В химических реакциях металлическое железо проявляет свойства. II

Железо – основной конструкционный материал. Металл используется буквально везде – от ракет и подводных лодок до столовых приборов и кованых украшений на решетке. В немалой степени этому способствует элемент в природе. Однако истинной причиной является, все же, его прочность и долговечность.

В данной статье нами будет дана характеристика железа как металла, указаны его полезные физические и химические свойства. Отдельно мы рассказываем, почему железо называют черным металлом, чем оно отличается от других металлов.

Как не странно, но до сих пор иногда возникает вопрос о том, железо — это металл или неметалл. Железо – элемент 8 группы, 4 периода таблицы Д. И. Менделеева. Молекулярная масса 55,8, что довольно много.

Это металл серебристо-серого цвета, довольно мягкий, пластичный, обладающий магнитными свойствами. На деле чистое железо встречается и используется крайне редко, поскольку металл химически активен и вступает в разнообразные реакции.

О том, что такое железо, расскажет это видео:

Понятие и особенности

Железом обычно называют сплав с небольшой долей примесей – до 0,8%, который сохраняет практически все свойства металла. Повсеместное применение находит даже не этот вариант, а сталь и чугун. Свое наименование – черный металл, железо, а, вернее говоря, все тот же чугун и сталь, получили благодаря цвету руды – черному.

Сегодня черными металлами называют сплавы железа: сталь, чугун, феррит, а также марганец, и, иногда, хром.

Железо – очень распространенный элемент. По содержанию в земной коре он занимает 4 место, уступая кислороду, и . В ядре Земли находится 86% железа, и всего 14% – в мантии. В морской воде вещества содержится очень мало – до 0,02 мг/л, в речной воде несколько больше – до 2 мг/л.

Железо – типичный металл, к тому же довольно активный. Он взаимодействует с разбавленными и концентрированными кислотами, но под действием очень сильных окислителей может образовать соли железной кислоты. На воздухе железо быстро покрывается оксидной пленкой, предупреждающей дальнейшую реакцию.

Однако в присутствии влаги вместо оксидной пленки появляется ржавчина, которая благодаря рыхлой структуре дальнейшему окислению не препятствует. Эта особенность – корродирование в присутствии влаги, является главным недостатком железных сплавов. Стоит отметить, что провоцируют коррозии примеси, в то время как химически чистый металл устойчив к воде.

Важные параметры

Чистый металл железо довольно пластичен, хорошо поддается ковке и плохо литью. Однако небольшие примеси углерода значительно увеличивают его твердость и хрупкость. Это качество и стало одной из причин вытеснения бронзовых орудий труда железными.

  • Если сравнить железные сплавы и , из тех, что были известны в древнем мире, очевидно, что , и по коррозийной стойкости, а, значит, и по долговечности. Однако массовое привело к истощению оловянных рудников. А, так как значительно меньше, чем , перед металлургами прошлого оставался вопрос о замене. И железо заменило бронзу. Полностью последняя была вытеснена, когда появились стали: такого сочетания твердости и упругости, бронза не дает.
  • Железо образует с кобальтом и триаду железа. Свойства элементов очень близки, ближе, чем у их же аналогов с таким же строение внешнего слоя. Все металлы обладают прекрасными механическими свойствами: легко обрабатываются, прокатываются, протягиваются, их можно ковать и штамповать. Кобальт и не столь реакционноспособны и более устойчивы к коррозии, чем железо. Однако меньшая распространенность этих элементов не позволяет использовать их так же широко, как и железо.
  • Главным «конкурентом» железу по области использования выступает . Но на деле оба материала обладают совершенно разными качествами. далеко не столь прочен, как железо, хуже вытягивается, не поддается ковке. С другой стороны, металл отличается, куда меньшим весом, что заметно облегчает конструкции.

Электропроводность железа весьма средняя, в то время как алюминий по этому показателю уступает лишь серебру, и золоту. Железо является ферромагнетиком, то есть, сохраняет намагниченность при отсутствии магнитного поля, а и втягивается в магнитное поле.

Столь разные свойства обуславливают абсолютно разные области применения, так что «сражаются» конструкционные материалы очень редко, например, в производстве мебели, где легкость алюминиевого профиля противопоставляется прочности стального.

Преимущества и недостатки железа рассмотрены далее.

Плюсы и минусы

Главное преимущество железа по сравнению с другими конструкционными металлами – распространенность и относительная простота выплавки. Но, учитывая в каком количестве используется железо, это весьма немаловажный фактор.

Преимущества

К плюсам металла относят и другие качества.

  • Прочность и твердость при сохранении упругости – речь идет не о химически чистом железе, а о сплавах. Причем качества эти варьируются в довольно широких пределах в зависимости от марки стали, способа термообработки, метода получения и так далее.
  • Разнообразие сталей и ферритов позволяет создать и подобрать материал буквально для любой задачи – от каркаса моста до режущего инструмента. Возможность получения заданных свойств при добавлении очень незначительных примесей – необычайно большое достоинство.
  • Легкость механической обработки позволяет получить продукцию самого разного вида: прутки, трубы, фасонные изделия, балки, листовое железо и так далее.
  • Магнитные свойства железа таковы, что металл является основным материалом при получении магнитоприводов.
  • Стоимость сплавов зависит, конечно, от состава, но все равно значительно ниже, чем у большинства цветных, пусть и с более высокими прочностными характеристиками.
  • Ковкость железа обеспечивает материалу очень высокие декоративные возможности.

Недостатки

Минусы железных сплавов значительны.

  • В первую очередь это недостаточная коррозийная стойкость. Специальные виды сталей – нержавеющие, обладают этим полезным качеством, но и стоят намного дороже. Значительно чаще металл защищают с помощью покрытия – металлического или полимерного.
  • Железо способно накапливать электричество, поэтому изделия из его сплавов подвергаются электрохимической коррозии. Корпуса приборов и машин, трубопроводы должны каким-то образом защищаться – катодная защита, протекторная и так далее.
  • Металл тяжелый, поэтому железные конструкции заметно утяжеляют объект строительства – здание, железнодорожный вагон, морское судно.

Состав и структура

Железо существует в 4 различных модификациях, отличающихся друг от друга параметрами решетки и структурой. Наличие фаз имеет действительно решающее значение для выплавки, поскольку именно фазовые переходы и их зависимость от легирующих элементов обеспечивает само течение металлургических процессов в этом мире. Итак, речь идет о следующих фазах:

  • α-фаза устойчива до +769 С, обладает объемно-центрированной кубической решеткой. α-фаза является ферромагнетиком, то есть, сохраняет намагниченность в отсутствии магнитного поля. Температура в 769 С является точкой Кюри для металла.
  • β-фаза существует от +769 С до +917 С. Структура модификации та же, но параметры решетки несколько другие. При этом сохраняются практически все физические свойства за исключением магнитных: железо становится парамагнетиком.
  • γ — фаза появляется в диапазоне от +917 до +1394 С. Для нее характера гранецентрированная кубическая решетка.
  • δ-фаза существует выше температуры в +1394 С, обладает объемно-центрированной кубической решеткой.

Выделяют также ε-модификацию, которая появляется при высоком давлении, а также в результате легирования некоторыми элементами. ε -фаза обладает плотноупакованной гексагонической решеткой.

Про физические и химические свойства железа поведает этот видеоролик:

Свойства и характеристики

Очень сильно зависят от его чистоты. Разница между свойствами химически чистого железа и обычного технического, а тем более легированной стали, весьма существенна. Как правило, физические характеристики приводят для технического железа с долей примесей 0,8%.

