и их последователями неевклидовой геометрии. Тогда же возник вопрос: какова на самом деле геометрия физического пространства-времени, в которой мы живем? Как сказано, согласно ОТО эта геометрия неевклидова, риманова, а не псевдоевклидова геометрия Минковского (об этой геометрии подробнее рассказано в статье А. А. Логунова). Эта геометрия Минковского явилась, можно сказать, порождением специальной теории относительности (СТО) и пришла на смену абсолютному времени и абсолютному пространству Ньютона. Последнее непосредственно до создания СТО в 1905 году пытались отождествить с неподвижным эфиром Лоренца. Но от лоренцова эфира, как от абсолютно неподвижной механической среды, потому-то и отказались, что все попытки заметить присутствие этой среды не увенчались успехом (я имею в виду опыт Майкельсона и некоторые другие эксперименты). Гипотеза о том, что физическое пространство-время обязательно в точности пространство Минковского, которую принимает А. А. Логунов в качестве основополагающей, является очень далеко идущей. Она в некотором смысле аналогична гипотезам об абсолютном пространстве и о механическом эфире и, как нам представляется, остается и останется совершенно не обоснованной до тех пор, пока в ее пользу не будут указаны какие-либо аргументы, основанные на наблюдениях и опытах. А такие аргументы, по крайней мере в настоящее время, полностью отсутствуют. Ссылки же на аналогию с электродинамикой и идеалы замечательных физиков прошлого века Фарадея и Максвелла никакой убедительностью в этом отношении не обладают.

5. Если говорить о различии между электромагнитным полем и, следовательно, электродинамикой и гравитационным полем (ОТО представляет собой как раз теорию такого поля), то необходимо отметить следующее. Выбором системы отсчета уничтожить (обратить в нуль) даже локально (в малой области) все электромагнитное поле невозможно. Поэтому если плотность энергии электромагнитного поля

W = E 2 + H 2

(E и H – напряженности соответственно электрического и магнитного полей) отлична от нуля в какой-нибудь системе отсчета, то она будет отлична от нуля и в любой другой системе отсчета. Гравитационное же поле, грубо говоря, значительно сильнее зависит от выбора системы отсчета. Так, однородное и постоянное гравитационное поле (то есть поле тяжести, вызывающее ускорение g помещенных в него частиц, не зависящее от координат и времени) можно полностью «уничтожить» (обратить в нуль) переходом к равномерно-ускоренной системе отсчета. Это обстоятельство, составляющее основное физическое содержание «принципа эквивалентности», было впервые отмечено Эйнштейном в статье, опубликованной в 1907 году и явившейся первой на пути создания ОТО .

Если гравитационное поле отсутствует (в частности, вызываемое им ускорение g равно нулю), то равна нулю и плотность отвечающей ему энергии. Отсюда ясно, что в вопросе о плотности энергии (и импульса) теория гравитационного поля должна радикально отличаться от теории электромагнитного поля. Такое утверждение не изменяется в связи с тем фактом, что в общем случае гравитационное поле не может быть «уничтожено» выбором системы отсчета.

Эйнштейн понимал это еще до 1915 года, когда завершил создание ОТО. Так, в 1911 году он писал: «Конечно, нельзя любое поле тяжести заменить состоянием движения системы без гравитационного поля, точно так же как нельзя преобразовать все точки произвольно движущейся среды к покою посредством релятивистского преобразования». А вот выдержка из статьи 1914 года: «Предварительно сделаем еще одно замечание для устранения напрашивающегося недоразумения. Сторонник обычной современной теории относительности (речь идет о СТО – В. Л. Г.) с известным правом называет «кажущейся» скорость материальной точки. Именно, он может выбрать систему отсчета так, что материальная точка имеет в рассматриваемый момент скорость, равную нулю. Если же существует система материальных точек, которые обладают разными скоростями, то он уже не может ввести такую систему отсчета, чтобы скорости всех материальных точек относительно этой системы обращались в нуль. Аналогичным образом физик, стоящий на нашей точке зрения, может называть «кажущимся» гравитационное поле, поскольку соответствующим выбором ускорения системы отсчета он может достичь того, чтобы в определенной точке пространства-времени гравитационное поле обращалось в нуль. Однако примечательно, что обращение в нуль гравитационного поля посредством преобразования в общем случае не может быть достигнуто для протяженных гравитационных полей. Например, гравитационное поле Земли нельзя сделать равным нулю посредством выбора подходящей системы отсчета». Наконец, уже в 1916 г., отвечая на критику ОТО, Эйнштейн еще раз подчеркивал то же самое: «Никоим образом нельзя также утверждать, что поле тяжести в какой-либо мере объясняется чисто кинематически: "кинематическое, нединамическое понимание гравитации" невозможно. Мы не можем получить любое гравитационное поле посредством простого ускорения одной галилеевой системы координат относительно другой, поскольку таким путем возможно получить поля только определенной структуры, которые, однако, должны подчиняться тем же законам, что и все другие гравитационные поля. Это еще одна формулировка принципа эквивалентности (специально для применения этого принципа к гравитации)».

Невозможность «кинематического понимания» гравитации в сочетании с принципом эквивалентности и обусловливают переход в ОТО от псевдоевклидовой геометрии Минковского к римановой геометрии (в этой геометрии пространство-время обладает, вообще говоря, отличной от нуля кривизной; наличие такой кривизны и отличает «истинное» гравитационное поле от «кинематического»). Физические особенности гравитационного поля обусловливают, повторим это, и радикальное изменение роли энергии и импульса в ОТО по сравнению с электродинамикой. При этом как использование римановой геометрии, так и невозможность применять привычные из электродинамики энергетические представления не препятствуют, как уже подчеркивалось выше, тому, что из ОТО следуют и могут быть вычислены вполне однозначные значений для всех наблюдаемых величин (угла отклонения световых лучей, изменения элементов орбит у планет и двойных пульсаров и т. д. и т. п.).

Нелишним будет, наверное, отметить и то обстоятельство, что ОТО можно сформулировать и в привычном из электродинамики виде с использованием понятия о плотности энергии-импульса (об этом см. цитированную статью Я. Б. Зельдовича и Л. П. Грищука . Однако вводимое при этом пространство Минковского является чисто фиктивным (ненаблюдаемым), и речь идет лишь о той же ОТО, записанной в нестандартной форме. Между тем, повторим это, А. А. Логунов считает используемое им в релятивистской теории гравитации (РТГ) пространство Минковского реальным физическим, а значит, наблюдаемым пространством.

6. В этом плане особенно важен второй из вопросов, фигурирующих в заголовке настоящей статьи: отвечает ли ОТО физической реальности? Другими словами, что говорит опыт – верховный судья при решении судьбы любой физической теории? Этой проблеме – экспериментальной проверке ОТО посвящены многочисленные статьи и книги . Вывод при этом вполне определенен – все имеющиеся данные экспериментов или наблюдений либо подтверждают ОТО, либо не противоречат ей. Однако, как мы уже указывали, проверка ОТО производилась и происходит в основном лишь в слабом гравитационном поле. Кроме того, любой эксперимент имеет ограниченную точность. В сильных гравитационных полях (грубо говоря, в случае, когда отношение |φ| / c 2 не мало; см. выше) ОТО еще в достаточно полной мере не проверена. Для этой цели можно сейчас практически использовать лишь астрономические методы, касающиеся очень далекого космоса: изучения нейтронных звезд, двойных пульсаров, «черных дыр», расширения и строения Вселенной, как говорят, «в большом» – на огромных просторах, измеряемых миллионами и миллиардами световых лет. Многое в этом направлении уже сделано и делается. Достаточно упомянуть об исследованиях двойного пульсара PSR 1913+16, для которого (как и вообще для нейтронных звезд) параметр |φ| / c 2 уже порядка 0,1. Кроме того, в этом случае удалось выявить эффект порядка (v / c ) 5 , связанный с излучением гравитационных волн. В грядущих десятилетиях открывается еще больше возможностей для исследования процессов в сильных гравитационных полях.

