Что называется картографической проекцией. Классификация картографических проекций

3. И наконец заключительным этапом создания карты является отображение уменьшенной поверхность эллипсоида на плоскости, т.е. применение картографической проекции (математический способ изображения на плоскости пов-ти эллипсоида.).

Поверхность эллипсоида нельзя без искажения развернуть на плоскость. Поэтому она проецируется на фигуру, которую можно развернуть на плоскость (Рис). При этом возникают искажения углов между параллелями и меридианами, расстояний, площадей.

Существует несколько сотен проекций, которые используются в картографии. Разберем далее их основные типы, не вдаваясь во все многоообразие деталей.

В соответствии с типом искажений проекци деляться на:

1. Равноугольные (конформные) – проекции, не искажающие углов. При этом сохраняется подобие фигур, масштаб изменяется с изменением широты и долготы. Отношение площадей не сохраняется на карте.

2. Равновеликие (эквивалентные) – проекции, на которых масштаб площадей везде одинаков и площади на картах пропорциональны соответствующим площадям на Земле. Однако масштаб длин в каждой точке разный по разным направлениям. не сохраняются равенство углов и подобие фигур.

3. Равнопромежуточные проекции- проекции, сохраняющие постоянство масштаба по одному из главных направлений.

4. Произвольные проекции - проекции, не относящиеся ни к одной из рассмотренных групп, но обладающие какими-либо другими, важными для практики свойствами, называются произвольными.

Рис. Проецирование эллипсоида на фигуру, разворачиваемую в плоскость.

В зависимости от того на какую фигуру проецируется поверхность эллипсоида (цилиндр, конус или плоскость) проекции делятся на три основных типа: цилиндрические, конические и азимутальные. Тип фигуры, на которую проецируется эллипсоид определяет вид параллелей и меридианов на карте.

Рис. Различие проекций по типу фигур на которую проецируется поверхность эллипсоида и вид разверток этих фигур на плоскости.

В свою очередь в зависимости от ориентации цилундра либо конуса относительно эллипсоида цилиндрические и конические проекции могут быть: прямыми - ось цилиндра или конуса совпадает с осью Земли, поперечными - ось цилиндра или конуса перпендикулярна оси Земли и косыми - ось цилиндра или конуса наклонена к оси Земли под углом, отличным от 0° и 90°.

Рис. Различие проекций по ориентации фигуры на которую проецируется эллипсоид относительно Земной оси.

Конус и цилиндр могут либо касаться поверхности эллипсоида, либо пересекать ее. Взависимости от этого проекция будет касательная или секущая. Рис.



Рис. Касательная и секущая проекции.

Нетрудно заметить (рис), что длина линии на эллипсоиде и длина линии на фигуре которую он проецируется будет одна и таже вдоль экватора, касательной к конусу для касательной проекции и вдоль секущих линий конуса и цилиндра при секущей проекции.

Т.е. для этих линий масштаб карты будет точно соответствовать масштабу эллипсоида. Для остальных точек карты масштаб будет несколько больше или меньше. Это необходимо учитывать при нарезке листов карты.

Касательная к конусу для касательной проекции и секущие конуса и цилиндра для секущей проекции называются стандартными параллелями.

Для азимутальной проекции также существует несколько разновидностей.

В зависимости от ориентации касательной к эллипсоиду плоскости азумутальная проеция может быль полярной, экваториальной или косой (рис)

Рис. Виды Азимутальной проекции по положению касательной плоскости.

В зависимости от положения воображаемого источника света, который проецирует эллипсоид на плоскость – в центре эллипсоида, на полюсе, или на бесконечном удалении различают гномоническую (цетрально-перспективную), стереографическую и ортографическую проекции рис

Рис. Виды азимутальной проеции по положению воображаемого источника света.

Географические координаты любой точки эллипсоида остаются неизменными при любом выборе картографической проекции (определяются только выбранной системой «географических» координат). Однако наряду с географическими, для проекций эллипсоида на плоскости используют так называемые спроектированная системы координат. Это прямоугольные системы координат - с началом координат в определенной точке, чаще всего имеющей координаты 0,0. Координаты в таких системах измеряются в единицах длины (метрах). Более подробно об этом речь пойдет ниже при рассмотрении конкретных проекций. Часто при упоминании о системы координат слова «географические» и «спроецированная», опускают, что приводит к некоторой путанице. Географические координаты определяются выбранным эллипсоидом и его привязками к геоиду, «спроецированные» - выбранным типом проекции уже после выбора эллипсоида. В зависимости от выбранной проекции одним «географическим» координатам могут соответствовать разные «спроецированные». И наобоот одним и тем же «спроецированным» координатам могут соответствовать разные «географические», если проекция применена к разным эллипсоидам. На картах могут обозначаться одновременно как те так и другие координаты и «спроецированные» тоже являются географическими, если понимать дословно, что они описывают Землю. Подчеркнем, еще раз, что принципиальным является то, что «спроецированные» координаты связаны с типом проекции и измеряются, в единицах длины (метрах), а «географические» не зависят от выбранной проекции.

Рассмотрим теперь более детально две картографические проекции, наиболее важные для практической работе в археологии. Это проекция Гаусса-Крюгера и проекция Universal Transverse Mercator (UTM) – разновидности равноугольной поперечно (transverse)-цилиндрической проекции. Проекцию называют по имени флпмпндского картографа Меркатора, впервые применившему прямую цилиндрическую проекцию при создании карт.

Первая из этих проекций была разработана немецким математиком Карлом Фридррихом Гауссом в 1820-30 гг. для картографирования Германии - так называемой ганноверской триангуляции. Как истинно великий математик, он решил эту частную задачу в общем виде и сделал проекцию, пригодную для картографирования всей Земли. Математическое описание проекции было опубликовано в 1866 г. В 1912-19 гг. другой немецкий математик Крюгер Иоганнес Генрих Луис провел исследование этой проекции и разработал для нее новый, более удобный математический аппарат. С этого времени проекция называется по их именам - проекцией Гаусса-Крюгера

Проекция UTM была разработана после Второй Мировой Войны, когда страны НАТО пришли к согласию, что необходима стандартная пространственная система координат. Так как каждая из армий стран НАТО использовала свою собственную пространственную систему координат, было невозможным точно координировать военные перемещения между странами. Опрделение параметров системы UTM было опубликовано Армией США в 1951 г.

Для получения картографической сетки и составления по ней карты в проекции Гаусса-Крюгера поверхность земного эллипсоида разбивают по меридианам на 60 зон по 6° каждая. Как нетрудно заметить это соответствует разбиению Земного шара на 6°-е зоны при построении карты масштаба 1:100000. Зоны нумеруются с запада на восток, начиная с 0°: зона 1 простирается с меридиана 0° до меридиана 6°, ее центральный меридиан 3°. Зона 2 - с 6° до 12°, и т. д. Нумерация номенклатурных листов начинается с 180°, например, лист N-39 находится в 9-й зоне.

Для связи долготы точки λ и номера n зоны в которой точка находится можно использовать соотношения:

в Восточном полушарии n = (целая часть от λ/ 6°) + 1, где λ – градусы восточной долготы

в Западном полушарии n = (целая часть от (360-λ)/ 6°) + 1, где λ – градусы западной долготы.

Рис. Разбиение на зоны в проекции Гауса-Крюгера.

Далле каждая из зон проектируется на поверхность цилиндра, а цилиндр разрезается по образующей и разворачивается на плоскость. Рис

Рис. Система координат в пределах 6 градусных зон в проекциях ГК и UTM.

В проекции Гаусса-Крюгера цилиндр касается эллипсоида по центральному меридиану и масштаб вдоль него равен 1. рис

Для каждой зоны отсчет координат X, Y ведется в метрах от начала координат зоны, причем Х расстояние от экватора (по вертикали!), а Y- по горизонтали. Вертикальные линии сетки параллельны центральному меридиану. Начало координат смещено, от центрального меридиана зоны на запад (или центр зоны смещен на восток, для обозначения этого смещения часто используют английский термин – «false easting») на 500000 м для того, чтобы координата Х была положительной во всей зоне т. е. координата X на центральном меридиане равна 500 000 м.

В южном полушарии в тех же целях вводится северное смещение (false northing) 10 000 000 м.