Необходимо отличать вредные примеси от легирующих добавок. Первые – сера и фосфор, например, придают сплаву хрупкость, не увеличивая твердость или механическую стойкость. Углерод в стали увеличивает эти параметры, то есть, является полезным компонентом.

  • Плотность железа (г/см3) в некоторой степени зависит от фазы. Так, α-Fe имеет плотность равную 7,87 г/куб. см при нормальной температуре и 7,67 г/куб. см при +600 С. Плотность γ-фазы ниже – 7,59 г/куб. см. а δ-фазы еще меньше – 7,409 г/куб.см.
  • Температура плавления вещества – +1539 С. Железо относится к умеренно тугоплавким металлам.
  • Температура кипения – +2862 С.
  • Прочность, то есть стойкость к нагрузкам разного рода – давление, растяжение, изгиб, регламентируется для каждой марки стали, чугуна и феррита, так что об этих показателях говорить в общем сложно. Так, быстрорежущие стали имеет предел прочности на изгиб равный 2,5–2,8 ГПа. А тот же параметр обычного технического железа составляет 300 МПА.
  • Твердость по шкале Мооса – 4–5. Специальные стали и химически чистое железо достигают куда более высоких показателей.
  • Удельное электрическое сопротивление 9,7·10-8 ом·м. Железо проводит ток куда хуже меди или алюминия.
  • Теплопроводность тоже ниже, чем у этих металлов и зависит от фазового состава. При 25 С составляет 74,04 вт/(м·К)., при 1500 С — 31,8 [Вт/(м.К)].
  • Железо прекрасно куется, причем как при нормальной, так и повышенной температуре. Чугун и сталь поддаются литью.
  • Биологически инертным вещество назвать нельзя. Однако токсичность его очень низкая. Связано это, правда, не столько с активностью элемента, сколько с неспособностью человеческого организма хорошо его усвоить: максимум составляет 20% от получаемой дозы.

К экологическим веществам железо отнести нельзя. Однако основной вред окружающей среде причиняет не его отходы, поскольку железо ржавеет и довольно быстро, а отходы производства – шлаки, выделяющиеся газы.

Производство

Железо относится к весьма распространенным элементам, так что и не требует больших расходов. Разрабатываются месторождения как открытым, так и шахтным методом. По сути, все горные руды включают в состав железо, но разрабатываются лишь те, где доля металла достаточно велика. Это богатые руды – красный, магнитный и бурый железняк с долей железо до 74 %, руды со средним содержанием – марказит, например, и бедные руды с долей железа не менее 26% – сидерит.

Богатая руда сразу же отправляется на завод. Породы со средним и низким содержанием обогащаются.

Существует несколько методов получения железных сплавов. Как правило, выплавка любой стали включает получение чугуна. Его выплавляют в доменной печи при температуре 1600 С. Шихту – агломерат, окатыши, загружают вместе с флюсом в печь и продувают горячим воздухом. При этом металл плавится, а кокс горит, что позволяет выжечь нежелательные примеси и отделить шлак.

Для получения стали обычно используют белый чугун – в нем углерод связан в химическое соединение с железом. Наиболее распространены 3 способа:

  • мартеновский – расплавленный чугун с добавкой руды и скрапа плавят при 2000 С с тем, чтобы уменьшить содержание углерода. Дополнительные ингредиенты, если они есть, добавляют в конце плавки. Таким образом получают самую высококачественную сталь.
  • кислородно-конвертерный – более производительный способ. В печи толщу чугуна продувают воздухом под давлением в 26 кг/кв. см. Может использоваться смесь кислорода с воздухом или чистый кислород с целью улучшить свойства стали;
  • электроплавильный – чаще применяется для получения специальных легированных сталей. Чугун палят в электрической печи при температуре в 2200 С.

Сталь можно получить и прямым методом. Для этого в шахтную печь загружают окатыши с большим содержанием железа и при температуре в 1000 С продувают водородом. Последний восстанавливает железо из оксида без промежуточных стадий.

В связи со спецификой черной металлургии на продажу попадает либо руда с определенным содержанием железа, либо готовая продукция – чугун, сталь, феррит. Цена их очень сильно отличается. Средняя стоимость железной руды в 2016 году – богатой, с содержанием элементов более 60%, составляет 50$ за тонну.

Стоимость стали зависит от множества факторов, что порой делает взлеты и падение цен совершено непредсказуемо. Осенью 2016 стоимость арматуры, горяче- и холоднокатаной стали резко возросла благодаря не менее резкому подъему цен на коксующийся уголь – непременного участника выплавки. В ноябре европейские компании предлагает рулон горячекатаной стали по 500 Евро за т.

Область применения

Сфера использования железа и железных сплавов огромна. Проще указать, где металл не применяется.

  • Строительство – сооружение всех видов каркасов, от несущего каркаса моста, до коробки декоративного камина в квартире, не может обойтись без стали разных сортов. Арматура, прутки, двутавры, швеллеры, уголки, трубы: абсолютно вся фасонная и сортовая продукция используется в строительстве. То же самое касается и листового проката: из него изготавливают кровлю, и так далее.
  • Машиностроение – по прочности и стойкости к износу со сталью очень мало, что может сравниться, так что детали корпуса абсолютного большинства машин изготавливаются из сталей. Тем более в тех случаях, когда оборудование должно работать в условиях высоких температур и давления.
  • Инструменты – с помощью легирующих элементов и закалки металлу можно придать твердость и прочность близкую к алмазам. Быстрорежущие стали – основа любых обрабатывающих инструментов.
  • В электротехнике использование железа более ограничено, именно потому, что примеси заметно ухудшают его электрические свойства, а они и так невелики. Зато металл незаменим в производстве магнитных частей электрооборудования.
  • Трубопровод – из стали и чугуна изготавливают коммуникации любого рода и вида: отопление, водопроводы, газопроводы, включая магистральные, оболочки для силовых кабелей, нефтепроводы и так далее. Только сталь способна выдерживать столь огромные нагрузки и внутреннее давление.
  • Бытовое использование – сталь применяется везде: от фурнитуры и столовых приборов до железных дверей и замков. Прочность металла и износостойкость делают его незаменимым.

Железо и его сплавы сочетают в себе прочность, долговечностью стойкость к износу. Кроме того, металл относительно дешев в производстве, что и делает его незаменимым материалом для современного народного хозяйства.

Про сплавы железа с цветными металлами и тяжелыми черными расскажет это видео:

Ковкий металл серебристо-белого цвета с высокой химической реакционной способностью: железо быстро корродирует при высоких температурах или при высокой влажности на воздухе. В чистом кислороде железо горит, а в мелкодисперсном состоянии самовозгорается и на воздухе. Обозначается символом Fe (лат. Ferrum). Один из самых распространённых в земной коре металлов (второе место после ).

Смотрите так же:

СТРУКТУРА

Для железа установлено несколько полиморфных модификаций, из которых высокотемпературная модификация — γ-Fe(выше 906°) образует решетку гранецентрированного куба типа Сu (а 0 = 3,63), а низкотемпературная — α-Fe-решетку центрированного куба типа α-Fe (a 0 = 2,86).
В зависимости от температуры нагрева железо может находиться в трех модификациях, характеризующихся различным строением кристаллической решетки:

  1. В интервале температур от самых низких до 910°С -а-феррит (альфа-феррит), имеющий строение кристаллической решетки в виде центрированного куба;
  2. В интервале температур от 910 до 1390°С - аустенит, кристаллическая решетка которого имеет строение гранецентрированного куба;
  3. В интервале температур от 1390 до 1535°С (температура плавления) - д-феррит (дельта-феррит). Кристаллическая решетка д-феррита такая же, как и а-феррита. Различие между ними только в иных (для д-феррита больших) расстояниях между атомами.