Путеводной звездой в этих захватывающих дух исследованиях является в первую очередь ОТО. Вместе с тем, естественно, обсуждаются и некоторые другие возможности – иные, как иногда говорят, альтернативные, теории гравитации. Например, в ОТО, как и в теории всемирного тяготения Ньютона, гравитационная постоянная G действительно считается постоянной величиной. Одной из самых известных теорий гравитации, обобщающих (или, точнее, расширяющих) ОТО, является теория, в которой гравитационная «постоянная» считается уже новой скалярной функцией – величиной, зависящей от координат и времени. Наблюдения и измерения свидетельствуют, однако, о том, что возможные относительные изменения G со временем очень малы – составляют, по-видимому, не более стамиллиардной в год, то есть |dG / dt | / G < 10 – 11 год – 1 . Но когда-то в прошлом изменения G могли бы играть роль. Отметим, что даже независимо от вопроса о непостоянстве G предположение о существовании в реальном пространстве-времени, помимо гравитационного поля g ik , также некоторого скалярного поля ψ является магистральным направлением в современной физике и космологии. В других альтернативных теориях гравитации (о них см. упомянутую выше в примечании 8 книгу К. Уилла) ОТО изменяется или обобщается иным образом. Против соответствующего анализа, конечно, нельзя возражать, ибо ОТО не догма, а физическая теория. Более того, мы знаем, что ОТО, являющаяся неквантовой теорией, заведомо нуждается в обобщении на квантовую область, которая еще недоступна известным гравитационным экспериментам. Естественно, обо всем этом здесь подробнее не расскажешь.

7. А. А. Логунов, отправляясь от критики ОТО, уже более 10 лет строит некоторую альтернативную – отличную от ОТО теорию гравитации. При этом многое изменялось в ходе работы, а принятый сейчас вариант теории (это и есть РТГ) особенно подробно изложен в статье, занимающей около 150 страниц и содержащей около 700 только пронумерованных формул. Очевидно, что детальный разбор РТГ возможен лишь на страницах научных журналов. Только после такого разбора можно будет сказать, последовательна ли РТГ, не содержит ли она математических противоречий и т. д. Насколько я мог понять, РТГ отличается от ОТО отбором лишь части решений ОТО – все решения дифференциальных уравнений РТГ удовлетворяют уравнениям ОТО, но, как утверждают авторы РТГ, не наоборот. При этом делается заключение о том, что в отношении глобальных вопросов (решений для всего пространства-времени или его больших областей, топологии и т. п.) отличия между РТГ и ОТО, вообще говоря, радикальны. Что же касается всех экспериментов и наблюдений, произведенных в пределах Солнечной системы, то, насколько я понимаю, РТГ не может вступить в противоречие с ОТО. Если это так , то предпочесть РТГ (по сравнению с ОТО) на основе известных опытов в Солнечной системе невозможно. Что же касается «черных дыр» и Вселенной, то авторы РТГ утверждают, что их выводы существенно отличны от выводов ОТО, но какие-либо конкретные данные наблюдений, свидетельствующие в пользу РТГ, нам неизвестны. В такой ситуации РТГ А. А. Логунова (если РТГ действительно отличается от ОТО по существу, а не только способом изложения и выбором одного из возможных классов координатных условий; см. статью Я. Б. Зельдовича и Л. П. Грищука) может рассматриваться лишь как одна из допустимых, в принципе, альтернативных теорий гравитации.

Некоторых читателей могут насторожить оговорки типа: «если это так», «если РТГ действительно отличается от ОТО». Не стремлюсь ли я таким образом застраховаться от ошибок? Нет, я не боюсь ошибиться уже в силу убеждения в том, что существует лишь одна гарантия безошибочности – вообще не работать, а в данном случае не обсуждать научные вопросы. Другое дело, что уважение к науке, знакомство с ее характером и историей побуждают к осторожности. Категоричность же высказываний далеко не всегда свидетельствует о наличии подлинной ясности и, в общем, не способствует установлению истины. РТГ А. А. Логунова в ее современной форме сформулирована совсем недавно и подробно еще не обсуждена в научной литературе. Поэтому, естественно, и я не имею о ней окончательного мнения. К тому же в научно-популярном журнале ряд возникающих вопросов обсуждать невозможно, да и неуместно. Вместе с тем, конечно, в связи с большим интересом читателей к теории гравитации освещение на доступном уровне этого круга вопросов, в том числе и дискуссионных, на страницах «Науки и жизни» представляется оправданным.

Итак, руководствуясь мудрым «принципом наибольшего благоприятствования», в настоящее время следует считать РТГ альтернативной теорией гравитации, нуждающейся в соответствующем анализе и обсуждении. Тем, кому эта теория (РТГ) нравится, кого она интересует, никто не мешает (и, конечно, не должен мешать) ее развивать, предлагать возможные пути экспериментальной проверки.

Вместе с тем говорить о том, что ОТО в настоящее время в чем-то поколеблена, нет никаких оснований. Более того, область применимости ОТО представляется весьма широкой, а ее точность очень высокой. Такова, по нашему мнению, объективная оценка существующего положения вещей. Если же говорить о вкусах и интуитивном отношении, а вкусы и интуиция в науке играют немалую роль, хотя и не могут выдвигаться в качестве доказательств, то здесь придется перейти от «мы» к «я». Так вот, чем больше приходилось и приходится сталкиваться с общей теорией относительности и ее критикой, тем больше у меня крепнет впечатление об ее исключительной глубине и красоте.

Действительно, как указано в выходных данных, тираж журнала «Наука и жизнь» № 4, 1987 г. был равен 3 млн. 475 тыс. экземпляров. В последние годы тираж составлял всего несколько десятков тысяч экземпляров, превысив 40 тыс. лишь в 2002 г. (прим. – А. М. Крайнев) .

Кстати сказать, в 1987 году исполняется 300 лет со дня первой публикации великой книги Ньютона «Математические начала натуральной философии». Ознакомление с историей создания этого труда, не говоря уже о нем самом, очень поучительно. Впрочем, то же относится ко всей деятельности Ньютона, с которой неспециалистам у нас не так-то легко познакомиться. Могу порекомендовать для этой цели очень хорошую книгу С. И. Вавилова «Исаак Ньютон», ее следует переиздать. Позволю себе упомянуть и о написанной по поводу ньютоновского юбилея моей статье, опубликованной в журнале «Успехи физических наук», т. 151, № 1, 1987 г., с. 119.

Приводится величина поворота по современным измерениям (у Леверье фигурировал поворот на 38 секунд). Напомним для наглядности, что Солнце и Луна видны с Земли под углом около 0.5 углового градуса – 1800 угловых секунд.

A. Pals «Subtle is the Lord…» The Science and Life of Albert Einstein. Oxford Univ. Press, 1982. Целесообразно было бы издать русский перевод этой книги.

Последнее возможно во время полных солнечных затмений; фотографируя ту же часть неба, скажем, через полгода, когда Солнце переместилось на небесной сфере, получаем для сравнения картину, не искаженную в результате отклонения лучей под влиянием гравитационного поля Солнца.

За подробностями я должен отослать к статье Я. Б. Зельдовича и Л. П. Грищука, недавно опубликованной в «Успехах физических наук» (т. 149, с. 695, 1986 г.), а также к цитированной там литературе, в частности к статье Л. Д. Фаддеева («Успехи физических наук», т. 136, с. 435, 1982 г.).

См. сноску 5.

См. К. Уилл. «Теория и эксперимент в гравитационной физике». М., Энергоиэдат, 1985; см. также В. Л. Гинзбург. О физике и астрофизике. М., Наука, 1985, и указанную там литературу.

А. А. Логунов и М. А. Мествиришвили. «Основы релятивистской теории гравитации». Журнал «Физика элементарных частиц и атомного ядра», т. 17, выпуск 1, 1986 г.

В работах А. А. Логунова имеются иные утверждения и конкретно считается, что для времени запаздывания сигнала при локации, скажем, Меркурия с Земли, из РТГ получается значение, отличное от следующего из ОТО. Точнее, утверждается, что ОТО вообще не дает однозначного предсказания времени запаздывания сигналов, то есть ОТО непоследовательна (см. выше). Однако такой вывод является, как нам представляется, плодом недоразумения (это указано, например, в цитированной статье Я. Б. Зельдовича и Л. П. Грищука, см. сноску 5): разные результаты в ОТО при использовании разных систем координат получаются лишь потому, что сравниваются лоцируемые планеты, находящиеся на различных орбитах, а потому и обладающие разными периодами обращения вокруг Солнца. Наблюдаемые с Земли времена запаздывания сигналов при локации определенной планеты, согласно ОТО и РТГ, совпадают.