Координаты записыватся в виде Х=1111111.1 м, Y=6222222,2 м либо

X s =1111111.0 м, Y=6222222,2 м

X s - означает, что точка в южном полушарии

6 – первая или две первые цифры в Y координате (соответственно всего 7 или 8 цифр до запятой) означают номер зоны. (Санкт-Петербург, Пулково -30 град 19 минут восточной долготы 30:6+1=6 - 6 зона).

В проекции Гаусса–Крюгера для эллипсоида Красовского составлены все топографические карты СССР масштаба 1:500000 и крупнее применение этой проекции в СССР началовсь в 1928 году.

2. Проекция UTM в целом аналогична проеции Гаусса-Крюгера, однако нумерация 6-градусных зон ведется по другому. Отсчет зон происходит от 180 меридиана на восток, таким образом номер зоны в проекции UTM на 30 больше, чем системе координат Гаусса-Крюгера (Санкт-Петербург, Пулково -30 град 19 минут восточной долготы 30:6+1+30=36 - 36 зона).

Кроме того UTM - это проекция на секущий цилиндр и масштаб равен единице вдоль двух секущих линий, отстоящих от центрального меридиана на 180 000 м.

В проекции UTM координаты приводятся в виде: Северное полушарие, 36 зона, N (северное положение)=1111111.1 м, E (восточное положение)=222222.2м. Начало координат каждой зоны также смещено на 500000 м на запад от центрального меридиана и на 10000000 на юг от экватора для южного полушария.

В проекции UTM составлены современные карты многих стран Европы.

Сравнение проекций Гаусса-Крюгера и UTM приведено в таблице

Параметр UTM Гаус-Крюгер
Величина зоны 6 градусов 6 градусов
Нулевой меридиан -180 градусов 0 градусов (Гринвич)
Масштаб коэф = 1 Секущие на расст 180 км от центр.меридиана зоны Центральный меридиан зоны.
Центральный меридиан иоответствующая ему зона 3-9-15-21-27-33-39-45 и.т.д 31-32-33-34-35-35-37-38-… 3-9-15-21-27-33-39-45 и.т.д 1-2-3-4-5-6-7-8-…
Соответствующая центр мердиану зона 31 32 33 34
Масштабный коэфф. по центральному меридиану 0,9996
Ложный восток (м) 500 000 500 000
Ложный север (м) 0 – северное полушарие 0 – северное полушарие
10 000 000 – южное полушарие

Забегая вперед следует отметить, что большинство GPS навигаторов может показывать координаты в поекции UTM, но не могут в проекции Гаусса-Крюгера для эллипсода Красовского (т.е. в системе координат СК-42).

Каждый лист карты или плана имеет законченное оформление. Основными элементами листа являются: 1) собственно картографическое изображение участка земной поверхности, координатная сетка; 2) рамка листа, элементы которой определены математической основой; 3) зарамочное оформление (вспомогательное оснащение), которое включает данные, облегчающие пользование картой.

Картографическое изображение листа ограничивается внутренней рамкой в виде тонкой линии. Северная и южная стороны рамки - отрезки параллелей, восточная и западная - отрезки меридианов, значение которых определяется общей системой разграфки топографических карт. Значения долготы меридианов и широты параллелей, ограничивающих лист карты, подписываются возле углов рамки: долгота на продолжении меридианов, широта на продолжении параллелей.

На некотором расстоянии от внутренней рамки вычерчивается так называемая минутная рамка, на которой показаны выходы меридианов и параллелей. Рамка представляет собой двойную линию, расчерченную на отрезки, соответствующие линейной протяженности 1" меридиана или параллели. Количество минутных отрезков на северной и южной сторонах рамки равно разности значений долготы западной и восточной сторон. На западной и восточной сторонах рамки количество отрезков определяется разностью значений широты северной и южной сторон.

Завершающим элементом является внешняя рамка в виде утолщенной линии. Часто она составляет одно целое с минутной рамкой. В промежутках между ними дается разметка минутных отрезков на десятисекундные, границы которых отмечены точками. Это упрощает работу с картой.

На картах масштаба 1: 500 000 и 1: 1 000 000 дается картографическая сетка параллелей и меридианов, а на картах масштаба 1: 10 000 - 1: 200 000 - координатная сетка, или километровая, так как линии ее проводятся через целое число километров (1 км в масштабе 1: 10 000 - 1: 50 000, 2 км в масштабе 1: 100 000, 4 км в масштабе 1: 200 000).

Значения километровых линий подписываются в промежутках между внутренней и минутной рамками: абсциссы на концах горизонтальных линий, ординаты на концах вертикальных. У крайних линий указываются полные значения координат, у промежуточных - сокращенные (только десятки и единицы километров). Кроме обозначений на концах часть километровых линий имеет подписи координат внутри листа.

Важным элементом зарамочного оформления являются сведения о среднем на территорию листа карты магнитном склонении, относящиеся к моменту его определения, и годовом изменении магнитного склонения, которые помещают на топографических картах масштаба 1:200 000 и крупнее. Как известно магнитный и географический полюса не совпадают и стрелка копмаса показывает направление несколько отличающееся от на правленя на географический пояс. Величину этого отклонения и называют магнитным склонением. Оно может быть восточное, либо западное. Прибавив к величине магнитного склонения годовое изменение магнитного склонения, умноженное на число лет пошедщих с момента создания карты до текущего момента определить магнитное склонение на текущий момент.

В заключении темы об основах картографии остановимся кратко на истории картографии в России.

Первые карты с отображенной географической системой координат (карты России Ф. Годунова (издана в 1613г.), Г. Геритса, И. Массы, Н. Витсена) появились в XVII веке.

В соответствии с законодательным актом русского правительства (боярским “приговором”) от 10 января 1696 «О снятии чертежа Сибири на холсте с показанием в оном городов, селений, народов и расстояний между урочищами» С.У. Ремизовым (1642-1720) создается огромное (217х277 см) картографическое произведение «Чертеж всех сибирских градов и земель», ныне находится в постоянной экспозиции Государственного Эрмитажа. 1701 г. - 1 января – дата, стоящая на первом титульном листе Атласа России Ремизова.

В 1726-34 гг. выходит в свет первый Атлас Всероссийской Империи, руководителем работ по созданию которого был обер-секретарь Сената И. К. Кириллов. Атлас был издан на латинском языке, и состоял из 14 специальных и одной генеральной карты под заглавием "Atlas Imperii Russici". В 1745 году был издан "Атлас Всероссийский". Первоначально работами по составлению атласа руководил академик, астроном И. Н. Делиль, представивший в 1728 г. проект составления атласа Российской империи. Начиная с 1739 года выполнение работ по составлению атласа осуществлял учрежденный по инициативе Делиля Географический департамент Академии Наук, задачей которого было составление карт России. Атлас Делиля включает комментарии к картам, таблицу с географическими координатами 62 городов России, легенду карт и сами карты: Европейской России на 13 листах при масштабе 34 версты в дюйме (1:1428000), Азиатской России на 6 листах в меньшем масштабе и карту всей России на 2-х листах в масштабе около 206 верст в дюйме (1:8700000) Атлас издан в виде книги параллельными изданиями на русском и латинском языках с приложением Генеральной Карты.

При создании атласа Делиля большое внимание уделялось математической основе карт. Впервые в России проводилось астрономическое определение координат опорных пунктов. В таблице с координатами указан способ их определения – "по достоверным основаниям" либо "при сочинении карты" В течение XVIII века в общей сложности было сделано 67 полных астрономических определений координат, относящихся к наиболее важным городам России, а также выполнено 118 определений пунктов по широте. На территории Крыма были определены 3 пункта.

Со второй половины XVIII в. роль главного картографо-геодезического учреждения России постепенно стало выполнять Военное ведомство

В 1763 г. был создан Особый Генеральный штаб. Туда были отобраны несколько десятков офицеров, которыеофицеры командировались для снятия районов расположения войск, маршрутов их возможного следования, дорог, по которым проходили сообщения воинскими подразделениями. По сути эти офицеры были первыми российскими военными топографами, которые выполнили первичный объем работ по картографированию страны.