При охлаждении жидкого железа первичные кристаллы (центры кристаллизации) возникают одновременно во многих точках охлаждаемого объема. При последующем охлаждении вокруг каждого центра надстраиваются новые кристаллические ячейки, пока не будет исчерпан весь запас жидкого металла.
В результате получается зернистое строение металла. Каждое зерно имеет кристаллическую решетку с определенным направлением его осей.
При последующем охлаждении твердого железа при переходах д-феррита в аустенит и аустенита в а-феррит могут возникать новые центры кристаллизации с соответствующим изменением величины зерна

СВОЙСТВА

В чистом виде при нормальных условиях это твердое вещество. Оно обладает серебристо-серым цветом и ярко выраженным металлическим блеском. Механические свойства железа включают в себя уровень твердости по шкале Мооса. Она равна четырем (средняя). Железо обладает хорошей электропроводностью и теплопроводностью. Последнюю особенность можно ощутить, дотронувшись до железного предмета в холодном помещении. Так как этот материал быстро проводит тепло, он за короткий промежуток времени забирает большую его часть из вашей кожи, и поэтому вы ощущаете холод.
Дотронувшись, к примеру, до дерева, можно отметить, что его теплопроводность намного ниже. Физические свойства железа - это и его температуры плавления и кипения. Первая составляет 1539 градусов по шкале Цельсия, вторая - 2860 градусов по Цельсию. Можно сделать вывод, что характерные свойства железа - хорошая пластичность и легкоплавкость. Но и это еще далеко не все. Также в физические свойства железа входит и его ферромагнитность. Что это такое? Железо, магнитные свойства которого мы можем наблюдать на практических примерах каждый день, — единственный металл, обладающий такой уникальной отличительной чертой. Это объясняется тем, что данный материал способен намагничиваться под действием магнитного поля. А по прекращении действия последнего железо, магнитные свойства которого только что сформировались, еще надолго само остается магнитом. Такой феномен можно объяснить тем, что в структуре данного металла присутствует множество свободных электронов, которые способны передвигаться.

ЗАПАСЫ И ДОБЫЧА

Железо - один из самых распространённых элементов в Солнечной системе, особенно на планетах земной группы, в частности, на Земле. Значительная часть железа планет земной группы находится в ядрах планет, где его содержание, по оценкам, около 90 %. Содержание железа в земной коре составляет 5 %, а в мантии около 12 %.

В земной коре железо распространено достаточно широко - на его долю приходится около 4,1 % массы земной коры (4-е место среди всех элементов, 2-е среди металлов). В мантии и земной коре железо сосредоточено главным образом в силикатах, при этом его содержание значительно в основных и ультраосновных породах, и мало - в кислых и средних породах.
Известно большое число руд и минералов, содержащих железо. Наибольшее практическое значение имеют красный железняк (гематит, Fe2O3; содержит до 70 % Fe), магнитный железняк (магнетит, FeFe 2 O 4 , Fe 3 O 4 ; содержит 72,4 % Fe), бурый железняк или лимонит (гётит и гидрогётит, соответственно FeOOH и FeOOH·nH 2 O). Гётит и гидрогётит чаще всего встречаются в корах выветривания, образуя так называемые «железные шляпы», мощность которых достигает несколько сотен метров. Также они могут иметь осадочное происхождение, выпадая из коллоидных растворов в озёрах или прибрежных зонах морей. При этом образуются оолитовые, или бобовые, железные руды. В них часто встречается вивианит Fe 3 (PO 4) 2 ·8H 2 O, образующий чёрные удлинённые кристаллы и радиально-лучистые агрегаты.
Содержание железа в морской воде — 1·10 −5 -1·10 −8 %
В промышленности железо получают из железной руды, в основном из гематита (Fe 2 O 3) и магнетита (FeO·Fe 2 O 3).
Существуют различные способы извлечения железа из руд. Наиболее распространённым является доменный процесс.
Первый этап производства - восстановление железа углеродом в доменной печи при температуре 2000 °C. В доменной печи углерод в виде кокса, железная руда в виде агломерата или окатышей и флюс (например, известняк) подаются сверху, а снизу их встречает поток нагнетаемого горячего воздуха.
Кроме доменного процесса, распространён процесс прямого получения железа. В этом случае предварительно измельчённую руду смешивают с особой глиной, формируя окатыши. Окатыши обжигают, и обрабатывают в шахтной печи горячими продуктами конверсии метана, которые содержат водород. Водород легко восстанавливает железо, при этом не происходит загрязнения железа такими примесями, как сера и фосфор, которые являются обычными примесями в каменном угле. Железо получается в твёрдом виде, и в дальнейшем переплавляется в электрических печах. Химически чистое железо получается электролизом растворов его солей.

ПРОИСХОЖДЕНИЕ

Происхождение теллурическое (земное) железо редко встречается в базальтовыхлавах (Уифак, о. Диско, у западного берега Гренландии, вблизи г. Касселя Германия). В обоих пунктах с ним ассоциируют пирротин (Fe 1-x S) и когенит (Fe 3 C), что объясняют как восстановление углеродом (в том числе и из вмещающих пород), так и распадом карбонильных комплексов типа Fe(CO) n . В микроскопических зернах оно не раз устанавливалось в измененных (серпентинизированных) ультраосновных породах также в парагенезисе с пирротином, иногда с магнетитом, за счет которых оно и возникает при восстановительных реакциях. Очень редко встречается в зоне окисления рудных месторождений, при образовании болотных руд. Зарегистрированы находки в осадочных породах, связываемые с восстановлением соединений железа водородом и углеводородами.
Почти чистое железо найдено в лунном грунте, что связывают как с падениями метеоритов, так и с магматическими процессами. Наконец, два класса метеоритов — железокаменные и железные содержат природные сплавы железа в качестве породообразующего компонента.

ПРИМЕНЕНИЕ

Железо - один из самых используемых металлов, на него приходится до 95 % мирового металлургического производства.
Железо является основным компонентом сталей и чугунов - важнейших конструкционных материалов.
Железо может входить в состав сплавов на основе других металлов - например, никелевых.
Магнитная окись железа (магнетит) - важный материал в производстве устройств долговременной компьютерной памяти: жёстких дисков, дискет и т. п.
Ультрадисперсный порошок магнетита используется во многих чёрно-белых лазерных принтерах в смеси с полимерными гранулами в качестве тонера. Здесь одновременно используется чёрный цвет магнетита и его способность прилипать к намагниченному валику переноса.
Уникальные ферромагнитные свойства ряда сплавов на основе железа способствуют их широкому применению в электротехнике для магнитопроводов трансформаторов и электродвигателей.
Хлорид железа(III) (хлорное железо) используется в радиолюбительской практике для травления печатных плат.
Семиводный сульфат железа (железный купорос) в смеси с медным купоросом используется для борьбы с вредными грибками в садоводстве и строительстве.
Железо применяется в качестве анода в железо-никелевых аккумуляторах, железо-воздушных аккумуляторах.
Водные растворы хлоридов двухвалентного и трёхвалентного железа, а также его сульфатов используются в качестве коагулянтов в процессах очистки природных и сточных вод на водоподготовке промышленных предприятий.