См. сноску 5.

Подробности для любознательных

Отклонение света и радиоволн в гравитационном поле Солнца. Обычно в качестве идеализированной модели Солнца берут статический сферически-симметричный шар радиуса R ☼ ~ 6.96·10 10 см, масса Солнца М ☼ ~ 1.99·10 30 кг (в 332958 раз больше массы Земли). Отклонение света максимально для лучей, которые едва касаются Солнца, то есть при R ~ R ☼ , и равно: φ ≈ 1″.75 (угловых секунд). Этот угол весьма мал – примерно под таким углом виден взрослый человек с расстояния в 200 км, и поэтому точность измерения гравитационного искривления лучей до недавнего времени была невысокой. Последние оптические измерения, выполненные во время солнечного затмения 30 июня 1973 года, имели погрешность приблизительно 10 %. Сегодня благодаря появлению радиоинтерферометров «со сверхдлинной базой» (больше 1000 км) точность измерения углов резко повысилась. Радиоинтерферометры позволяют надежно измерять угловые расстояния и изменения углов величиной порядка 10 – 4 угловой секунды (~ 1 нанорадиана).

На рисунке показано отклонение только одного из лучей, приходящих от далекого источника. В действительности искривлены оба луча.

ГРАВИТАЦИОННЫЙ ПОТЕНЦИАЛ

В 1687 году появился фундаментальный труд Ньютона «Математические начала натуральной философии» (см. «Наука и жизнь» № 1, 1987 г.), в котором был сформулирован закон всемирного тяготения. Этот закон гласит, что сила притяжения между двумя любыми материальными частицами прямо пропорциональна их массам M и m и обратно пропорциональна квадрату расстояния r между ними:

F = G Mm .
r 2

Коэффициент пропорциональности G стал называться гравитационной постоянной, он необходим для согласования размерностей в правой и левой частях ньютоновой формулы. Еще сам Ньютон с весьма высокой для своего времени точностью показал, что G – величина постоянная и, следовательно, открытый им закон тяготения универсален.

Две притягивающиеся точечные массы M и m фигурируют в формуле Ньютона равноправно. Другими словами, можно считать, что они обе служат источниками гравитационного поля. Однако в конкретных задачах, в частности в небесной механике, одна из двух масс часто бывает очень мала по сравнению с другой. Например, масса Земли M З ≈ 6 ·10 24 кг намного меньше массы Солнца M ☼ ≈ 2 ·10 30 кг или, скажем, масса спутника m ≈ 10 3 кг не идет ни в какое сравнение с земной массой и поэтому практически никак не влияет на движение Земли. Такую массу, которая сама не возмущает гравитационного поля, а служит как бы зондом, на который это поле действует, называют пробной. (Точно так же в электродинамике существует понятие «пробного заряда», то есть такого, который помогает обнаружить электромагнитное поле.) Поскольку пробная масса (или пробный заряд) вносит в поле пренебрежимо малый вклад, для такой массы поле становится «внешним» и его можно характеризовать величиной, называемой напряженностью. По существу, ускорение свободного падения g – это напряженность поля земного тяготения. Второй закон ньютоновой механики дает тогда уравнения движения точечной пробной массы m . Например, именно так решаются задачи баллистики и небесной механики. Заметим, что для большинства таких задач теория тяготения Ньютона и сегодня обладает вполне достаточной точностью.

Напряженность, как и сила, – величина векторная, то есть в трехмерном пространстве она определяется тремя числами – компонентами вдоль взаимно перпендикулярных декартовых осей х , у , z . При смене системы координат – а такие операции нередки в физических и астрономических задачах – декартовы координаты вектора преобразуются некоторым хоть и не сложным, но зачастую громоздким образом. Поэтому вместо векторной напряженности поля удобно было бы использовать соответствующую ей скалярную величину, из которой силовая характеристика поля – напряженность – получалась бы с помощью какого-нибудь простого рецепта. И такая скалярная величина существует – она называется потенциалом, а переход к напряженности осуществляется простым дифференцированием. Отсюда следует, что ньютоновский гравитационный потенциал, создаваемый массой M , равен

откуда и следует равенство |φ| = v 2 .

В математике теория тяготения Ньютона иногда называется «теорией потенциала». В свое время теория ньютонова потенциала послужила образцом для теории электричества, а затем представления о физическом поле, сформировавшиеся в электродинамике Максвелла, в свою очередь, стимулировали появление общей теории относительности Эйнштейна. Переход от релятивистской теории тяготения Эйнштейна к частному случаю ньютоновой теории гравитации как раз и соответствует области малых значений безразмерного параметра |φ| / c 2 .

Новый ум короля [О компьютерах, мышлении и законах физики] Пенроуз Роджер

Общая теория относительности Эйнштейна

Напомним великую истину, открытую Галилеем: все тела под действием силы тяжести падают одинаково быстро. (Это было блестящей догадкой, едва ли подсказанной эмпирическими данными, поскольку из-за сопротивления воздуха перья и камни все же падают не одновременно ! Галилей внезапно понял, что, если бы сопротивление воздуха можно было свести к нулю, то перья и камни падали бы на Землю одновременно.) Потребовалось три столетия, прежде чем глубокое значение этого открытия было по достоинству осознано и стало краеугольным камнем великой теории. Я имею в виду общую теорию относительности Эйнштейна - поразительное описание гравитации, для которого, как нам вскоре станет ясно, потребовалось введение понятия искривленного пространства-времени !

Какое отношение имеет интуитивное открытие Галилея к идее «кривизны пространства-времени»? Каким образом могло получиться, что эта концепция, столь явно отличная от схемы Ньютона, согласно которой частицы ускоряются под действием обычных гравитационных сил, оказалась способной не только сравняться в точности описания с ньютоновской теорией, но и превзойти последнюю? И потом, насколько верным будет утверждение, что в открытии Галилея было нечто такое, что не было позднее включено в ньютоновскую теорию?

Позвольте мне начать с последнего вопроса потому, что ответить на него проще всего. Что, согласно теории Ньютона, управляет ускорением тела под действием гравитации? Во-первых, на тело действует гравитационная сила , которая, как гласит открытый Ньютоном закон всемирного тяготения, должна быть пропорциональна массе тела . Во-вторых, величина ускорения, испытываемая телом под действием заданной силы, по второму закону Ньютона, обратно пропорциональна массе тела . Удивительное открытие Галилея зависит от того факта, что «масса», входящая в открытый Ньютоном закон всемирного тяготения, есть, в действительности, та же «масса», которая входит во второй закон Ньютона. (Вместо «та же» можно было бы сказать «пропорциональна».) В результате ускорение тела под действием гравитации не зависит от его массы. В общей схеме Ньютона нет ничего такого, что указывало бы, что оба понятия массы одинаковы. Эту одинаковость Ньютон лишь постулировал . Действительно, электрические силы аналогичны гравитационным в том, что и те, и другие обратно пропорциональны квадрату расстояния, но электрические силы зависят от электрического заряда , который имеет совершенно другую природу, чем масса во втором законе Ньютона. «Интуитивное открытие Галилея» было бы неприменимо к электрическим силам: о телах (заряженных телах) брошенных в электрическом поле, нельзя сказать, что они «падают» с одинаковой скоростью!

На время просто примем интуитивное открытие Галилея относительно движения под действием гравитации и попытаемся выяснить, к каким следствиям оно приводит. Представим себе Галилея, бросающего с Пизанской наклонной башни два камня. Предположим, что с одним из камней жестко скреплена видеокамера, направленная на другой камень. Тогда на пленке окажется запечатленной следующая ситуация: камень парит в пространстве, как бы не испытывая действия гравитации (рис. 5.23)! И так происходит именно потому, что все тела под действием гравитации падают с одной и той же скоростью.