В 1797 г. было учреждено Депо карт. В декабре 1798 г. Депо получило право контроля над всеми топографическими и картографическими работами в империи, а в 1800 г. к нему был присоединен Географический департамент. Все это сделало Депо карт центральным картографическим учреждением страны. В 1810 г. Депо карт перешло в ведение военного министерства.

8 февраля (27 января по старому стилю) 1812 г., когда было высочайшее утверждено «Положение для Военного Топографического Депо» (далее ВТД), в которое Депо карт вошло как особое отделение – архив военно-топографического депо. Приказом Министра обороны Российской Федерации от 9 ноября 2003 г. становлена дата годового праздника ВТУ ГШ ВС РФ – 8 февраля.

В мае 1816 г. ВТД было введено в состав Главного штаба, при этом директором ВТД назначался начальник Главного штаба. С этого года ВТД (независимо от переименований) постоянно находится в составе Главного или Генерального штаба. ВТД руководило созданным в 1822 году Корпусом топографов (после 1866 года -Корпусом военных топографов)

Важнейшими результатами работ ВТД на протяжении почти целого столетия после его создания являются три большие карты. Первая - специальная карта европейской России на 158 листах, размером 25х19 дюймов, в масштабе 10 верст в одном дюйме (1:420000). Вторая - военно-топографической карты Европейской России в масштабе 3 версты в дюйме (1:126000), проекция карты коническая Бонна, долгота считается от Пулково.

Третья - карта Азиатской России на 8 листах размером 26х19 дюймов, в масштабе 100 верст в дюйме (1:42000000). Кроме этого для части России, особенно для приграничных районов были подготовлены карты в полуверстовом (1:21000) и верстовом (1:42000) масштабе (на эллипсоиде Бесселя и проекции Мюфлинга).

В 1918 г. в состав созданного Всероссийского Главного штаба вводится Военно-топографическое управление (правопреемник ВТД), которое в дальнейшем до 1940 г. принимало разные названия. В подчинении этого управления на ходится и корпус военных топографом. С 1940 г. по настоящее время оно именуется «Военно-топографическое управление Генерального штаба Вооруженных Сил».

В 1923 года Корпус военных топографов был преобразован в военно-топографическая службу.

В 1991 году, была образована Военно-топографическая служба Вооружённых сил России, которая в 2010 году была преобразована в Топографическую службу Вооружённых сил Российской Федерации.

Следует сказать так же о возможности использования топографических карт в исторических исследованиях. Мы будем говорить только о топографических картах, созданных в XVII веке и позднее, построение которых опиралось на математические законы и специально проводившееся систематическое обследование территории.

Общие топографические карты отражают физическое состояние местности и ее топонимику на момент составления карты.

Карты мелких масштабов (более 5 верст в дюйме – мельче 1:200000) возможно использовать для локализации указанных на них объектов, лишь с большой неопределенностью в координатах. Ценность содержащейся информации в возможности выявления изменения топонимики территории, главным образом при ее сохранении. Действительно, отсутствие топонима на более поздней карте может свидетельствовать об исчезновении объекта, изменении названия, либо просто о его ошибочном обозначении, в то же время как его наличие будет подтверждать более старую карту причем, как правило, в таких случаях возможна более точная локализация..

Карты крупных масштабов дают наиболее полную информацию о территории. Они могут быть непосредственно использованы для поиска обозначенных на них и сохранившихся до настоящего времени объектов. Развалины построек являются одним из элементов, входящим в легенду топографических карт, и, хотя, лишь немногие из обозначенных развалин относятся к памятникам археологии, их идентификация является вопросом, заслуживающим рассмотрения.

Координаты сохранившихся объектов, определенные по топографическим картам СССР, либо путем непосредственных измерений при помощи глобальной космической системы местоопределения (GPS), могут быть использованы для привязки старых карт к современным системам координат. Однако даже карты начала-середины XIX века могут на отдельных участках территории содержать значительные искажения пропорций местности и процедура привязки карт состоит не только из соотнесений начал отсчета координат, но требует неравномерного растяжения или сжатия отдельных участков карты, которое осуществляется на основе знания координат большого количества опорных точек (так называемая трансформация изображения карты).

После проведения привязки, возможно, осуществить сравнение знаков на карте, с объектами присутствующими на местности в настоящее время, либо существовавшими в периоды предшествующие или последующие времени ее создания. Для этого необходимо производить сопоставление имеющихся карт разных периодов и масштабов.

Крупномасштабные топографические карты XIX века представляются весьма полезными при работе с межевыми планами XVIII - XIX веков, как связующее звено между этими планами и крупномасштабными картами СССР. Межевые планы составлялись во многих случаях без обоснования на опорных пунктах, с ориентировкой по магнитному меридиану. В силу изменений характера местности, вызванных природными факторами и деятельностью человека, непосредственное сопоставление межевых и прочих детальных планов прошлого века и карт XX века не всегда возможно, однако сопоставление детальных планов прошлого века с современной им топографической картой представляется более простым.

Еще одна интересная возможность применения крупномасштабных карт их использование для изучения изменений контуров берега. За последние 2,5 тысячи лет уровень, например, Черного моря повысился, как минимум на несколько метров. Даже за прошедшие с момента создания первых карт Крыма в ВТД два столетия, положение береговой линии в ряде мест могло сместиться на расстояние от нескольких десятков до сотен метров, главным образов вследствие абразии. Такие изменения вполне соизмеримы с размерами достаточно крупных по античным меркам поселений. Выявление поглощенных морем участков территории может способствовать открытию новых археологических памятников.

Естественно, что основными источниками по территории Российской империи для указанных целей, могут выступать трехверстная и верстовая карты. Использование геоинформационных технологий позволяет накладывать друг на друга и привязывать их к современным картам, совмещать слои крупномасштабных топографических карт различного времени и далее дробить их на планы. Причем планы создаваемые сейчас, как и планы XX века, окажутся привязанными к планам XIX века.


Современные значения параметров Земли: Экваториальный радиус, 6378 км. Полярный радиус, 6357 км. Средний радиус Земли, 6371 км. Длина экватора, 40076 км. Длина меридиана, 40008 км...

Здесь, конечно, надо учитывать, что величина самого «стадия» вопрос дискуссионный.

Диоптр - прибор, служащий для направления (визирования) известной части угломерного инструмента на данный предмет. Направляемая часть снабжается обыкновенно двумя Д. - глазным , с узким прорезом, и предметным , с широким прорезом и волоском, натянутым посередине (http://www.wikiznanie.ru/ru-wz/index.php/Диоптр).

По материалам сайта http://ru.wikipedia.org/wiki/Советская _система_разгравки_и_номенклатуры_топографических_карт#cite_note-1

Герхард Меркатор (1512 - 1594) - латинизированное имя Герарда Кремера (и латинская, и германская фамилии означают «купец»), фламандского картографа и географа.

Описание зарамочного оформления приводится по работе: «Топография с основами геодезии». Под ред. А.С.Харченко и А.П.Божок. М - 1986

С 1938 года в течении 30 лет ВТУ (при Сталине, Маленкове, Хрущеве, Брежневе) возглавлял генерал М.К.Кудрявцев. Никто на подобной должности ни в одной армии мира такое время не держался.

Для выбора наивыгоднейшего пути при переходе судна из одного пункта в другой судоводитель пользуется картой.

Картой называют уменьшенное обобщенное изображение земной поверхности на плоскости, выполненное по определенному масштабу и способу.

Так как Земля имеет сферическую форму, ее поверхность невозможно изобразить на плоскости без искажений. Если разрезать любую сферическую поверхность на части (по меридианам) и наложить эти части на плоскость, то изображение этой поверхности на ней получилось бы искаженной и с разрывами. В экваториальной части были бы складки, а у полюсов - разрывы.

Для решения навигационных задач пользуются искаженными, плоскими изображениями земной поверхности - картами, в которых искажения обусловлены и соответствуют определенным математическим законам.

Математически определенные условные способы изображения на плоскости всей или части поверхности шара или эллипсоида вращения с малым сжатием называются картографической проекцией , а принятая при данной картографической проекции система изображения сети меридианов и параллелей - картографической сеткой.

Все существующие картографические проекции могут быть подразделены на классы по двум признакам: по характеру искажений и по способу построения картографической сетки.

По характеру искажений проекции разделяются на равноугольные (или конформные), равновеликие (или эквивалентные) и произвольные.