Железо (англ. Iron) — Fe

КЛАССИФИКАЦИЯ

Hey’s CIM Ref1.57

Strunz (8-ое издание) 1/A.07-10
Nickel-Strunz (10-ое издание) 1.AE.05
Dana (7-ое издание) 1.1.17.1

Железо в чистом виде – это пластичный металл серого цвета, легко подвергаемый обработке. И всё же, для человека элемент Fe более практичен в сочетании с углеродом и другими примесями, которые позволяют образовывать металлические сплавы – стали и чугуны. 95% – именно столько всей производимой на планете металлической продукции содержит железо в качестве основного элемента.

Железо: история

Первые железные изделия, изготовленные человеком, датированы учёными IV тыс. до н. э., причем исследования показали, что для их производства использовалось метеоритное железо, для которого характерно 5-30-процентное содержание никеля. Интересно, но пока человечество не освоило добычу Fe путём его переплавки, железо ценилось дороже золота. Объяснялось это тем, что более крепкая и надежная сталь куда больше подходила для изготовления орудий труда и оружия, нежели медь и бронза.

Первый чугун научились получать древние римляне: их печи могли повышать температуру руды до 1400 о С, в то время как чугуну было достаточно 1100-1200 о С. Впоследствии они же получили и чистую сталь, температура плавления которой, как известно, составляет 1535 градуса по Цельсию.

Химические свойства Fe

С чем взаимодействует железо? Железо взаимодействует с кислородом, что сопровождается образованием оксидов; с водой в присутствии кислорода; с серной и соляной кислотами:

  • 3Fe+2O 2 = Fe 3 O 4
  • 4Fe+3O 2 +6H 2 O = 4Fe(OH) 3
  • Fe+H 2 SO 4 = FeSO 4 +H 2
  • Fe+2HCl = FeCl 2 +H 2

Также железо реагирует на щелочи, только если они представляют собой расплавы сильных окислителей. Железо не реагирует с окислителями при обычной температуре, однако всегда начинает вступать в реакцию при её повышении.

Применение железа в строительстве

Применение железа строительной отраслью в наши дни нельзя переоценить, ведь металлоконструкции являются основой абсолютно любого современного строения. В этой сфере Fe используется в составе обычных сталей, литейного чугуна и сварочного железа. Данный элемент находится везде, начиная с ответственных конструкций и заканчивая анкерными болтами и гвоздями.


Возведение строительных конструкций из стали обходится гораздо дешевле, к тому же здесь можно говорить и о более высоких темпах строительства. Это заметно увеличивает использование железа в строительстве, в то время как сама отрасль осваивает применение новых, более эффективных и надежных сплавов на основе Fe.

Использование железа в промышленности

Использование железа и его сплавов – чугуна и стали – это основа современного машино-, станко-, авиа-, приборостроения и изготовления прочей техники. Благодаря цианидам и оксидам Fe функционирует лакокрасочная промышленность, сульфаты железа применяются при водоподготовке. Тяжелая промышленность и вовсе немыслима без использования сплавов на основе Fe+C. Словом, Железо – это незаменимый, но вместе с тем доступный и относительно недорогой металл, который в составе сплавов имеет практически неограниченную сферу применения.

Применение железа в медицине

Известно, что в каждом взрослом человеке содержится до 4 грамм железа. Этот элемент крайне важен для функционирования организма, в частности, для здоровья кровеносной системы (гемоглобин в эритроцитах). Существует множество лекарственных препаратов на основе железа, которые позволяют повышать содержание Fe во избежание развития железодефицитной анемии.

Польза железа для организма

Главной функцией железа в организме принято считать образование гемоглобина. Это не удивительно, ведь в его составе содержится три четвертых запасов железа. А вот в составе других белковых структур процент железа относительно невысок – около 5%.

Зачем нужен гемоглобин? Белок, содержащий большое количество железа, связывает молекулы кислорода, которые с кровью переносятся к рабочим тканям и органам. Вот почему снижение количества гемоглобина в крови немедленно сказывается на общем самочувствии и работоспособности. Так что даже незначительная потеря крови чревата для организма нарушениями. Для спортсменов нехватка железа чревата нарушением восстановления после интенсивной физической нагрузки.

В числе других функций железа, можно перечислить такие как:

  • Энергетическая подпитка мышц. Самый «дешевый» источник топлива для мышц – это кислород. Благодаря его преобразованию в процессе ряда химических реакций мышца получает энергию для сокращения. Помимо кислорода используются и другие источники энергии. Это фосфаты, содержащиеся в клетках, – креатинфосфат и АТФ, а также гликоген мышц и печени. Однако их запасы слишком малы для поддержания работы длительностью более 1 минуты. Креатинфосфата хватает на работу длительностью до 10 секунд, АТФ – на 2-3 секунды. Чем выше концентрация гемоглобина в крови, тем больше кислорода он способен подать в рабочие ткани и органы. А вот дефицит железа может вызывать мышечные спазмы, усиливающиеся в период покоя (сна, сидения).
  • Энергетическая подпитка мозга. Кислород необходим мозгу так же, как и мышцам. Более того, дефицит железа чреват развитием болезни Альцгеймера, деменции (приобретённое слабоумие) и других заболеваний, вызванных нарушениями мозговой деятельности.
  • Регуляция температуры тела. Эта функция выполняется железом опосредованно. Стабильность концентрации железа в крови обусловливает адекватность протекания всех метаболических процессов.
  • Укрепление иммунитета. Микроэлемент необходим для кроветворения. Белые (лимфоциты) и красные (эритроциты) кровяные клетки формируются в присутствии железа. Первые отвечают за иммунитет, а вторые снабжают кровь кислородом. Если в организме количество железа соответствует норме, он способен самостоятельно противостоять заболеваниям. Как только концентрация железа снижается, инфекционные заболевания дают о себе знать.
  • Развитие плода. Во время беременности важно употреблять достаточное количество железа, так как часть расходуется при кроветворении у плода. А вот недостаток железа повышает риск преждевременных родов, провоцирует недостаточный вес у новорожденного и нарушение в развитии.

Как железо взаимодействует в организме

Сама по себе нормальная концентрация железа в организме еще не гарантирует хорошее самочувствие, высокий иммунитет, отсутствие заболеваний и работоспособность. Не менее важно взаимодействие этого микроэлемента с другими веществами, ведь функции одних могут отрицательно влиять на функции других.

Избегайте сочетания железа с:

  • витамином Е и фосфатами: нарушается усваивание железа;
  • Тетрациклином и фторхинолонами: тормозится процесс всасывание последних;
  • Кальцием: нарушается процесс абсорбции железа;
  • молоком, кофе и чаем – всасывание железа ухудшается;
  • цинком и медью – нарушается процесс всасывания в кишечнике;
  • соевым белком – усваивание подавляется;
  • хромом: железо подавляет его всасывание.

А вот аскорбиновая кислота, сорбит, фруктоза и янтарная кислота улучшают всасывание железа организмом.

Эти нюансы обязательно учитываются во время приема железосодержащих препаратов, так как можно вместо улучшения самочувствия получить противоположный эффект.

Роль железа в возникновении и течении различных заболеваний

Существует множество заболеваний, при которых употребление продуктов богатых железом может усугубить ситуацию.

Люди с повышенным уровнем железа в организме больше подвержены риску инфекций, сердечных заболеваний и некоторых видов онкологии (особенно мужчины).