Рис. 5.23. Галилей бросает два камня (и видеокамеру) с Пизанской башни

В описанной выше картине мы пренебрегаем сопротивлением воздуха. В наше время космические полеты открывают перед нами лучшую возможность проверки этих идей, так как в космическом пространстве нет воздуха. Кроме того, «падение» в космическом пространстве означает просто движение по определенной орбите под действием гравитации. Такое «падение» совсем не обязательно должно происходить по прямой вниз - к центру Земли. В нем вполне может быть и некоторая горизонтальная составляющая. Если эта горизонтальная составляющая достаточно велика, то тело может «падать» по круговой орбите вокруг Земли, не приближаясь к ее поверхности! Путешествие по свободной околоземной орбите под действием гравитации - весьма изощренный (и очень дорогой!) способ «падения». Как в описанной выше видеозаписи, астронавт, совершая «прогулку в открытом космосе», видит свой космический корабль парящим перед собой и как бы не испытывающим действия гравитации со стороны огромного шара Земли под ним! (См. рис. 5.24.) Таким образом, переходя в «ускоренную систему отсчета» свободного падения, можно локально исключить действие гравитации.

Рис. 5.24. Астронавт видит, что его космический корабль парит перед ним, как будто неподверженный действию гравитации

Мы видим, что свободное падение позволяет исключить гравитацию потому, что эффект от действия гравитационного поля такой же, как от ускорения Действительно, если вы находитесь в лифте, который движется с ускорением вверх, то вы просто ощущаете, что кажущееся гравитационное поле увеличивается, а если лифт движется с ускорением вниз, то вам кажется, что гравитационное поле убывает. Если бы трос, на котором подвешена кабина, оборвался, то (если пренебречь сопротивлением воздуха и эффектами трения) результирующее ускорение, направленное вниз (к центру Земли), полностью уничтожило бы действие гравитации, и люди, оказавшиеся в кабине лифта, стали бы свободно плавать в пространстве, подобно астронавту во время выхода в открытый космос, до тех пор, пока кабина не стукнулась бы о Землю! Даже в поезде или на борту самолета ускорения могут быть такими, что ощущения пассажира относительно величины и направления гравитации могут не совпадать с тем, где, как показывает обычный опыт, должны быть «верх» и «низ». Объясняется это тем, что действия ускорения и гравитации схожи настолько, что наши ощущения не способны отличить одни от других. Этот факт - то, что локальные проявления гравитации эквивалентны локальным проявлениям ускоренно движущейся системы отсчета, - и есть то, что Эйнштейн назвал принципом эквивалентности .

Приведенные выше соображения «локальны». Но если разрешается производить (не только локальные) измерения с достаточно высокой точностью, то в принципе можно установить различие между «истинным» гравитационным полем и чистым ускорением. На рис. 5 25 я изобразил в немного преувеличенном виде, как первоначально стационарная сферическая конфигурация частиц, свободно падающая под действием гравитации, начинает деформироваться под влиянием неоднородности (ньютоновского) гравитационного поля.

Рис. 5.25. Приливный эффект. Двойные стрелки указывают относительное ускорение (ВЕЙЛЬ)

Это поле неоднородно в двух отношениях. Во-первых, поскольку центр Земли расположен на некотором конечном расстоянии от падающего тела, частицы, расположенные ближе к поверхности Земли, движутся вниз с бо?льшим ускорением, чем частицы, расположенные выше (напомним закон обратной пропорциональности квадрату расстояния Ньютона). Во-вторых, по той же причине существуют небольшие различия в направлении ускорения для частиц, занимающих различные положения на горизонтали. Из-за этой неоднородности сферическая форма начинает слегка деформироваться, превращаясь в «эллипсоид». Первоначальная сфера удлиняется в направлении к центру Земли (а также в противоположном направлении), так как те ее части, которые ближе к центру Земли, движутся с чуть бо?льшим ускорением, чем те части, которые дальше от центра Земли, и сужается по горизонтали, так как ускорения ее частей, находящихся на концах горизонтального диаметра, слегка скошены «внутрь» - в направлении на центр Земли.

Это деформирующее действие известно как приливный эффект гравитации. Если мы заменим центр Земли Луной, а сферу из материальных частиц - поверхностью Земли, то получим в точности описание действия Луны, вызывающей приливы на Земле, причем «горбы» образуются по направлению к Луне и от Луны. Приливный эффект - общая особенность гравитационных полей, которая не может быть «исключена» с помощью свободного падения. Приливный эффект служит мерой неоднородности ньютоновского гравитационного поля. (Величина приливной деформации в действительности убывает обратно пропорционально кубу, а не квадрату расстояния от центра притяжения.)

Закон всемирного тяготения Ньютона, по которому сила обратно пропорциональна квадрату расстояния, допускает, как оказывается, простую интерпретацию в терминах приливного эффекта: объем эллипсоида, в который первоначально деформируется сфера, равен объему исходной сферы - в предположении, что сфера окружает вакуум. Это свойство сохранения объема характерно для закона обратных квадратов; ни для каких других законов оно не выполняется. Предположим далее, что исходная сфера окружает не вакуум, а некоторое количество материи общей массой М . Тогда возникает дополнительная компонента ускорения, направленная внутрь сферы из-за гравитационного притяжения материи внутри сферы. Объем эллипсоида, в который первоначально деформируется наша сфера из материальных частиц, сокращается - на величину, пропорциональную М . С примером эффекта уменьшения объема эллипсоида мы бы столкнулись, если бы выбрали нашу сферу так, чтобы она окружала Землю на постоянной высоте (рис. 5.26). Тогда обычное ускорение, обусловленное земным притяжением и направленное вниз (т. е. внутрь Земли), будет той самой причиной, по которой происходит сокращение объема нашей сферы.

Рис. 5.26. Когда сфера окружает некое вещество (в данном случае - Землю), возникает результирующее ускорение, направленное внутрь (РИЧЧИ)

В этом свойстве сжимания объема заключена оставшаяся часть закона всемирного тяготения Ньютона, а именно - что сила пропорциональна массе притягивающего тела.

Попробуем получить пространственно-временну?ю картину такой ситуации. На рис. 5.27 я изобразил мировые линии частиц нашей сферической поверхности (представленной на рис. 5.25 в виде окружности), причем я использовал для описания ту систему отсчета, в которой центральная точка сферы кажется покоящейся («свободное падение»).

Рис. 5.27. Кривизна пространства-времени: приливный эффект, изображенный в пространстве-времени

Позиция общей теории относительности состоит в том, чтобы считать свободное падение «естественным движением» - аналогичным «равномерному прямолинейному движению», с которыми имеют дело в отсутствие гравитации. Таким образом, мы пытаемся описывать свободное падение «прямыми» мировыми линиями в пространстве-времени! Но если взглянуть на рис. 5.27, то становится понятно, что использование слова «прямые» применительно к этим мировым линиям способно ввести читателя в заблуждение, поэтому мы будем в терминологических целях называть мировые линии свободно падающих частиц в пространстве-времени - геодезическими .

Но насколько хороша такая терминология? Что обычно понимают под «геодезической» линией? Рассмотрим аналогию для двумерной искривленной поверхности. Геодезическими называются такие кривые, которые на данной поверхности (локально) служат «кратчайшими маршрутами». Иначе говоря, если представить себе отрезок нити, натянутый на указанную поверхность (и не слишком длинный, чтобы он не мог соскользнуть), то нить расположится вдоль некоторой геодезической линии на поверхности.

Рис. 5.28. Геодезические линии в искривленном пространстве: линии сходятся в пространстве с положительной кривизной, и расходятся - в пространстве с отрицательной кривизной

На рис. 5.28 я привел два примера поверхностей: первая (слева) - поверхность так называемой «положительной кривизны» (как поверхность сферы), вторая - поверхность «отрицательной кривизны» (седловидная поверхность). На поверхности положительной кривизны две соседние геодезические линии, выходящие из начальных точек параллельно друг другу, начинают впоследствии изгибаться навстречу друг другу; а на поверхности отрицательной кривизны они изгибаются в стороны друг от друга.