Равноугольные проекции. На этих проекциях углы не искажаются, т. е. углы на местности между какими-либо направлениями равны углам на карте между теми же направлениями. Бесконечно малые фигуры на карте в силу свойства равноугольности будут подобны тем же фигурам на Земле. Если остров круглой формы в природе, то и на кар- те в равноугольной проекции он изобразится кружком некоторого радиуса. Но линейные же размеры на картах этой проекции будут искажены.

Равновеликие проекции. На этих проекциях сохраняется пропорциональность площадей фигур, т. е. если площадь какого-либо участка на Земле в два раза больше другого, то на проекции изображение первого участка по площади тоже будет в два раза больше изображения второго. Однако в равновеликой проекции не сохраняется подобие фигур. Остров круглой формы будет изображен на проекции в виде равновеликого ему эллипса.

Произвольные проекции. Эти проекции не сохраняют ни подобия фигур, ни равенства площадей, но могут иметь какие-нибудь другие специальные свойства, необходимые для решения на них определенных практических задач. Наибольшее применение в судовождении из карт произвольных проекций получили ортодромические, на которых ортодромии (большие круги шара) изображаются прямыми линиями, а это очень важно при использовании некоторых радионавигационных систем при плавании по дуге большого круга.

Картографическая сетка для каждого класса проекций, в которой изображение меридианов и параллелей имеет наиболее простой вид, называется нормальной сеткой.

По способу построения картографической нормальной сетки все проекции делятся на конические, цилиндрические, азимутальные, условные и др.

Конические проекции. Проектирование координатных линий Земли производят по какому-либо из законов на внутреннюю поверхность описанного или секущего конуса, а затем, разрезав конус по образующей, разворачивают его на плоскость.

Для получения нормальной прямой конической сетки делают так, чтобы ось конуса совпадала с земной осью PNР S (рис, 33). В этом случае меридианы изображаются прямыми линиями, исходящими из одной точки, а параллели - дугами концентрических окружностей. Если ось конуса располагают под углом к земной оси, то такие сетки называют косыми коническими.

В зависимости от закона, выбранного для построения параллелей, конические проекции могут быть равноугольными, равновеликими и произвольными. Конические проекции применяются для географических карт.

Цилиндрические проекции. Картографическую нормальную сетку получают путем проектирования координатных линий Земли по какому-либо закону на боковую поверхность касательного или секущего цилиндра, ось которого совпадает с осью Земли (рис.34), и последующей развертки по образующей на плоскость.


В прямой нормальной проекции сетка получается из взаимно перпендикулярных прямых линий меридианов Л, В, С, D, F, G и параллелей аа",bb",сс При этом без больших искажений будут изображены участки поверхности экваториальных районов (см, окружность К и ее проекцию К на рис. 34), но участки полярных районов в этом случае не могут быть спроектированы.

Если повернуть цилиндр так, чтобы ось его расположилась в плоскости экватора, а поверхность его касалась полюсов, то получается поперечная цилиндрическая проекция (например, поперечная цилиндрическая проекция Гаусса). Если цилиндр поставить под другим углом к оси Земли, то получаются косые картографические сетки. На этих сетках меридианы и параллели изображаются кривыми линиями.




Рис. 34


Азимутальные проекции. Нормальную картографическую сетку получают проектированием координатных линий Земли на так называемую картинную плоскость Q (рис. 35) - касательную к полюсу Земли. Меридианы нормальной сетки на проекции имеют вид радиальных прямых, исходящих из. центральной точки проекции P N под угла- ми, равными соответствующим углам в натуре, а параллели - концентрическими окружностями с центром в полюсе. Картинную плоскость можно располагать в любой точке земной поверхности, и точку касания называют центральной точкой проекции и принимают за зенит.

Азимутальная проекция зависит от того, какими радиусами проводятся параллели. Подчиняя радиусы той или иной зависимости от широты, получают различные азимутальные проекции, удовлетворяющие условиям либо равноугольности, либо равновеликости.


Рис. 35


Перспективные проекции. Если картографическую сетку получают проектированием меридианов и параллелей на плоскость по законам линейной перспективы из постоянной точки зрения Т.З. (см. рис. 35), то такие проекции называют перспективными. Плоскость можно располагать на любом расстоянии от Земли или так, чтобы она касалась ее. Точка зрения должна находиться на так называемом основном диаметре земного шара или на его продолжении, причем картинная плоскость должна быть перпендикулярна основному диаметру.

Когда основной диаметр проходит через полюс Земли, проекция называется прямой или полярной (см. рис. 35); при совпадении основного диаметра с плоскостью экватора проекция называется поперечной или экваториальной, а при других положениях основного диаметра проекции называются косыми или горизонтальными.

Кроме того, перспективные проекции зависят от расположения точки зрения от центра Земли на основном диаметре. Когда точка зрения совпадает с центром Земли, проекции называются центральными или гномоническими; когда точка зрения находится на поверхности Землистереографическими; при удалении точки зрения на какое-либо известное расстояние от Земли проекции называются внешними, и при удалении точки зрения в бесконечность -ортографическими.

На полярных перспективных проекциях меридианы и параллели изображаются аналогично полярной азимутальной проекции, но расстояния, между параллелями получаются разными и обусловлены положением точки зрения на линии основного диаметра.

На поперечных и косых перспективных проекциях меридианы и параллели изображаются в виде эллипсов, гипербол, окружностей, парабол или прямых линий.

Из особенностей, свойственных перспективным проекциям, следует отметить, что на стереографической проекции любой круг, проведенный на земной поверхности, изображается в виде окружности; на центральной проекции всякий большой круг, проведенный на земной поверхности, изображается в виде прямой линии, в связи с чем в некоторых частных случаях эту проекцию представляется целесообразным применять в навигации.

Условные проекции. К этой категории относятся все проекции, которые по способу построения нельзя отнести ни к одному из перечисленных выше видов проекций. Они обычно удовлетворяют каким-нибудь заранее поставленным условиям, в зависимости от тех целей, для которых требуется карта. Число условных проекций не ограничено.

Небольшие участки земной поверхности до 85 км можно изобразить на плоскости с сохранением на них подобия нанесенных фигур и площадей. Такие плоские изображения небольших участков земной поверхности, на которых искажениями практически можно пренебрегать, называются планами.

Планы обычно составляют без всяких проекций путем непосредственной съемки и на них наносят все подробности снимаемого участка.

Из рассмотренных выше проекций в судовождении в основном применяются: равноугольная, цилиндрическая, азимутальная перспективная, гномоническая и азимутальная перспективная стереографическая.

Масштабы

Масштабом карты называется отношение бесконечно малого элемента линии в данной точке и по данному направлению на карте к соответствующему бесконечно малому элементу линии на местности.

Этот масштаб называется частным масштабом, и каждая точка карты имеет свой, присущий только ей, частный масштаб. На картах, кроме частного, различают еще главный масштаб, являющийся исходной величиной для расчетов размеров карты.

Главным называется масштаб, величина которого сохраняется лишь по определенным линиям и направлениям, в зависимости от характера построения карты. На всех остальных частях одной и той же карты величина масштаба больше или меньше главного, т. е. этим частям карты будут соответствовать свои частные масштабы.

Отношение частного масштаба карты в данной точке по данному направлению к главному называется увеличением масштаба , а разность между увеличением масштаба и единицей - относительным искажением длины. На равноугольной цилиндрической проекции масштаб изменяется при переходе с одной параллели на другую. Параллель, по которой соблюден главный масштаб, называется главной параллелью. По мере удаления от главной параллели в сторону полюса величины частных масштабов на одной и той же карте увеличиваются и, наоборот, по мере удаления от главной параллели в сторону экватора величины частных масштабов уменьшаются.

Если масштаб выражается в виде простой дроби (или отношения), делимое которой - единица, а делитель - число, указывающее, скольким единицам длины на горизонтальной проекции данного участка земной поверхности соответствует одна единица длины на карте, то такой масштаб называется численным или числовым. Например, числовой масштаб 1/100000 (1:100000) означает, что 1 см на карте соответствует 100 000 см на местности.

Для определения длины измеряемых линий пользуются линейным масштабом, показывающим, сколько единиц длины высшего наименования на местности содержится в одной единице длины низшего наименования на карте (плане).