В виде свободных радикалов железо провоцирует развитие атеросклероза. То же самое касается ревматоидного артрита. Употребление железа при этом заболевании провоцирует воспаление суставов.

При индивидуальной непереносимости железа употребление некоторых продуктов вызывает изжогу, тошноту, запоры и диарею.

При беременности избыток железа повышает риск развития патологии плаценты (увеличивается свободно-радикальное окисление в результате чего гибнут митохондрии – кислородные «депо» клеток).

При патологических нарушениях усвоения железа повышен риск заболевания гемохроматоз – накопление железа во внутренних органах (печени, сердце, поджелудочной железе).

В каких продуктах содержится железо


Запасы железа пополняют за счет продуктов животного и растительного происхождения. Первые содержат «гемовое» железо, вторые – «негемовое».

Для усвоения гемового употребляют продукты животного происхождения – телятину, говядину, свинину, крольчатину и субпродукты (печень, почки). Для получения пользы от негемового нужно одновременно с железосодержащими продуктами употреблять витамин С .

Рекордсменами по содержанию железа считаются такие продукты растительного происхождения, мг Fe2+:

  • арахис – в 200 г продукта содержится 120;
  • соя – в 200 г продукта – 8,89;
  • картофель – в 200 г продукта – 8,3;
  • фасоль белая– в 200 г продукта – 6,93;
  • бобы – в 200 г продукта – 6,61;
  • чечевица – в 200 г продукта – 6,59;
  • шпинат – в 200 г продукта – 6,43;
  • свекла (ботва) – в 200 г продукта – 5,4;
  • нут – в 100 г продукта – 4,74;
  • брюссельская капуста– в 200 г продукта – 3,2;
  • капуста белокочанная– в 200 г продукта – 2,2;
  • зеленый горошек – в 200 г продукта – 2,12.

Из злаковых в рацион лучше включать овсяную и гречневую крупы, непросеянную муку, ростки пшеницы. Из трав тимьян, сезам (кунжут). Много железа содержится в сушеных белых грибах и лисичках, абрикосах, персиках, яблоках, сливе, айве. А также инжире, гранате и сухофруктах.

В числе продуктов животного происхождения запасы железа в говяжьих почках и печени, рыбе, яйцах (желток). В мясных продуктах – телятине, свинине, крольчатине, индейке. Морепродукты (моллюски, улитки, устрицы). Рыба (скумбрия, горбуша).

Усвояемость железа

Интересно, что при употреблении мясных продуктов железо усваивается на 40-50%, при употреблении рыбных продуктов – на 10%. Рекордсмен по усвоению железа– печень животных.

Из продуктов растительного происхождения процент железа, который усваивается, еще меньше. Из бобовых человек усваивает до 7%, из орехов – 6, из фруктов и яиц – 3, из приготовленных круп – 1.

Совет! Пользу для организма несет рацион, в котором сочетаются продукты растительного и животного происхождения. При добавлении 50 г мяса к овощам усвояемость железа возрастает в два раза. При добавлении 100 г рыбы – в три раза, при добавлении фруктов, содержащих витамин C – в пять раз

Как сохранить железо в пище и его сочетание с другими веществами


При приготовлении продукты теряют часть полезных веществ, и железо не исключение. Железо в продуктах животного происхождения более устойчиво к воздействию высокой температуры. С овощами и фруктами все сложнее – часть железа переходит в воду, в которой готовятся продукты. Единственный выход – минимизировать термическую обработку продуктов растительного происхождения.

Чтобы повысить усвоение железа, употребляйте железосодержащие продукты вместе с витамином С. Достаточно половинки грейпфрута или апельсина, чтобы организм усвоил его в три раза больше. Единственный нюанс – данное правило действует только с железосодержащими продуктами растительного происхождения.

В рационе обязателен витамин А , недостаток которого блокирует способности организма использовать запасы железа для формирования эритроцитов (красные кровяные тельца).

При недостатке меди железо теряет «мобильность», в результате чего нарушается процесс транспортировки полезных веществ из «хранилищ» в клетки и органы. Чтобы этого избежать, включайте в рацион больше бобовых.

Сочетание железа с витаминами группы В : «работоспособность» последних многократно усиливается.

А вот молочную пищу и зерна лучше употреблять отдельно от железосодержащих продуктов, так как они блокируют всасывание микроэлемента в кишечнике.

Суточная норма железа

  • до 6 месяцев – 0,3;
  • 7-11 месяцев – 11;
  • до 3 лет – 7;
  • до 13 лет – 8–10.

Подростки:

  • от 14 до 18 лет (мальчики) – 11; девочки – 15.

Взрослые:

  • мужчины – 8–10;
  • женщины до 50 лет – 15–18; старше 50 лет – 8–10, беременные – 25–27.

Чем опасен недостаток железа в организме

Недостаток железа в организме опасен следующим состоянием:

  • острой анемией, или малокровием – снижением концентрации гемоглобина в крови, при котором также уменьшается количество эритроцитов и изменяется их качественный состав. Результат малокровия – снижение дыхательной функции крови и развитие кислородного голодания тканей. Распознать острую анемию можно по бледности кожных покровов и повышенной утомляемости. Слабость, регулярная головная боль и головокружение – признаки нехватки железа. Тахикардия (учащенное сердцебиение) и одышка – предвестники проблем с сердцем и легкими;
  • утомляемостью и слабостью в мышцах;
  • чрезмерными менструальными кровотечениями у женщин.

Недостаток железа в организме приводит к ухудшению состояния кожных покровов, ломкости ногтей, выпадению волос. Ухудшение памяти, повышенная раздражительность – признаки дефицита железа. Снижение работоспособности и постоянная сонливость – предвестники кислородного голодания.

Недостаток железа может быть спровоцирован такими факторами:

  • повышенной потерей крови. Первопричиной такого варианта развития событий может быть донорское переливание крови, обильное кровотечение у женщин и повреждения мягких тканей;
  • интенсивные физические нагрузки аэробной и аэробно-силовой направленности (те, которые развивают выносливость). Во время таких упражнений эритроцитам приходится быстрее переносить кислород, в результате чего дневной расход гемоглобина может увеличиться почти в два раза;
  • активная умственная деятельность. Во время творческой работы активно расходуются не только запасы железа, но и гликогена, запасенного в печени и мышцах;
  • заболевания органов желудочно-кишечного тракта: гастрит с пониженной кислотностью, язва двенадцатиперстной кишки, цирроз печени, аутоиммунные заболевания кишечника провоцируют плохое всасывание железа.

Как быстро восполнить недостаток железа

Чтобы восполнить дефицит железа в организме, диетологи рекомендуют употреблять продукты растительного и животного происхождения. Первые являются источником так называемого «негемового» железа, то есть железа, которое не входит в состав гемоглобина. В таких продуктах железо обычно идет в сочетании с витамином С.

Лучше всего дефицит железа восполняют такие «негемовые» продукты как бобовые и зеленые листовые овощи, а также цельные зерна.

«Гемовые» продукты содержат железо, входящее в состав гемоглобина. Наибольшие запасы гемоглобина характерны для всей пищи животного происхождения, а также морепродуктов. В отличие от «негемовых», «гемовые» продукты быстрее восполняют запасы железа, так как организм легче их усваивает.