Если мы представим себе, что мировые линии свободно падающих частиц в некотором смысле ведут себя как геодезические линии на поверхности, то окажется, что существует тесная аналогия между гравитационным приливным эффектом, о котором шла речь выше, и эффектами кривизны поверхности - причем как положительной кривизны, так и отрицательной. Взгляните на рис. 5.25, 5.27. Мы видим, что в нашем пространстве-времени геодезические линии начинают расходиться в одном направлении (когда они «выстраиваются» в сторону Земли) - как это происходит на поверхности отрицательной кривизны на рис. 5.28 - и сближаться в других направлениях (когда они смещаются горизонтально относительно Земли) - как на поверхности положительной кривизны на рис. 5.28. Таким образом, создается впечатление, что наше пространство-время, как и вышеупомянутые поверхности, тоже обладает «кривизной», только более сложной, поскольку из-за высокой размерности пространства-времени при различных перемещениях она может носить смешанный характер, не будучи ни чисто положительной, ни чисто отрицательной.

Отсюда следует, что понятие «кривизны» пространства-времени может быть использовано для описания действия гравитационных полей. Возможность использования такого описания в конечном счете следует из интуитивного открытия Галилея (принципа эквивалентности) и позволяет нам исключить гравитационную «силу» с помощью свободного падения. Действительно, ничто из сказанного мной до сих пор не выходит за рамки ньютонианской теории. Нарисованная только что картина дает просто переформулировку этой теории. Но когда мы пытаемся скомбинировать новую картину с тем, что дает предложенное Минковским описание специальной теории относительности - геометрии пространства-времени, которая, как мы знаем, применяется в отсутствие гравитации - в игру вступает новая физика. Результат этой комбинации - общая теория относительности Эйнштейна.

Напомним, чему учил нас Минковский. Мы имеем (в отсутствие гравитации) пространство-время, наделенное особого рода мерой «расстояния» между точками: если мы имеем в пространстве-времени мировую линию, описывающую траекторию какой-нибудь частицы, то «расстояние» в смысле Минковского, измеряемое вдоль этой мировой линии, дает время , реально прожитое частицей. (В действительности, в предыдущем разделе мы рассматривали это «расстояние» только для тех мировых линий, которые состоят из прямолинейных отрезков - но приведенное выше утверждение справедливо и по отношению к искривленным мировым линиям, если «расстояние» измеряется вдоль кривой.) Геометрия Минковского считается точной, если нет гравитационного поля, т. е. если у пространства-времени нет кривизны. Но при наличии гравитации мы рассматриваем геометрию Минковского уже лишь как приближенную - аналогично тому, как плоская поверхность лишь приблизительно соответствует геометрии искривленной поверхности. Вообразим, что, изучая искривленную поверхность, мы берем микроскоп, дающий все большее увеличение - так, что геометрия искривленной поверхности кажется все больше растянутой. При этом поверхность будет нам казаться все более плоской. Поэтому мы говорим, что искривленная поверхность имеет локальное строение евклидовой плоскости. Точно так же мы можем сказать, что при наличии гравитации пространство-время локально описывается геометрией Минковского (которая есть геометрия плоского пространства-времени), но мы допускаем некоторую «искривленность» на более крупных масштабах (рис. 5.29).

Рис. 5.29. Картина искривленного пространства-времени

В частности, как и в пространстве Минковского, любая точка пространства-времени является вершиной светового конуса - но в данном случае эти световые конусы расположены уже не одинаково. В главе 7 мы познакомимся с отдельными моделями пространства-времени, в которых явно видна эта неоднородность расположения световых конусов (см. рис. 7.13, 7.14). Мировые линии материальных частиц всегда направлены внутрь световых конусов, а линии фотонов - вдоль световых конусов. Вдоль любой такой кривой мы можем ввести «расстояние» в смысле Минковского, которое служит мерой времени, прожитого частицами так же, как и в пространстве Минковского. Как и в случае искривленной поверхности, эта мера «расстояния» определяет геометрию поверхности, которая может отличаться от геометрии плоскости.

Геодезическим линиям в пространстве-времени теперь можно придать интерпретацию, аналогичную интерпретации геодезических линий на двумерных поверхностях, учитывая при этом различия между геометриями Минковского и Евклида. Таким образом, наши геодезические линии в пространстве-времени представляют собой не (локально) кратчайшие кривые, а наоборот - кривые, которые (локально) максимизируют «расстояние» (т. е. время) вдоль мировой линии. Мировые линии частиц, свободно перемещающиеся под действием гравитации, согласно этому правилу действительно являются геодезическими. В частности, небесные тела, движущиеся в гравитационном поле, хорошо описываются подобными геодезическими линиями. Кроме того, лучи света (мировые линии фотонов) в пустом пространстве так же служат геодезическими линиями, но на этот раз - нулевой «длины». В качестве примера я схематически нарисовал на рис. 5.30 мировые линии Земли и Солнца. Движение Земли вокруг Солнца описывается «штопорообразной» линией, навивающейся вокруг мировой линии Солнца. Там же я изобразил фотон, приходящий на Землю от далекой звезды. Его мировая линия кажется слегка «изогнутой» вследствие того, что свет (по теории Эйнштейна) на самом деле отклоняется гравитационным полем Солнца.

Рис. 5.30. Мировые линии Земли и Солнца. Световой луч от далекой звезды отклоняется Солнцем

Нам необходимо еще выяснить, каким образом ньютоновский закон обратных квадратов может быть включен (после надлежащей модификации) в общую теорию относительности Эйнштейна. Обратимся еще раз к нашей сфере из материальных частиц, падающей в гравитационном поле. Напомним, что если внутри сферы заключен только вакуум, то, согласно теории Ньютона, объем сферы первоначально не изменяется; но если внутри сферы находится материя общей массой М , то происходит сокращение объема, пропорциональное М . В теории Эйнштейна (для малой сферы) правила в точности такие же, за исключением того, что не все изменение объема определяется массой М ; существует (обычно очень малый) вклад от давления , возникающем в окруженном сферой материале.

Полное математическое выражение для кривизны четырехмерного пространства-времени (которая должна описывать приливные эффекты для частиц, движущихся в любой данной точке по всевозможным направлениям) дается так называемым тензором кривизны Римана . Это несколько сложный объект; для его описания необходимо в каждой точке указать двадцать действительных чисел. Эти двадцать чисел называются его компонентами . Различные компоненты соответствуют различным кривизнам в различных направлениях пространства-времени. Тензор кривизны Римана обычно записывают в виде R tjkl , но так как мне не хочется объяснять здесь, что означают эти субиндексы (и, конечно, что такое тензор), то я запишу его просто как:

РИМАН .

Существует способ, позволяющий разбить этот тензор на две части, называемые, соответственно, тензором ВЕЙЛЯ и тензором РИЧЧИ (каждый - с десятью компонентами). Условно я запишу это разбиение так:

РИМАН = ВЕЙЛЬ + РИЧЧИ .

(Подробная запись тензоров Вейля и Риччи для наших целей сейчас совершенно не нужна.) Тензор Вейля ВЕЙЛЬ служит мерой приливной деформации нашей сферы из свободно падающих частиц (т. е. изменения начальной формы, а не размеров); тогда как тензор Риччи РИЧЧИ служит мерой изменения первоначального объема. Напомним, что ньютоновская теория гравитации требует, чтобы масса , содержащаяся внутри нашей падающей сферы, была пропорциональна этому изменению первоначального объема. Это означает, что, грубо говоря, плотность массы материи - или, что эквивалентно, плотность энергии (так как Е = mc 2 ) - следует приравнять тензору Риччи.

По существу, это именно то, что утверждают уравнения поля общей теории относительности, а именно - полевые уравнения Эйнштейна . Правда, здесь имеются некоторые технические тонкости, в которые нам сейчас, впрочем, лучше не вдаваться. Достаточно сказать, что существует объект, называемый тензором энергии-импульса , который объединяет всю существенную информацию об энергии, давлении и импульсе материи и электромагнитных полей. Я буду называть этот тензор ЭНЕРГИЕЙ . Тогда уравнения Эйнштейна весьма схематично можно представить в следующем виде,

РИЧЧИ = ЭНЕРГИЯ .

(Именно наличие «давления» в тензоре ЭНЕРГИЯ вместе с некоторыми требованиями непротиворечивости уравнений в целом приводят с необходимостью к учету давления в описанном выше эффекте сокращения объема.)