Например, масштаб карты «5 миль в I см» или 10 км в 1 см» и т. п. Это значит, что расстояние в 5 миль (или 10 км) на местности соответствует 1 см на карте (плане).

Линейный масштаб на плане или карте помещают под рамкой в виде прямой, разделенной на несколько делений; начальную точку линейного масштаба обозначают цифрой 0, а затем против каждого или некоторых последующих его делений ставят цифры, показывающие соответствующие этим делениям расстояния на местности.

Переход от числового масштаба к линейному осуществляется простым пересчетом мер длины.

Например, чтобы перейти от числового масштаба 1/100000 к линейному, нужно 100 000 см перевести в километры или мили. 100 000 см = 1 км, или, приближенно, 0,54 мили, следовательно, данная карта составлена в масштабе 1 км в 1 см, или 0,54 мили в 1 см.

Если известен линейный масштаб, например 2 мили в 1 см, то для перехода к числовому необходимо 2 мили перевести в сантиметры и сделать запись в виде дроби с числителем единица: 2 1852 100 - = 370 400 см, следовательно, числовой масштаб данной карты 1/370400

ЛЕКЦИЯ №4

КАРТОГРАФИЧЕСКИЕ ПРОЕКЦИИ

K артографическими проекциями называют математические способы изображения на плоскости поверхности земного эллипсоида или шара. Изображение градусной сетки Земли на карте называют картографической сеткой, а точки пересечения меридианов и параллелей - узловыми точками.

Построение карт включает сначала изображение на плоскости (бумаге) картографической сетки, а затем заполнение клеток сетки контурами и другими обозначениями географических объектов. Построение сетки может быть осуществлено различными способами. Так, при применении перспективных проекций картографическая сетка получается как бы проектированием узловых точек с поверхности шара на плоскость (рис.4) или на другую геометрическую поверхность (конус, цилиндр), которая затем развертывается в плоскость без искажений. Пример практического построения перспективным способом картографической сетки северного полушария приведен на рисунке 4.

Картинная плоскость Р касается здесь поверхности северного полушария в точке Северного полюса. Прямолинейными проектирующими лучами из центра К узловые точки пересечения меридиана с экватором и параллелями 30° и 60° широты переносятся на картинную плоскость. Тем самым определяются радиусы этих параллелей на плоскости. Меридианы изображаются на плоскости прямыми линиями, исходящими из точки полюса и отстоящими друг от друга под равными углами. На рисунке изображена половина сетки. Вторую половину легко мысленно представить, а при необходимости и построить.

Построение карты методами перспективных проекций не требует использования высшей математики, поэтому их начали применять еще задолго до ее разработки, с глубокой древности. Ныне в картографическом производстве карты строят неперспективными метода ми - путем расчета положения узловых точек картографической сетки на плоскости. Расчет выполняют, решая систему уравнений, связывающих широту и долготу узловых точек с их прямоугольными координатами X и Y на плоскости. Применяемые при этом уравнения довольно сложны. Примером сравнительно простых формул могут быть следующие:

Х=R´ sin j

Y= R ´ cos j-sinl.

В этих уравнениях R - радиус (средний) Земли, округленно принимаемый за 6370 км, а j, l - географические координаты узловых точек.

Классификация картографических проекций

Применяемые для построения географических карт проекции можно группировать по разным классификационным признакам, из которых основными являются: а) вид «вспомогательной поверхности» и ее ориентировка, б) характер искажений.

Классификация картографических проекций по виду вспомога тельной поверхности и ее ориентировке. Картографические сетки карт получают в современном производстве аналитическим путем. Однако в названиях проекций сохранены по традиции термины «цилиндрические», «конические» и другие, соответствующие способам геометрических построений, к которым в прошлом прибегали для построения сеток) Использование при объяснении этих терминов поможет уяснить особенности полученных на их основе картографических сеток. В настоящее время данный классификационный признак трактуется как вид нормальной картографической сетки

Цилиндрические проекции . При построении цилиндрических проекций представляют, что узловые точки, а значит, и линии градусной сети проектируют с шаровой поверхности глобуса на боковую поверхность цилиндра, ось которого совпадает с осью глобуса, а диаметры обоих тел равны (рис.5). Используя касательный цилиндр в качестве вспомогательной поверхности, учитывают, что узловые точки экватора - А, В, С, D и другие одновременно находятся и на глобусе, и на цилиндре. Другие же узловые точки переносятся с глобуса на поверхность цилиндра. Так, точки Е и F , расположенные на одном меридиане с точкой С, переносятся в точки £" и F \ При этом они на цилиндре расположатся на прямой, перпендикулярной линии экватора. Это и определяет форму меридианов в данной проекции. Параллели на поверхность цилиндра проектируются в форме окружностей, параллельных линии экватора (например, параллель, в которой находятся точки F [ и e").

При развертке поверхности цилиндра в плоскость все линии картографической сетки оказываются прямыми, меридианы перпендикулярны параллелям и отстоят друг от друга на равных расстояниях. Таков общий вид картографической сетки, построенной с помощью цилиндра, касательного к глобусу и имеющего с ним общую ось

У таких цилиндрических проекций линией нулевых искажений служит экватор, а изоколы имеют форму прямых, параллельных экватору; главные направления совпадают с линиями картографической сетки, при этом с удалением от экватора искажения увеличиваются.

В этих проекциях применяют также проектирование на цилиндры с диаметром меньшим, чем диаметр глобуса, и по-разному относительно глобуса расположенные. В зависимости от ориентировки цилиндра полученные картографические сетки (как и сами проекции) называют нормальными, косыми или поперечными. Нормальные цилиндрические сетки строят на цилиндрах, оси которых совпадают с осью глобуса; косые - на цилиндрах, ось которых составляет с осью глобуса острый угол; поперечные сетки образуются с помощью цилиндра, ось которого составляет прямой угол с осью глобуса.

Нормальная цилиндрическая картографическая сетка на касательном цилиндре имеет линию нулевых искажений на экваторе. Нормальная сетка на секущем цилиндре имеет две линии нулевых иска­жений, расположенных вдоль параллелей сечения цилиндра с глобусом (с широтами j1 и j2). При этом, вследствие сжатия участка сетки между линиями нулевых искажений, масштабы длин по параллелям оказываются здесь меньше главного; во внешнюю же сторону от линий нулевых искажений они больше главного масштаба - как результат растяжения параллелей при проектировании с глобуса на цилиндр.

Косая цилиндрическая сетка на секущем цилиндре имеет в северной части линию нулевых искажений в форме прямой, перпендикулярной к среднему меридиану карты и касательной к параллели с широтой j; внешний вид сетки представлен кривыми линиями меридианов и параллелей.

Примером поперечной цилиндрической проекции может служить проекция Гаусса-Крюгера, в которой каждый поперечно расположенный цилиндр используется для проектирования поверхности одной зоны Гаусса.

Конические проекции. Для построения картографических сеток в конических проекциях используют нормальные конусы - касательный или секущий.

рис.6

рис.7

У всех нормальных конических проекций специфичен внешний вид картографической сетки: меридианы - прямые, сходящиеся в точке, изображающей на плоскости вершину конуса, параллели - дуги концентрических окружностей с центром в точке схода меридианов. У сеток, построенных на касательных конусах, одна линия нулевых искажений, с удалением от которой искажения увеличиваются (рис.6). Изоколы у них имеют форму дуг окружностей, совпадающих с параллелями. Сетки, построенные на секущем конусе (рис. 6 Б), имеют тот же облик, но иное распределение искажений: линий нулевых искажений у них две. Между ними частные масштабы вдоль параллелей меньше главного, а на внешних участках сетки - больше главного масштаба. Главные направления у всех нормальных конических сеток совпадают с меридианами и параллелями.

Азимутальные проекции. Азимутальными называют картографические сетки, которые получают проектированием градусной сетки глобуса на касательную плоскость (рис.). Нормальную ази мутальную сетку получают в результате переноса на плоскость, касательную к глобусу в точке полюса (рис. 7 А), попереч ную - при касании плоскости в точке экватора (рис. 7, Б) и ко сую - при переносе на иначе ориентированную плоскость (рис.7 , В). Внешний вид сеток хорошо виден на рисунке 7.