Совет! Несмотря на то, что «гемовые» продукты быстрее усваиваются организмом, не стоит чрезмерно ими увлекаться. Для восполнения запасов железа лучше всего сочетать продукты растительного и животного происхождения, например, зеленые листовые овощи и красные сорта мяса

Однако важно помнить о секретах приготовления пищи, ведь именно от способов приготовления зависит конечный процент железа в продуктах питания. Например, цельные зерна при переработке теряют около 75% запасов железа. Вот почему мука из цельных зерен практически не несет пользы для организма. Примерно то же самое происходит при приготовлении пищи растительного происхождения при помощи варки – часть железа остается в составе воды. Если варить шпинат в течение 3 мин., от запасов железа останется не более 10%.

Если хотите получить максимальную пользу от продуктов питания растительного происхождения, старайтесь избегать длительной термической обработки и минимизируйте количество воды. Идеальный способ приготовления – на пару.

С продуктами животного происхождения все намного проще – железо, входящее в состав гемоглобина, обладает высокой устойчивостью к термической обработке.

Что нужно знать об избытке железа в организме


Несправедливым было бы полагать, что опасность для здоровья представляет исключительно недостаток железа. Его избыток также чреват неприятными симптомами. Из-за чрезмерного накопления железа в организме нарушается работа многих функциональных систем.

Причины передозировки. Чаще всего причиной повышенной концентрации микроэлемента становится генетический сбой, в результате которого увеличивается всасываемость железа кишечником. Реже – переливание крови в большом количестве и неконтролируемое использование железосодержащих препаратов. Последнее случается при самостоятельном увеличении дозы железосодержащего препарата при пропуске очередного приема.

При избытке железа в организме обычно бывает такое:

  • изменяется пигментации кожи (симптомы часто путают с гепатитом) – желтеют ладони, подмышки, темнеют старые шрамы. Склеры, нёбо ротовой полости и язык также приобретают желтоватый оттенок;
  • нарушается сердечный ритм, увеличивается печень;
  • снижается аппетит, повышается утомляемость, учащаются приступы головной боли;
  • нарушается деятельность органов пищеварения – тошнота и рвота чередуются с диареей, в области желудка появляется ноющая боль;
  • снижается иммунитет;
  • повышается вероятность развития инфекционных и опухолевых патологий, например, рака печени и кишечника, а также развитие ревматоидного артрита.

Препараты, содержащие железо

К препаратам железа относят медикаменты, содержащие соли и комплексы соединений микроэлемента, а также его сочетания с другими минералами.

Во избежание патологических состояний и осложнений железосодержащие препараты следует принимать только по предписанию врача после ряда анализов. В противном случае избыток железа может привести к нарушению работы сердца, печени, желудка, кишечника и головного мозга.

  • запиваются небольшим количеством воды;
  • несочетаемы с препаратами кальция, Тетрациклином, Левомицетином, а также антацидами (Альмагель, Фосфалюгель и т. д.);
  • принимаются в строгой дозировке. Если по каким-то причинам очередной прием препарат был пропущен, следующая доза остается неизменной. Передозировка железа (300 миллиграммов в сутки) может привести к летальному исходу;
  • минимальный курс – два месяца. В течение первого месяца нормализуются показатели гемоглобина и эритроцитов. В дальнейшем приём препаратов направлен на восполнение запасов железа (наполнение «депо»). Дозировка в течение второго месяца снижается.

Следует помнить, что даже при соблюдении всех мер предосторожности прием железосодержащих препаратов может стать причиной таких побочных эффектов как гиперемия кожи, тошнота, снижение аппетита, сонливость, головная боль, нарушение деятельности органов пищеварения (запор, диарея, кишечная колика, изжога и отрыжка), металлический привкус во рту. В некоторых случаях могут потемнеть зубы (в полости рта содержится сероводород, который при взаимодействии с железом преобразуется в сульфид железа).

Совет! Чтобы избежать потемнения зубов (особенно актуально при кариесе), сразу же после приема железосодержащих препаратов ротовую полость нужно прополоскать. Если препарат выпускается в жидкой лекарственной форме, его лучше принимать через трубочку. При появлении любого из этих симптомов прием лекарств нужно немедленно прекратить

Обзор железосодержащих средств подан ниже.

В числе наиболее часто назначаемых препаратов железа Конферон, Феракрил, Феррум лек, Гемостимулин. Их преимущества – максимально точная дозировка и минимум побочных эффектов.

Дозировка препарата рассчитывается индивидуально – 2 мг на 1 кг массы тела пациента (но не более 250 мг в сутки). Для лучшего всасывания лекарства принимают во время пищи, запивая небольшим количеством жидкости.

Положительные изменения (увеличение количества ретикулоцитов) диагностируют уже через неделю после начала приема средств. Еще через две-три недели увеличивается концентрация гемоглобина.

Препарат Форма выпуска Состав
Гемоферпролонгатум Таблетки, покрытые оболочкой, массой 325 мг Сульфат железа, в одной таблетке – 105 мг Fe2+
Тардиферон Таблетки пролонгированного действия Мукопротеоза и аскорбиновая кислота, в одной таблетке – 80 мг Fe2+
Ферроглюконат и Ферронал Таблетки по 300 мг Глюконат железа, в одной таблетке – 35 мг Fe2+
Ферроградумет Таблетки, покрытые оболочкой Сульфат железа плюс пластическая матрица – градумет, в одной таблетке – 105 мг Fe2+
Хеферол Капсулы по 350 мг Фумаровая кислота, в одной таблетке – 100 мг Fe2+
Актиферрин Капсулы, капли оральные, сироп Сульфат железа, D, L-серин (капсулы и капли оральные) и сульфат железа, D, L-серин, глюкозу, фруктозу, сорбат калия (сироп). В 1 капсуле и 1 мл сиропа – 38,2 мг Fe2+, в 1 мл капель, в 1 мл сиропа – и 34,2 мг Fe2+
Гемсинерал-ТД Капсулы Микрогранулы фумарата железа, фолиевой кислоты, цианокобаламина. В одной капсуле – 67 мг Fe2+
Гино-тардиферон Таблетки Сульфат железа, фолиевая и аскорбиновая кислоты, мукопротеоза. В одной таблетке – 80 мг Fe2+
Глобирон Желатиновые капсулы по 300 мг Железа фумарат, витамины В6, В12, фолиевая кислота, докузат натрия. В одной капсуле – 100 мг Fe2+
Ранферон-12 Капсулы по 300 мг Железа фумарат, аскорбиновая и фолиевая кислоты, цианокобаламин, цинка сульфат, железа аммонийного цитрат. В одной капсуле – 100 мг Fe2+
Сорбифердурулес Таблетки, покрытые оболочкой, с пролонгированным высвобождением ионов железа Железа сульфат, аскорбиновая кислота, матрица (дурулес). В одной таблетке – 100 мг Fe2+
Тотема Раствор для перорального приема в ампулах по 10 мл Железа глюконат, марганец, медь, а также бензоат, цитрат натрия и сахароза. В одной ампуле – 50 мг Fe2+
Хеферол Капсулы по 350 мг Фумаровая кислота. В одной капсуле – 100 мг Fe2+
Фенюльс Капсулы Железа сульфат, фолиевая и аскорбиновая кислоты, тиамин. А также рибофлавин, цианокобаламин, пиридоксин, фруктоза, цистеин, кальция пантотенат, дрожжи. В одной капсуле – 45 мг Fe2+

Противопоказания к приему железосодержащих препаратов

  • апластическая и/или гемолитическая анемия;
  • прием медикаментов из группы тетрациклинов или антацидов;
  • хроническое воспаление почек и печени;
  • употребление продуктов с высоким содержанием кальция, клетчатки и кофеина;
  • прием лекарственных препаратов, снижающих уровень кислотности желудочного сока; антибиотиков и препаратов тетрациклинового ряда (эти группы препаратов снижают всасываемость железа в кишечнике).