Кажется, что вышеприведенное соотношение ничего не говорит о тензоре Вейля. Тем не менее, оно отражает одно важное свойство. Приливный эффект, производимый в пустом пространстве, обусловлен ВЕЙЛЕМ . Действительно, из приведенных выше уравнений Эйнштейна следует, что существуют дифференциальные уравнения, связывающие ВЕЙЛЯ с ЭНЕРГИЕЙ - практически как во встречавшихся нам ранее уравнениях Максвелла. Действительно, точка зрения, согласно которой ВЕЙЛЯ надлежит рассматривать как своего рода гравитационный аналог электромагнитного поля (в действительности, тензора - тензора Максвелла), описываемого парой (Е , В ), оказывается весьма плодотворной. В этом случае ВЕЙЛЬ служит своего рода мерой гравитационного поля. «Источником» для ВЕЙЛЯ является ЭНЕРГИЯ - подобно тому, как источником для электромагнитного поля (Е , В ) является (? , j ) - набор из зарядов и токов в теории Максвелла. Эта точка зрения будет полезна нам в главе 7.

Может показаться весьма удивительным, что при столь существенных различиях в формулировке и основополагающих идеях, оказывается довольно трудно найти наблюдаемые различия между теориями Эйнштейна и теорией, выдвинутой Ньютоном двумя с половиной столетиями раньше. Но если рассматриваемые скорости малы по сравнению со скоростью света с , а гравитационные поля не слишком сильны (так, что скорости убегания гораздо меньше с , см. главу 7, «Динамика Галилея и Ньютона»), то теория Эйнштейна по существу дает те же результаты, что и теория Ньютона. Но в тех ситуациях, когда предсказания этих двух теорий расходятся, прогнозы теории Эйнштейна оказываются точнее. К настоящему времени был проведен целый ряд весьма впечатляющих экспериментальных проверок, которые позволяют считать новую теорию Эйнштейна вполне обоснованной. Часы, согласно Эйнштейну, в гравитационном поле идут чуть медленнее. Ныне этот эффект измерен непосредственно несколькими способами. Световые и радиосигналы действительно изгибаются вблизи Солнца и слегка запаздывают для наблюдателя, движущегося им навстречу. Эти эффекты, предсказанные изначально общей теорией относительности, на сегодняшний день подтверждены опытом. Движение космических зондов и планет требуют небольших поправок к ньютоновским орбитам, как это следует из теории Эйнштейна - эти поправки сегодня также проверены опытным путем. (В частности, аномалия в движении планеты Меркурия, известная как «смещение перигелия», беспокоившая астрономов с 1859 года, была объяснена Эйнштейном в 1915 году.) Возможно, наиболее впечатляющим из всего следует считать серию наблюдений над системой, называемой двойным пульсаром , которая состоит из двух небольших массивных звезд (возможно, двух «нейтронных звезд», см. гл.7 «Черные дыры»). Эта серия наблюдений очень хорошо согласуется с теорией Эйнштейна и служит прямой проверкой эффекта, полностью отсутствующего в теории Ньютона, - испускания гравитационных волн . (Гравитационная волна представляет собой аналог электромагнитной волны и распространяется со скоростью света с .) Не существует проверенных наблюдений, которые противоречили бы общей теории относительности Эйнштейна. При всей своей странности (на первый взгляд), теория Эйнштейна работает и по сей день!

Из книги Современная наука и философия: Пути фундаментальных исследований и перспективы философии автора Кузнецов Б. Г.

Из книги Митьковские пляски автора Шинкарёв Владимир Николаевич

Общая теория митьковской пляски 1. НЕДАЛЕКИЕ ИСТОЛКОВАТЕЛИ Ни для кого уже не секрет, что танцы, а, точнее, пляски являются наиболее широко распространенным видом творчества у митьков; это бесспорно. Спорны истолкования феномена митьковской пляски.Недалекие

Из книги Современная наука и философия: Пути фундаментальных исследований и перспективы философии автора Кузнецов Б. Г.

Теория относительности, квантовая механика и начало атомного века В 20– 30-е годы нашего столетия часто говорили о более глубоком воздействии квантовых идей, о более радикальном характере выводов из принципа неопределенности и из квантовой механики в целом по сравнению

Из книги Философский словарь разума, материи, морали [фрагменты] автора Рассел Бертран

107. Общая теория относительности Общая теория относительности (ОТО) – опубликованная в 1915 году, через 10 лет после появления специальной теории (СТО) – была прежде всего геометрической теорией гравитации. Эту часть теории можно считать прочно утвердившейся. Однако, она

Из книги Краткая история философии [Нескучная книга] автора Гусев Дмитрий Алексеевич

108. Специальная теория относительности Специальная теория ставит перед собой задачу сделать законы физики одинаковыми по отношению к любым двум системам координат, движущимся друг относительно друга прямолинейно и равномерно. Здесь необходимо было принять во внимание

Из книги Любители мудрости [Что должен знать современный человек об истории философской мысли] автора Гусев Дмитрий Алексеевич

12.1. Со скоростью света… (Теория относительности) Появление второй научной картины мира было связано в первую очередь со сменой геоцентризма гелиоцентризмом. Третья научная картина мира отказалась от какого-либо центризма вообще. По новым представлениям Вселенная стала

Из книги Физика и философия автора Гейзенберг Вернер Карл

Теория относительности. Со скоростью света Появление второй научной картины мира было связано в первую очередь со сменой геоцентризма гелиоцентризмом. Третья научная картина мира отказалась от какого-либо центризма вообще. По новым представлениям Вселенная стала

Из книги Далекое будущее Вселенной [Эсхатология в космической перспективе] автора Эллис Джордж

VII. ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ Теория относительности всегда играла в современной физике особо важную роль. В ней впервые была показана необходимость периодического изменения основополагающих принципов физики. Поэтому обсуждение тех проблем, которые были подняты и

Из книги Как-то раз Платон зашел в бар… Понимание философии через шутки автора Каткарт Томас

17.2.1. Общая теория относительности Эйнштейна (ОТО) / космология Большого взрыва В 1915 году Альберт Эйнштейн опубликовал полевые уравнения ОТО, связывающие кривизну пространства–времени с распределенной в пространстве–времени энергией: R?? - ?Rg?? = 8?Т??. В упрощенном

Из книги Хаос и структура автора Лосев Алексей Федорович

17.5.2.3. Текучее время в физике: специальная теория относительности, общая теория относительности, квантовая механика и термодинамика Беглый обзор четырех областей современной физики: специальной теории относительности (СТО), общей теории относительности (ОТО), квантовой

Из книги Удивительная философия автора Гусев Дмитрий Алексеевич

IX Теория относительности Что тут можно сказать? Каждый человек понимает этот термин по-своему. Димитрий: Мой друг, твоя проблема в том, что ты слишком много думаешь.Тассо: По сравнению с кем?Димитрий: Например, по сравнению с Ахиллесом.Тассо: А по сравнению с

Из книги Новый ум короля [О компьютерах, мышлении и законах физики] автора Пенроуз Роджер

ОБЩАЯ ТЕОРИЯ ЧИСЛА § 10. Вступление.Число является настолько основной и глубокой категорией бытия и сознания, что для его определения и характеристики можно брать только самые первоначальные, самые отвлеченные моменты того и другого. Математика- наука о числе-есть уже

Из книги Возвращение времени [От античной космогонии к космологии будущего] автора Смолин Ли

Со скоростью света. Теория относительности Появление второй научной картины мира было связано в первую очередь со сменой геоцентризма гелиоцентризмом. Третья научная картина мира отказалась от какого-либо центризма вообще. По новым представлениям Вселенная стала

Из книги Язык, онтология и реализм автора Макеева Лолита Брониславовна

Специальная теория относительности Эйнштейна и Пуанкаре Напомним принцип относительности Галилея, который гласит, что физические законы Ньютона и Галилея останутся совершенно неизменными, если от покоящейся системы отсчета мы перейдем в другую, движущуюся равномерно

Из книги автора

Глава 14 Теория относительности и возвращение времени Итак, признание реальности времени открывает новые подходы к пониманию того, как Вселенная выбирает законы, а также способы разрешения затруднений квантовой механики. Однако нам предстоит еще преодолеть серьезное

Из книги автора

2.4. Теория онтологической относительности и реализм Из тезиса о неопределенности перевода и идеи онтологических обязательств вытекает онтологическая относительность, которая прежде всего означает, что референция является непостижимой, что мы не можем знать, к чему

Общая теория относительности применяется уже ко всем системам отсчета (а не только к движущимися с постоянной скоростью друг относительно друга) и выглядит математически гораздо сложнее, чем специальная (чем и объясняется разрыв в одиннадцать лет между их публикацией). Она включает в себя как частный случай специальную теорию относительности (и, следовательно, законы Ньютона). При этом общая теория относительности идёт значительно дальше всех своих предшественниц. В частности, она дает новую интерпретацию гравитации.