Все азимутальные сетки имеют в отношении искажений следующие общие свойства: точкой нулевых искажений (ТНИ) служит точка касания глобуса с плоскостью (обычно она располагается в центре карты); величины искажений с удалением во все стороны от ТНИ возрастают, поэтому изоколы у азимутальных проекций имеют форму концентрических окружностей с центром в ТНИ. Главные направления следуют по радиусу и перпендикулярным им линиям. Название этой группы проекций связано с тем, что на картографической сетке, построенной в азимутальной проекции, в бывшей точке касания глобуса и плоскости (т. е. в точке нулевых искажений) азимуты всех направлений не искажаются

Поликонические проекции. Построение сетки в поликонической проекции можно представить путем проектирования участков градусной сетки глобуса на поверхность нескольких касательных конусов и последующей развертки в плоскость образовавшихся на поверхности конусов полос. Общий принцип такого проектирования показан на рисунке 8. Буквами на рисунке 8, А обозначены вершины конусов.,На каждый проектируют широтный участок поверхности глобуса, примыкающий к параллели касания соответствующего конуса. После развертки конусов получают изображение этих участков в виде полос на плоскости; полосы соприкасаются по среднему меридиану карты. Окончательный вид сетка получает после ликвидации разрывов между полосами путем растяжений.

рис.8

Для внешнего облика картографических сеток в поликонической проекции характерно, что меридианы имеют форму кривых линий (кроме среднего - прямого), а параллели - дуги эксцентрических окружностей. В поликонических проекциях, используемых для построения мировых карт, приэкваториальный участок проектируют на касательный цилиндр, поэтому на полученной сетке экватор имеет форму прямой линии, перпендикулярной среднему меридиану.

Картографические сетки в поликонических проекциях имеют в приэкваториальных участках масштабы длин, близкие к главным. Вдоль меридианов и параллелей они увеличены сравнительно с главным масштабом, что особенно заметно в периферийных частях. Соответственно в этих частях значительно искажены и площади

Условные проекции . К условным относят такие проекции, в которых вид получаемых картографических сеток невозможно представить на основе проектирования на какую-нибудь вспомогательную поверхность. Получают их часто аналитическим путем (на основе решения систем уравнений). Это очень большая группа проекций. Из них выделяют по особенностям внешнего вида картографической сетки псевдоцилиндрические проекции (рис.9). Как видно из рисунка, у псевдоцилиндрических проекций экватор и параллели - прямые, параллельные друг другу (что роднит их с цилиндрическими проекциями), а меридианы у них - кривые линии.

Рис.9

.

Вид эллипсов искажений в проекциях равновеликих - А, равноугольных - Б, произвольных - В, в том числе, равнопромежуточных по меридиану - Г и равнопромежуточных по параллели - Д. На схемах показано искажение угла 45°

Картографические проекции различают по характеру искажений и по построению. По характеру искажений выделяют проекции:

1) Равноугольные, сохраняющие величину углов, здесь а= b . Эллипсы искажений имеют вид окружностей разной площади.

2) Равновеликие, сохраняющие площади объектов. В них р =mn cos e =l; следовательно, увеличение масштаба длин по параллелям вызывает уменьшение масштаба длин по меридианам и искажение углов и форм.

3) Произвольные, искажающие углы и площади. Среди них выделяется группа равнопромежуточных проекций, в которых сохраняется главный масштаб по одному из главных направлений.

Большое практическое значение имеет подразделение проекций по территориальному охвату на проекции для карт мира, полушарий, материков и океанов, государств и их частей.

Ниже приведены таблицы внешних признаков широко распространенных проекций для разных территорий, составленные.

Таблица 1

Таблица для определения картографических сеток карт восточного и западного полушарий

Как изменяются промежутки по:

Среднему меридиану и экватору

Меридиану и экватору от центра к краям полушария

Какими линиями изображаются параллели

Название проекций

Уменьшаются от 1 приблизительно до 0,7

Кривыми, увеличивающими кривизну с удалением от среднего меридиана к крайним

Равновеликая экваториальная азимутальная Ламберта

Уменьшаются от 1 приблизительно до 0,8

Экваториальная азимутальная Гинзбурга

Увеличиваются от 1 приблизительно до 2

Дугами окружностей

Экваториальная стереографическая

Сильно уменьшаются

Экваториальная ортографическая

Таблица 2

Таблица для определения проекций картографических сеток мировых карт

Форма рамки, карты или вид всей сетки

Какими линиями изображаются параллели и меридианы

Как изменяются, промежутки по среднему меридиану с удалением от экватора

Название проекции

Рамка-прямоугольник

Параллели-прямые, меридианы-кривые

Увеличиваются между параллелями 70 и 80° почти в 1,5 раза больше чем между экватором и параллелью 10°

Псевдоцилин-дрическая проекция ЦНИИГАиК

Сетка и рамка- прямоугольник

Параллели и меридианы-прямые

Сильно увеличиваются: между параллелями 60 и 80° приблизительно в 3 раза больше, чем между экватором и параллелью 20°

Цилиндрическая Меркатора

Сетка и рамка- прямоугольник

Параллели меридианы-прямые

Увеличиваются:

параллелями

приблизительно

в 2 2/з раза

больше, чем

между экватором

и параллелью 20°

Цилиндрическая Урмаева

Определение картографических проекций географических карт определяют при помощи таблиц и вычислений. Прежде всего выясняют, какая территория изображена на анализируемой карте и какой таблицей следует воспользоваться при определении проекции. Затем определяют вид параллелей и меридианов и характер промежутков между параллелями по прямому меридиану. Определяют также характер меридианов: не являются ли они прямыми или же прямой только средний меридиан а остальные - кривые, симметричные относительно среднего. Прямолинейность меридианов проверяется при помощи линейки. Если меридианы оказались прямыми, уточняют, параллельны ли они между собой. При рассмотрении параллелей выясняют, являются ли параллели дугами окружностей, кривыми или прямыми линиями. Это устанавливается путем сравнения стрелок провеса для дуг равных хорд: при равных стрелках провеса линии - дуги окружностей, при неравных стрелках провеса параллели - сложные кривые. Для выяснения характера кривизны линии можно поступить также следующим образом. На листе кальки отмечают три точки этой кривой. Если при передвижении листка вдоль линии все три точки совпадут с кривой, то данная кривая будет дугой окружности. Если параллели окажутся дугами, следует проверить их концентричность, для чего измеряют расстояния между соседними параллелями в середине карты и на краю. При постоянстве этих расстояний дуги концентричны.

Как прямые конические, так и азимутальные полярные проекции имеют прямолинейные, расходящиеся из одной точки меридианы. Участок сетки прямой конической проекции можно отличить от участка сетки полярной азимутальной проекции путем измерения угла между двумя меридианами, отстоящими друг от друга на 60-90°. Если этот угол оказался меньше соответствующей разности долгот, подписанных на карте, то это - коническая проекция, если равен разности долгот - азимутальная.

Определение средних размеров искажений для географических объектов может быть выполнено двумя путями:

1) посредством измерения отрезков меридианов и параллелей по карте и последующих вычислений по формулам;

2) по картам с изоколами.

В первом случае сначала вычисляют частные масштабы по меридианам (т) и параллелям \{п) и выражают их в долях главного масштаба:

где -l 1 длина дуги меридиана на карте, L 1 -длина дуги меридиана на эллипсоиде, l 2 - длина дуги параллели на карте, L 2 - длина дуги параллели на эллипсоиде { L 1 и L 2 берут из таблиц приложения; М - знаменатель главного масштаба.

Затем измеряют на карте транспортиром угол e между касательными к параллели и меридиану в заданной точке; определяют отклонение угла q от 90°; e =q -90°.

На основе известных формул, вычисляют величины искажений р, a , b , w , к.

Во втором случае – используют карты изокол. С этих карт берут значения для 2-3 точек объектов с точностью, допускаемой визуальным интерполированием, затем можно установить, к какой группе по характеру искажений относится данная проекция.