Условные противопоказания:

  • язвенный колит;
  • язвенная болезнь желудка и/или двенадцатиперстной кишки;
  • энтериты различной этиологии.

Инъекции железа и их особенности описано ниже. Помимо железосодержащих капсул и таблеток, назначаются инъекции. Их прием необходим при:

  • хронических патологиях органов пищеварения, сопровождаемых пониженной всасываемостью железа. Диагнозы: панкреатит (воспаление поджелудочной железы), синдром мальабсорбции, целиакия, энтерит;
  • язвенном колите неспецифического характера;
  • непереносимости солей железа или гиперчувствительности с аллергическими проявлениями;
  • язвенной болезни желудка и двенадцатиперстной кишки в периоды обострения;
  • постоперационный период после удаления части желудка или тонкого кишечника.

Преимуществом инъекций является быстрое и максимальное насыщение железом по сравнению с другими формами выпуска препаратов.

Важно! При приеме таблеток и капсул максимальная доза не должна превышать 20-50 мг (при приеме 300 мг железа возможен летальный исход). При инъекции максимальной дозой считается 100 мг препарата железа

Побочные эффекты при введении железа с помощью инъекции: уплотнения (инфильтраты) тканей в месте введения препарата, флебиты, абсцессы, аллергическая реакция (в худшем случае – сразу развивается анафилактический шок), ДВС-синдром, передозировка железа.

Разновидности препаратов поданы в таблице

Препарат Форма выпуска Состав
Феррум Лек (внутримышечно) Ампулы по 2 мл Гидроксид железа и декстран. В одной ампуле – 100 мг Fe2+
Венофер (внутривенно) Ампулы по 5 мл Железа гидроксид сахарозных комплексов. В одной ампуле – 100 мг Fe2+
Ферковен (внутривенно) Ампулы по 1 мл Железа сахарат, раствор углеводов и глюконат кобальта. В одной ампуле – 100 мг Fe2+
Жектофер (внутримышечно) Ампулы по 2 мл Железо-сорбитол-лимонно-кислый комплекс
Феррлецит (раствор – внутримышечно, ампулы – внутривенно) Раствор для инъекций в ампулах по 1 и по 5 мл Железоглюконатный комплекс
Фербитол (внутримышечно) Ампулы по 1 мл Железосорбитоловый комплекс

Железо (латинское ferrum), fe, химический элемент viii группы периодической системы Менделеева; атомный номер 26, атомная масса 55,847; блестящий серебристо-белый металл. Элемент в природе состоит из четырёх стабильных изотопов: 54 fe (5,84%), 56 fe (91,68%), 57 fe (2,17%) и 58 fe (0,31%).

Историческая справка. Ж. было известно ещё в доисторические времена, однако широкое применение нашло значительно позже, т. к. в свободном состоянии встречается в природе крайне редко, а получение его из руд стало возможным лишь на определённом уровне развития техники. Вероятно, впервые человек познакомился с метеоритным Ж., о чём свидетельствуют его названия на языках древних народов: древнеегипетское «бени-пет» означает «небесное железо»; древнегреческое sideros связывают с латинским sidus (родительный падеж sideris) - звезда, небесное тело. В хеттских текстах 14 в. до н. э. упоминается о Ж. как о металле, упавшем с неба. В романских языках сохранился корень названия, данного римлянами (например, французское fer, итальянское ferro).

Способ получения Ж. из руд был изобретён в западной части Азии во 2-м тысячелетии до н. э.; вслед за тем применение Ж. распространилось в Вавилоне, Египте, Греции; на смену бронзовому веку пришёл железный век. Гомер (в 23-й песне «Илиады») рассказывает, что Ахилл наградил диском из железной крицы победителя в соревновании по метанию диска. В Европе и Древней Руси в течение многих веков Ж. получали по сыродутному процессу. Железную руду восстанавливали древесным углём в горне, устроенном в яме; в горн мехами нагнетали воздух, продукт восстановления - крицу ударами молота отделяли от шлака и из неё выковывали различные изделия. По мере усовершенствования способов дутья и увеличения высоты горна температура процесса повышалась и часть Ж. науглероживалась, т. е. получался чугун ; этот сравнительно хрупкий продукт считали отходом производства. Отсюда название чугуна «чушка», «свинское железо» - английское pig iron. Позже было замечено, что при загрузке в горн не железной руды, а чугуна также получается низкоуглеродистая железная крица, причём такой двухстадийный процесс оказался более выгодным, чем сыродутный. В 12-13 вв. кричный способ был уже широко распространён. В 14 в. чугун начали выплавлять не только как полупродукт для дальнейшего передела, но и как материал для отливки различных изделий. К тому же времени относится и реконструкция горна в шахтную печь («домницу»), а затем и в доменную печь. В середине 18 в. в Европе начал применяться тигельный процесс получения стали , который был известен на территории Сирии ещё в ранний период средневековья, но в дальнейшем оказался забытым. При этом способе сталь получали расплавлением металлические шихты в небольших сосудах (тиглях) из высокоогнеупорной массы. В последней четверти 18 в. стал развиваться пудлинговый процесс передела чугуна в Ж. на поду пламенной отражательной печи. Промышленный переворот 18 - начала 19 вв., изобретение паровой машины, строительство железных дорог, крупных мостов и парового флота вызвали громадную потребность в Ж. и его сплавах. Однако все существовавшие способы производства Ж. не могли удовлетворить потребности рынка. Массовое производство стали началось лишь в середине 19 в., когда были разработаны бессемеровский, томасовский и мартеновский процессы. В 20 в. возник и получил широкое распространение электросталеплавильный процесс, дающий сталь высокого качества.

Распространённость в природе. По содержанию в литосфере (4,65% по массе) Ж. занимает второе место среди металлов (на первом алюминий). Оно энергично мигрирует в земной коре, образуя около 300 минералов (окислы, сульфиды, силикаты, карбонаты, титанаты, фосфаты и т. д.). Ж. принимает активное участие в магматических, гидротермальных и гипергенных процессах, с которыми связано образование различных типов его месторождений. Ж. - металл земных глубин, оно накапливается на ранних этапах кристаллизации магмы, в ультраосновных (9,85%) и основных (8,56%) породах (в гранитах его всего 2,7%). В биосфере Ж. накапливается во многих морских и континентальных осадках, образуя осадочные руды.

Важную роль в геохимии Ж. играют окислительно-восстановительные реакции - переход 2-валентного Ж. в 3-валентное и обратно. В биосфере при наличии органических веществ fe 3+ восстанавливается до fe 2+ и легко мигрирует, а при встрече с кислородом воздуха fe 2+ окисляется, образуя скопления гидроокисей 3-валентного Ж. Широко распространённые соединения 3-валентного Ж. имеют красный, жёлтый, бурый цвета. Этим определяется окраска многих осадочных горных пород и их наименование - «красно-цветная формация» (красные и бурые суглинки и глины, жёлтые пески и т. д.).

Физические и химические свойства. Значение Ж. в современной технике определяется не только его широким распространением в природе, но и сочетанием весьма ценных свойств. Оно пластично, легко куется как в холодном, так и нагретом состоянии, поддаётся прокатке, штамповке и волочению. Способность растворять углерод и др. элементы служит основой для получения разнообразных железных сплавов.