Общая теория относительности делает мир четырехмерным: к трем пространственным измерениям добавляется время. Все четыре измерения неразрывны, поэтому речь идет уже не о пространственном расстоянии между двумя объектами, как это имеет место в трехмерном мире, а о пространственно-временных интервалах между событиями, которые объединяют их удаленность друг от друга - как по времени, так и в пространстве. То есть пространство и время рассматриваются как четырехмерный пространственно-временной континуум или, попросту, пространство-время. В этом континууме наблюдатели, движущиеся друг относительно друга, могут расходиться даже во мнении о том, произошли ли два события одновременно - или одно предшествовало другому. К счастью для нашего бедного разума, до нарушения причинно-следственных связей дело не доходит - то есть существования систем координат, в которых два события происходят не одновременно и в разной последовательности, даже общая теория относительности не допускает.

Классическая физика считала тяготение рядовой силой среди множества природных сил (электрических, магнитных и т.д.). Тяготению было предписано "дальнодействие" (проникновение "сквозь пустоту") и удивительная способность придавать равное ускорение телам разных масс.

Закон всемирного тяготения Ньютона говорит нам, что между любыми двумя телами во Вселенной существует сила взаимного притяжения. С этой точки зрения Земля вращается вокруг Солнца, поскольку между ними действуют силы взаимного притяжения.

Общая теория относительности, однако, заставляет нас взглянуть на это явление иначе. Согласно этой теории, гравитация - это следствие деформации ("искривления") упругой ткани пространства-времени под воздействием массы (при этом чем тяжелее тело, например Солнце, тем сильнее пространство-время "прогибается" под ним и тем, соответственно, сильнее его гравитационное поле). Представьте себе туго натянутое полотно (своего рода батут), на которое помещен массивный шар. Полотно деформируется под тяжестью шара, и вокруг него образуется впадина в форме воронки. Согласно общей теории относительности, Земля обращается вокруг Солнца подобно маленькому шарику, пущенному кататься вокруг конуса воронки, образованной в результате "продавливания" пространства-времени тяжелым шаром - Солнцем. А то, что нам кажется силой тяжести, на самом деле является, по сути чисто внешнем проявлением искривления пространства-времени, а вовсе не силой в ньютоновском понимании. На сегодняшний день лучшего объяснения природы гравитации, чем дает нам общая теория относительности, не найдено.

Вначале обсуждается равенство ускорений свободного падения для тел разных масс (то, что массивный ключ и легонькая спичка одинаково быстро падают со стола на пол). Как подметил Эйнштейн, это уникальное свойство делает тяжесть очень похожей на инерцию.

В самом деле, ключ и спичка ведут себя так, как если бы они двигались в невесомости по инерции, а пол, комнаты с ускорением придвигался к ним. Достигнув ключа и спички, пол испытал бы их удар, а затем давление, т.к. инерция ключа и спички сказалась бы при дальнейшем ускорении пола.

Это давление (космонавты говорят - "перегрузка") называется силой инерции. Подобная сила всегда приложена к телам в ускоренных системах отсчета.

Если ракета летит с ускорением, равным ускорению свободного падения на земной поверхности (9,81 м/сек), то сила инерции будет играть роль веса ключа и спички. Их "искусственная" тяжесть будет точно такой же, как естественная на поверхности Земли. Значит, ускорение системы отсчета - это явление, вполне подобное гравитации.

Наоборот, в свободно падающем лифте естественная тяжесть устраняется ускоренным движением системы отсчета кабины "вдогонку" за ключом и спичкой. Разумеется, классическая физика не видит в этих примерах истинного возникновения и исчезновения тяжести. Тяготение лишь имитируется или компенсируется ускорением. Но в ОТО сходство инерции и тяжести признается гораздо более глубоким.

Эйнштейн выдвинул локальный принцип эквивалентности инерции и тяготения, заявив, что в достаточно малых масштабах расстояний и длительностей одно явление невозможно отличить от другого никаким экспериментом. Таким образом, ОТО еще глубже изменила научные представления о мире. Потерял универсальность первый закон ньютоновской динамики - оказалось, что движение по инерции может быть криволинейным и ускоренным. Отпала надобность в понятии тяжелой массы. Изменилась геометрия Вселенной: вместо прямого евклидовского пространства и равномерного времени появилось искривленное пространство-время, искривленный мир. Столь резкой перестройки воззрений на физические первоосновы мироздания не знала история науки.

Проверить общую теорию относительности трудно, поскольку в обычных лабораторных условиях ее результаты практически полностью совпадают с тем, что предсказывает закон всемирного тяготения Ньютона. Тем не менее несколько важных экспериментов были произведены, и их результаты позволяют считать теорию подтвержденной. Кроме того, общая теория относительности помогает объяснить явления, которые мы наблюдаем в космосе, один из примеров - луч света, проходящий около Солнца. И ньютоновская механика, и ОТО признают, что он должен отклониться к Солнцу (падать). Однако ОТО предсказывает вдвое большее смещение луча. Наблюдения во время солнечных затмений доказали правоту предсказания Эйнштейна. Другой пример. У ближайшей к Солнцу планеты Меркурий незначительные отклонения от стационарной орбиты, необъяснимые с точки зрения классической механики Ньютона. Но именно такую орбиту дает вычисление по формулам ОТО. Замедлением времени в сильном гравитационном поле объясняют уменьшение частоты световых колебаний в излучении белых карликов - звезд очень большой плотности. А в последние годы этот эффект удалось зарегистрировать и в лабораторных условиях. Наконец, очень велика роль ОТО в современной космологии - науке о строении и истории всей Вселенной. В этой области знания также найдено много доказательств эйнштейновской теории тяготения. На самом деле результаты, которые предсказывает общая теория относительности, заметно отличаются от результатов, предсказанных законами Ньютона, только при наличии сверхсильных гравитационных полей. Это значит, что для полноценной проверки общей теории относительности нужны либо сверхточные измерения очень массивных объектов, либо черные дыры, к которым никакие наши привычные интуитивные представления неприменимы. Так что разработка новых экспериментальных методов проверки теории относительности остается одной из важнейших задач экспериментальной физики.

Еще в конце XIX века большинство ученых склонялось к точке зрения, что физическая картина мира в основном построена и останется в дальнейшем незыблемой - предстоит уточнять лишь детали. Но в первые десятилетия ХХ века физические воззрения изменились коренным образом. Это было следствием «каскада» научных открытий, сделанных в течение чрезвычайно короткого исторического периода, охватывающего последние годы ХIХ столетия и первые десятилетия ХХ, многие из которых совершенно не укладывались в представление обыденного человеческого опыта. Ярким примером может служить теория относительности, созданная Альбертом Эйнштейном (1879-1955).

Теория относительности - физическая теория пространства-времени, то есть теория, описывающая универсальные пространственно-временные свойства физических процессов. Термин был введен в 1906 году Максом Планком с целью подчеркнуть роль принципа относительности
в специальной теории относительности (и, позже, общей теории относительности).

В узком смысле теория относительности включает в себя специальную и общую теорию относительности. Специальная теория относительности (далее - СТО) относится к процессам, при исследовании которых полями тяготения можно пренебречь; общая теория относительности (далее - ОТО) - это теория тяготения, обобщающая ньютоновскую.