КАРТОГРАФИЧЕСКАЯ ПРОЕКЦИЯ И ЕЁ ВИДЫ

Обоснование выбора темы параграфа

Для своей работы мы выбрали тему «Картографические проекции». В настоящее время в учебниках географии данная тема практически не рассматривается, сведения о различных картографических проекциях можно увидеть только в атласе 6 класса. Мы считаем, что учащимся будет интересно знать, по каким принципам выбираются и строятся различные проекции географических карт. Вопросы о картографических проекциях часто затрагиваются в олимпиадных заданиях. Встречаются они и на ЕГЭ. Кроме того, карты атласов, как правило, построены в разных проекциях, что вызывает вопросы у учащихся.Картографическая проекция является основой для построения карт. Тем самым, знание основных принципов построения картографических проекций пригодится учащимся при выборе профессий летчика, моряка, геолога. В связи с этим, мы считаем целесообразным включить данный материал в учебник географии. Поскольку на уровне 6 класса математическая подготовка учащихся еще не такая сильная, на наш взгляд, имеет смысл изучать данную тему в начале 7го класса в разделе «Общие особенности природы Земли» при рассмотрении материала об источниках географической информации.

Картографические проекции

Географическую карту невозможно представить себе без системы параллелей и меридиан, формирующих её градусную сеть . Именно они позволяют нам точно определить местоположение объектов, именно по ним определяются стороны горизонта на карте. Даже расстояния по карте возможно вычислить с помощью градусной сети. Если посмотреть на карты в атласе, можно заметить, что градусная сеть на разных картах выглядит по-разному. На одних картах параллели и меридианы пересекаются под прямым углом и представляют собой сетку из параллельных и перпендикулярных прямых. На других картах меридианы веером расходятся из одной тоски, а параллели представлены в виде дуг. На карте Антарктиды меридианы похожи на снежинку, а параллели отходят от центра концентрическими кругами.

СОЗДАНИЕ КАРТ

Созданием картографических произведений занимается раздел картографии картоведение. Картоведение - это отрасль науки, производства и техники, охватывающая историю картографии и изучение, создание и использование картографических произведений. Создание карт выполняется с помощью картографических проекций - способа перехода от реальной, геометрически сложной земной поверхности к плоскости карты. Для этого сначала переходят к математически правильной фигурe эллипсоида или пули, а затем проектируют изображение на плоскость с помощью математических зависимостей.

Виды проекций

Что же собой представляет картографическая проекция?

Картографи́ческая прое́кция - математически определенный способ отображения поверхности эллипсоида на плоскости. Принятая при данной картографической проекции система изображения сети меридианов и параллелей называется картографической сеткой .

По способу построения картографической нормальной сетки все проекции делятся на конические, цилиндрические, условные, азимутальные, и др.

На конических проекциях при переносе координатных линий Земли на плоскость используется конус.После получения изображения на его поверхности, конус разрезают и разворачивают на плоскость.Для получения конической сетки необходимо точное совпадение оси конуса с осью Земли. На полученной карте параллели изображаются дугами окружностей, меридианы - прямыми линиями, исходящими из одной точки. В такой проекции можно изобразить северное или южное полушарие нашей планеты, Северную Америку или Евразию. В процессе изучения географии конические проекции чаще всего будут встречаться в ваших атласах при построении карты России.

Картографические проекции

На цилиндрических проекциях получение нормальной сетки осуществляется путем проектирования её на стенки цилиндра, ось которого совпадает с Земной осью. Затем его разворачивают на плоскость. Сетка получают из взаимно перпендикулярных прямых линий параллелей и меридианов.

На азимутальных проекциях нормальная сетка получается сразу на плоскости проекции. Для этого центр плоскости совмещается с полюсом Земли. В результате параллели имеют вид концентрических окружностей, радиус которых увеличивается по мере удаления от центра, а меридианы выглядят прямыми, пересекающимися в центре.

Условные проекции строятся по каким-либо заранее поставленным условиям. Эту категории нельзя отнести к другим видам проекции. Их число неограниченно.

Конечно, перенести изображение с поверхности шара на плоскость абсолютно точно невозможно. Если мы попробуем это сделать, неизбежно получим разрыв в изображении. Тем не менее, на карте мы этих разрывов не видим, да и при переносе изображения на поверхности цилиндра, конуса или плоскость изображение получается единым. В чем же дело?

Проецируя точки с поверхности Земного шара на поверхности будущей карты, мы получаем искаженные изображения. Если представить проектирование поверхности Земли на плоскость в виде тени, которая получится при подсвечивании объекта из центра Земли, то чем дальше объект от места непосредственного соприкосновения поверхности карты с шаром, тем больше изменится его изображение.

По характеру искажений все проекции делят на равноугольные, равновеликие и произвольные.

На равноугольных проекциях углы на местности между какими-либо направлениями равны углам на карте между теми же направлениями, то есть они(углы) не имеют искажений. Масштаб зависит только от положения точки и не зависит от направления. Угол на местности всегда равен углу на карте, линия, прямая на местности - прямая на карте. Бесконечно малые фигуры на карте в силу свойства равноугольности будут подобны тем же фигурам на Земле. Но линейные размеры на картах этой проекции будут иметь искажения.Представьте себе идеально круглое озеро.В каком бы месте полученной карты оно ни располагалось, его форма останется круглой, а вот размеры могут существенно измениться. Русло реки будет изгибаться так же, как изгибается на местности, но расстояние между его изгибами не будет соответствовать реальному.

Равновеликая проекция

На равновеликих проекциях не искажаются площади, сохраняется их пропорциональность. Но сильно искажены углы и формы. При перенесении его очертаний на карту в месте соприкосновения шара и поверхности будущей карты, его изображение будет таким же круглым. В то же время, чем дальше оно будет расположено от линии соприкосновения, тем больше будут вытягиваться его очертания, хотя площадь озера будет неизменной.

На произвольных проекциях искажены и углы, и площади, не сохранятся подобие фигур, но имеют какие-либо специальные свойства, не присущие другим проекциям, поэтому они наиболее употребляемые.

Карты создаются либо непосредственно в результате топографических съемок местности, либо на основе других карт, то есть, в конечном счете, опять-таки в результате съемки. В настоящее время, подавляющее большинство топографических карт создастся с помощью метода аэрофотосъемки, который позволяет в короткий срок получить топографическую карту огромной территории. С летящего самолета с помощью особых фотографических аппаратов делается много снимков (аэрофотоснимки) местности. Потом эти аэрофотоснимки обрабатывают на специальных приборах. Прежде чем стать картой, серия аэрофотоснимков проходит в производстве длинный и сложный путь.

Эллипсоид

Все мелкомасштабные общегеографические и специальные карты (в том числе и электронные GPS карты) создаются на основе других карт, только более крупного масштаба.

Термины

Градусная сеть - система меридианов и параллелей на географических картах и глобусах, служащая для отсчёта географических координат точек земной поверхности - долгот и широт.

Эллипсоид - замкнутая поверхность. Эллипсоид можно получить из поверхности шара, если шар сжать (растянуть) в произвольных отношениях в трех взаимно перпендикулярных направлениях.

Нормальная сетка - картографическая сетка для каждого класса проекций, изображение меридианов и параллелей которой имеет наиболее простой вид.

Концентрические окружности - окружности, имею­щие общий центр и лежащие в одной плоскости.

Вопросы

1. Что такое картографическая проекция? 2. Какие виды картографических проекций вы знаете? 3. Какой раздел картографии занимается созданием проекций? 4. От чего зависит характер искажений на карте?

Поработайте дома

1.Заполните в тетради таблицу, отражающую характеристики различных картографических проекций.

2.Определите, в каких проекциях построены карты атласа. Какой вид проекции использовался чаще? Почему?

Задание для любознательных

Пользуясь дополнительными источниками информации, найдите, в какой проекции построена карта полушарий.

Информационные ресурсы для углубленного изучения данной темы

Литература по теме

А.М.Берлянт "Карта - второй язык географии:(очерки о картографии)".192с. МОСКВА. ПРОСВЕЩЕНИЕ. 1985

Географическими картами человек пользуется с глубокой древности. Первые попытки изобразить были предприняты еще в Древней Греции такими учеными, как Эратосфен и Гиппарх. Естественно, с тех пор картография как наука далеко продвинулась вперед. Современные карты создаются с помощью съемки со спутников и с использованием компьютерных технологий, что, конечно же, способствует увеличению их точности. И все же, на каждой географической карте присутствуют некоторые искажения относительно натуральных форм, углов или расстояний на земной поверхности. Характер этих искажений, а, следовательно, и точность карты, зависит от видов картографических проекций, использованных при создании конкретной карты.