Специальная , или частная теория относительности - это теория структуры пространства-времени. Впервые была представлена в 1905 году Альбертом Эйнштейном в работе «К электродинамике движущихся тел». Теория описывает движение, законы механики, а также пространственно-временные отношения, определяющие их, при любых скоростях движения,
в том числе и близких к скорости света. Классическая механика Ньютона
в рамках СТО является приближением для малых скоростей.

Одна из причин успеха Альберта Эйнштейна состоит в том, что он ставил экспериментальные данные выше теоретических. Когда в ряде экспериментов обнаружились результаты, противоречащие общепринятой теории, многие физики решили, что эти эксперименты ошибочны.

Альберт Эйнштейн был одним из первых, кто решил построить новую теорию на базе новых экспериментальных данных.

В конце 19 века физики находились в поиске таинственного эфира – среды, в которой по общепринятым предположениям должны были распространяться световые волны, подобно акустическим, для распространения которых необходим воздух, или же другая среда – твердая, жидкая или газообразная. Вера в существование эфира привела к убеждению, что скорость света должна меняться в зависимости от скорости наблюдателя по отношению к эфиру. Альберт Эйнштейн отказался от понятия эфира и предположил, что все физические законы, включая скорость света, остаются неизменными независимо от скорости наблюдателя – как это и показывали эксперименты.


СТО объясняла, как интерпретировать движения между различными инерциальными системами отсчета – попросту говоря, объектами, которые движутся с постоянной скоростью по отношению друг к другу. Эйнштейн объяснил, что когда два объекта двигаются с постоянной скоростью, следует рассматривать их движение друг относительно друга, вместо того чтобы принять один из них в качестве абсолютной системы отсчета. Так что, если два космонавта летят на двух космических кораблях и хотят сравнить свои наблюдения, единственное, что им нужно знать – это скорость относительно друг друга.

Специальная теория относительности рассматривает лишь один специальный случай (отсюда и название), когда движение прямолинейно и равномерно.

Исходя из невозможности обнаружить абсолютное движение, Альберт Эйнштейн сделал вывод о равноправии всех инерциальных систем отсчета. Он сформулировал два важнейших постулата, которые составили основу новой теории пространства и времени, получившей название Специальной Теории Относительности (СТО):

1. Принцип относительности Эйнштейна - этот принцип явился обобщением принципа относительности Галилея (утверждает то же самое, но не для всех законов природы, а только для законов классической механики, оставляя открытым вопрос о применимости принципа относительности к оптике и электродинамике) на любые физические. Он гласит: все физические процессы при одних и тех же условиях в инерциальных систем отсчета (ИСО) протекают одинаково . Это означает, что никакими физическими опытами, проведенными внутри замкнутой ИСО, нельзя установить, покоится ли она или движется равномерно и прямолинейно. Таким образом, все ИСО совершенно равноправны, а физические законы инвариантны по отношению к выбору ИСО (т.е. уравнения, выражающие эти законы, имеют одинаковую форму во всех инерциальных системах отсчета).

2. Принцип постоянства скорости света - скорость света в вакууме постоянна и не зависит от движения источника и приемника света . Она одинакова во всех направлениях и во всех инерциальных системах отсчета. Скорость света в вакууме - предельная скорость в природе - это одна из важнейших физических постоянных, так называемых мировых констант.

Важнейшим следствием СТО явилась знаменитая формула Эйнштейна о взаимосвязи массы и энергии Е=mc 2 (где С - скорость света), которая показала единство пространства и времени, выражающееся в совместном изменении их характеристик в зависимости от концентрации масс и их движения и подтвержденная данными современной физики. Время и пространство перестали рассматриваться независимо друг от друга и возникло представление о пространственно-временном четырехмерном континууме.

Согласно теории великого физика, когда скорость материального тела увеличивается, приближаясь к скорости света, увеличивается и его масса. Т.е. чем быстрее движется объект, тем тяжелее он становится. В случае достижения скорости света, масса тела, равно как и его энергия, становятся бесконечными. Чем тяжелее тело, тем сложнее увеличить его скорость; для ускорения тела с бесконечной массой требуется бесконечное количество энергии, поэтому для материальных объектов достичь скорости света невозможно.

В теории относительности «два закона - закон сохранения массы и сохранения энергии - потеряли свою независимую друг от друга справедливость и оказались объединенными в единый закон, который можно назвать законом сохранения энергии или массы». Благодаря фундаментальной связи между этими двумя понятиями, материю можно превратить в энергию, и наоборот – энергию в материю.

Общая теория относительности - теория гравитации, опубликованная Эйнштейном в 1916 году, над которой работал в течение 10 лет. Является дальнейшим развитием специальной теории относительности. Если материальное тело ускоряется или сворачивает в сторону, законы СТО уже не действуют. Тогда в силу вступает ОТО, которая объясняет движения материальных тел в общем случае.

В общей теории относительности постулируется, что гравитационные эффекты обусловлены не силовым взаимодействием тел и полей, а деформацией самого пространства-времени, в котором они находятся. Эта деформация связана, в частности, с присутствием массы-энергии.

ОТО в настоящее время - самая успешная теория гравитации, хорошо подтверждённая наблюдениями. ОТО обобщила СТО на ускоренные, т.е. неинерциальные системы. Основные принципы ОТО сводятся к следующему:

- ограничение применимости принципа постоянства скорости света областями, где гравитационными силами можно пренебречь (там, где гравитация велика, скорость света замедляется);

- распространение принципа относительности на все движущиеся системы (а не только на инерциальные).

В ОТО, или теории тяготе­ния он также исхо­дит из экспериментального факта эквивалентности масс инер­ционных и гравитационных, или эквивалентности инерцион­ных и гравитационных полей.

Принцип эквивалентности играет важную роль в науке. Мы всегда можем вычислить непо­средственно действие сил инерции на любую физическую систему, и это дает нам возможность знать действие поля тяготения, отвлека­ясь от его неоднородности, которая часто очень незначительна.

Из ОТО был получен ряд важных выводов:

1. Свойства пространства-времени зависят от движущейся материи.

2. Луч света, обладающий инертной, а, следовательно, и гравитационной массой, должен искривляться в поле тяготения.

3. Частота света под действием поля тяготения должна смещаться в сторону более низких значений.

Долгое время экспериментальных подтверждений ОТО было мало. Согласие теории с опытом достаточно хорошее, но чистота экспериментов нарушается различными сложными побочными влияниями. Однако влияние искривления пространства-времени можно обнаружить даже в умеренных гравитационных полях. Очень чувствительные часы, например, могут обнаружить замедление времени на поверхности Земли. Чтобы расширить экспериментальную базу ОТО, во второй половине XX века были поставлены новые эксперименты: проверялась эквивалентность инертной и гравитационной масс (в том числе и путем лазерной локации Луны);
с помощью радиолокации уточнялось движение перигелия Меркурия; измерялось гравитационное отклонение радиоволн Солнцем, проводилась радиолокация планет Солнечной системы; оценивалось влияние гравитационного поля Солнца на радиосвязь с космическими кораблями, которые отправлялись к дальним планетам Солнечной системы, и т.д. Все они, так или иначе, подтвердили предсказания, полученные на основе ОТО.

Итак, специальная теория относительности основывается на постулатах постоянства скорости света и одинаковости законов природы во всех физических системах, а основные результаты, к которым она приходит таковы: относительность свойств пространства-времени; относительность массы и энергии; эквивалентность тяжелой и инертной масс.

Наиболее значительным результатом общей теории относительности с философской точки зрения является установление зависимости пространственно-временных свойств окружающего мира от расположения и движения тяготеющих масс. Именно благодаря воздействию тел
с большими массами происходит искривление путей движения световых лучей. Следовательно, гравитационное поле, создаваемое такими телами, определяет в конечном итоге пространственно-временные свойства мира.

В специальной теории относительности абстрагируются от действия гравитационных полей и поэтому ее выводы оказываются применимыми лишь для небольших участков пространства – времени. Кардинальное отличие общей теории относительности от предшествующих ей фундаментальных физических теорий в отказе от ряда старых понятий и формулировке новых. Стоит сказать, что общая теория относительности произвела настоящий переворот в космологии. На ее основе появились различные модели Вселенной.