Понятие картографическая проекция

Разберем подробнее, что такое картографическая проекция и какие их виды применяются в современной картографии.

Картографическая проекция - это изображение на плоскости. Более глубокое с научной точки зрения определение звучит так: картографическая проекция - это способ отображения точек поверхности Земли на некоторой плоскости, при котором между координатами соответствующих точек отображаемой и отображенной поверхностей устанавливается некоторая аналитическая зависимость.

Как строится картографическая проекция?

Построение любых видов картографических проекций происходит в два этапа.

  1. Во-первых, геометрически неправильная поверхность Земли отображается на некоторую математически правильную поверхность, которую называют поверхностью относимости. Для наиболее точного приближения в этом качестве чаще всего используют геоид - геометрическое тело, ограниченное водной поверхностью всех морей и океанов, связанных между собой (уровень моря) и имеющих единую водную массу. В каждой точке поверхности геоида сила тяжести приложена нормально. Однако геоид, как и физическую поверхность планеты, также нельзя выразить единым математическим законом. Поэтому в качестве поверхности относимости вместо геоида принимают эллипсоид вращения, придавая ему максимальное подобие геоиду с помощью степени сжатия и ориентации в теле Земли. Называют это тело земным эллипсоидом или референц-эллипсоидом, причем в разных странах для них принимают различные параметры.
  2. Во-вторых, принятая поверхность относимости (референц-эллипсоид) переносится на плоскость с использованием той или иной аналитической зависимости. В итоге получаем плоскую картографическую проекцию

Искажение проекций

А вы не задумывались, почему на разных картах очертания материков немного различаются? На одних картографических проекциях некоторые части света выглядят больше или меньше относительно каких-либо ориентиров, чем на других. Все дело в искажении, с которым проекции Земли переносятся на плоскую поверхность.

Но почему картографические проекции отображают в искаженном виде? Ответ довольно прост. Сферическую поверхность не представляется возможным развернуть на плоскости, избежав складок или разрывов. Поэтому и изображение с нее нельзя отобразить, избежав искажения.

Методы получения проекций

Изучая картографические проекции, их виды и свойства необходимо упомянуть о методах их построения. Итак, картографические проекции получают, используя два основных метода:

  • геометрический;
  • аналитический.

В основе геометрического метода лежат закономерности линейной перспективы. Наша планета условно принимается сферой некоторого радиуса и проецируется на цилиндрическую или коническую поверхность, которая может либо касаться, либо рассекать ее.

Проекции, полученные подобным способом, называются перспективными. В зависимости от положения точки наблюдения относительно поверхности Земли перспективные проекции разделяют на виды:

  • гномонические или центральные (когда точка зрения совмещена с центром земной сферы);
  • стереографические (в этом случае точка наблюдения расположена на поверхности относимости);
  • ортографическая (когда поверхность наблюдается из любой точки, находящейся вне сферы Земли; проекция строится переносом точек сферы с помощью параллельных линий, перпендикулярных к отображающей поверхности).

Аналитический метод построения картографических проекций базируется на математических выражениях, связывающих точки на сфере относимости и плоскости отображения. Такой метод является более универсальным и гибким, позволяя создавать произвольные проекции по заранее заданному характеру искажения.

Виды картографических проекций в географии

Для создания географических карт используют множество видов проекций Земли. Их классифицируют по различным признакам. В России применяется классификация Каврайского, которая использует четыре критерия, определяющих основные виды картографических проекций. В качестве характерных классифицирующих параметров используют:

  • характер искажения;
  • форму отображения координатных линий нормальной сетки;
  • расположение точки полюса в нормальной координатной системе;
  • способ применения.

Итак, какие существуют виды картографических проекций согласно данной классификации?

Классификация проекций

По характеру искажения

Как упоминалось выше, искажение, в сущности, является неотъемлемым свойством любой проекции Земли. Искажена может быть любая характеристика поверхности: длина, площадь или угол. По типу искажений выделяют:

  • Равноугольные или конформные проекции , в которых азимуты и углы переносятся без искажений. Координатная сетка в конформных проекциях является ортогональной. Карты, полученные таким путем, рекомендуется использовать для определения расстояний в любом направлении.
  • Равновеликие или эквивалентные проекции , где сохраняется масштаб площадей, который принимается равным единице, т. е. площади отображаются без искажения. Такие карты применяют для сравнения площадей.
  • Равнопромежуточные или эквидистантные проекции , при построении которых сохраняется масштаб по одному из основных направлений, который принимается единичным.
  • Произвольные проекции , на которых могут присутствовать все разновидности искажений.

По форме отображения координатных линий нормальной сетки

Такая классификация является максимально наглядной и, следовательно, наиболее легкой для восприятия. Отметим, однако, что данный критерий относится только к проекциям, ориентированным нормально к точке наблюдения. Итак, исходя из данного характерного признака, различают следующие виды картографических проекций:

Круговые , где параллели и меридианы представляют окружностями, а экватор и средний меридиан сетки в виде прямых линий. Подобные проекции применяют для изображения поверхности Земли в целом. Примерами круговых проекций могут служить равноугольная проекция Лагранжа, а также произвольная проекция Гринтена.

Азимутальные . В данном случае параллели представляют в виде концентрических окружностей, а меридианы в виде пучка расходящихся радиально из центра параллелей прямых. Подобная разновидность проекций используется в прямом положении для отображения полюсов Земли с прилегающими территориями, а в поперечном в качестве знакомой каждому с уроков географии карты западного и восточного полушарий.

Цилиндрические , где меридианы и параллели представлены прямыми пересекающимися нормально линиями. С минимальным искажением здесь отображаются территории, прилегающие к экватору или же растянутые вдоль некоторой стандартной широты.

Конические , представляющие собой развертку боковой поверхности конуса, где линии параллелей являются дугами окружностей с центром в вершине конуса, а меридианов - направляющими, расходящимися из вершины конуса. Такие проекции наиболее точно изображают территории, лежащие в средних широтах.

Псевдоконические проекции похожи на конические, только меридианы в данном случае изображаются кривыми линиями, симметричными относительно прямолинейного осевого меридиана сетки.

Псевдоцилиндрические проекции напоминают цилиндрические, только, также, как и в псевдоконических, меридианы изображаются кривыми линиями, симметричными осевому прямолинейному меридиану. Используются для изображения Земли целиком (например, эллиптическая проекция Мольвейде, равновеликая синусоидальная Сансона и т. д.).

Поликонические , где параллели изображаются в виде окружностей, центры которых расположены на среднем меридиане сетки или его продолжении, меридианы в виде кривых, расположенных симметрично прямолинейному

По положению точки полюса в нормальной системе координат

  • Полярные или нормальные - полюс системы координат совпадает с географическим полюсом.
  • Поперечные или трансверсионные - полюс нормальной системы совмещается с экватором.
  • Косые или наклонные - полюс нормальной сетки координат может находиться в любой точке между экватором и географическим полюсом.

По способу применения

По способу использования выделяют следующие виды картографических проекций:

  • Сплошные - проецирование всей территории на плоскость производится по единому закону.
  • Многополосные - картографируемая местность условно разбивается на несколько широтных зон, которые проецируют на плоскость отображения по единому закону, но с изменением параметров для каждой зоны. Примером подобной проекции может служить трапециевидная проекция Мюфлинга, которая применялась в СССР для крупномасштабных карт до 1928 г.
  • Многогранные - территорию условно разбивают на некоторое количество зон по долготе, проецирование на плоскость производится по единому закону, но с разными параметрами для каждой из зон (например, проекция Гаусса-Крюгера).
  • Составные , когда некоторая часть территории отображается на плоскость с использованием одной закономерности, а остальная территория с другой.

Достоинством как многополосных, так и многогранных проекций является высокая точность отображения в пределах каждой зоны. Однако весомым недостатком при этом является невозможность получения сплошного изображения.

Разумеется, каждую картографическую проекцию можно классифицировать с использованием каждого из вышеперечисленных критериев. Так, знаменитая проекция Земли Меркатора является конформной (равноугольной) и поперечной (трансверсионной); проекция Гаусса-Крюгера - конформной поперечной цилиндрической и т. д.