Ж. может существовать в виде двух кристаллических решёток: a - и g - объёмноцентрированной кубической (ОЦК) и гранецентрированной кубической (ГЦК). Ниже 910 °С устойчиво a - fe с ОЦК-решёткой (а = 2,86645 å при 20°С). Между 910°С и 1400°С устойчива g -модификация с ГЦК-решёткой (а = 3,64 å). Выше 1400°С вновь образуется ОЦК-решётка d -fe (а = 2,94 å), устойчивая до температуры плавления (1539°С). a - fe ферромагнитно вплоть до 769°С (точка Кюри). Модификация g -fe и d -fe парамагнитны.

Полиморфные превращения Ж. и стали при нагревании и охлаждении открыл в 1868 Д. К. Чернов . Углерод образует с Ж. твёрдые растворы внедрения, в которых атомы С, имеющие небольшой атомный радиус (0,77 å), размещаются в междоузлиях кристаллической решётки металла, состоящей из более крупных атомов (атомный радиус fe 1,26 å). Твёрдый раствор углерода в g -fe наз. аустенитом , а в (a -fe- ферритом . Насыщенный твёрдый раствор углерода в g - fe содержит 2,0% С по массе при 1130°С; a -fe растворяет всего 0,02- 0,04%С при 723°С, и менее 0,01% при комнатной температуре. Поэтому при закалке аустенита образуется мартенсит - пересыщенный твёрдый раствор углерода в a - fe, очень твёрдый и хрупкий. Сочетание закалки с отпуском (нагревом до относительно низких температур для уменьшения внутренних напряжений) позволяет придать стали требуемое сочетание твёрдости и пластичности.

Физические свойства Ж. зависят от его чистоты. В промышленных железных материалах Ж., как правило, сопутствуют примеси углерода, азота, кислорода, водорода, серы, фосфора. Даже при очень малых концентрациях эти примеси сильно изменяют свойства металла. Так, сера вызывает т. н. красноломкость , фосфор (даже 10 -20 % Р) - хладноломкость ; углерод и азот уменьшают пластичность , а водород увеличивает хрупкость Ж. (т. н. водородная хрупкость). Снижение содержания примесей до 10 -7 - 10 -9 % приводит к существенным изменениям свойств металла, в частности к повышению пластичности.

Ниже приводятся физические свойства Ж., относящиеся в основном к металлу с общим содержанием примесей менее 0,01% по массе:

Атомный радиус 1,26 å

Ионные радиусы fe 2+ o,80 å, fe 3+ o,67 å

Плотность (20 o c) 7,874 г/см 3

t пл 1539°С

t kип около 3200 о С

Температурный коэффициент линейного расширения (20°С) 11,7·10 -6

Теплопроводность (25°С) 74,04 вт /(м·К )

Теплоёмкость Ж. зависит от его структуры и сложным образом изменяется с температурой; средняя удельная теплоёмкость (0-1000 o c) 640,57 дж/ (кг ·К) .

Удельное электрическое сопротивление (20 ° С)

9,7·10 -8 ом·м

Температурный коэффициент электрического сопротивления

(0-100°С) 6,51·10 -3

Модуль Юнга 190-210·10 3 Мн/м. 2

(19-21·10 3 кгс/мм 2)

Температурный коэффициент модуля Юнга

Модуль сдвига 84,0·10 3 Мн/м 2

Кратковременная прочность на разрыв

170-210 Мн/м 2

Относительное удлинение 45-55%

Твёрдость по Бринеллю 350-450 Мн/м 2

Предел текучести 100 Мн/м 2

Ударная вязкость 300 Мн/м 2

Конфигурация внешней электронной оболочки атома fe 3 d 6 4s 2 . Ж. проявляет переменную валентность (наиболее устойчивы соединения 2- и 3-валентного Ж.). С кислородом Ж. образует закись feo, окись fe 2 o 3 и закись-окись fe 3 o 4 (соединение feo с fe 2 o 3 , имеющее структуру шпинели ) . Во влажном воздухе при обычной температуре Ж. покрывается рыхлой ржавчиной (fe 2 o 3 · n h 2 o). Вследствие своей пористости ржавчина не препятствует доступу кислорода и влаги к металлу и поэтому не предохраняет его от дальнейшего окисления. В результате различных видов коррозии ежегодно теряются миллионы тонн Ж. При нагревании Ж. в сухом воздухе выше 200°С оно покрывается тончайшей окисной плёнкой, которая защищает металл от коррозии при обычных температурах; это лежит в основе технического метода защиты Ж. - воронения. При нагревании в водяном паре Ж. окисляется с образованием fe 3 o 4 (ниже 570°С) или feo (выше 570°С) и выделением водорода.

Гидроокись fe (oh) 2 образуется в виде белого осадка при действии едких щелочей или аммиака на водные растворы солей fe 2+ в атмосфере водорода или азота. При соприкосновении с воздухом fe (oh) 2 сперва зеленеет, затем чернеет и наконец быстро переходит в красно-бурую гидроокись fe (oh) 3 . Закись feo проявляет основные свойства. Окись fe 2 o 3 амфотерна и обладает слабо выраженной кислотной функцией; реагируя с более основными окислами (например, с mgo), она образует ферриты - соединения типа fe 2 o 3 · n meo, имеющие ферромагнитные свойства и широко применяющиеся в радиоэлектронике. Кислотные свойства выражены и у 6-валентного Ж., существующего в виде ферратов, например k 2 feo 4 , солей не выделенной в свободном состоянии железной кислоты.

Ж. легко реагирует с галогенами и галогеноводородами, давая соли, например хлориды fecl 2 и fecl 3 . При нагревании Ж. с серой образуются сульфиды fes и fes 2 . Карбиды Ж. - fe 3 c (цементит ) и fe 2 c (e -карбид) - выпадают из твёрдых растворов углерода в Ж. при охлаждении. fe 3 c выделяется также из растворов углерода в жидком Ж. при высоких концентрациях С. Азот, подобно углероду, даёт с Ж. твёрдые растворы внедрения; из них выделяются нитриды fe 4 n и fe 2 n. С водородом Ж. даёт лишь малоустойчивые гидриды, состав которых точно не установлен. При нагревании Ж. энергично реагирует с кремнием и фосфором, образуя силициды (например, fe 3 si) и фосфиды (например, fe 3 p).

Соединения Ж. с многими элементами (О, s и др.), образующие кристаллическую структуру, имеют переменный состав (так, содержание серы в моносульфиде может колебаться от 50 до 53,3 ат.%). Это обусловлено дефектами кристаллической структуры. Например, в закиси Ж. часть ионов fe 2+ в узлах решётки замещена ионами fe 3+ ; для сохранения электронейтральности некоторые узлы решётки, принадлежавшие ионам fe 2+ , остаются пустыми и фаза (вюстит) в обычных условиях имеет формулу fe 0,947 o.

Своеобразно взаимодействие Ж. с азотной кислотой. Концентрированная hno 3 (плотность 1,45 г/см 3 ) пассивирует Ж. вследствие возникновения на его поверхности защитной окисной плёнки; более разбавленная hno 3 растворяет Ж. с образованием ионов fe 2+ или fe 3+ , восстанавливаясь до mh 3 или n 2 o и n 2 .

Растворы солей 2-валентного Ж. на воздухе неустойчивы - fe 2+ постепенно окисляется до fe 3+ . Водные растворы солей Ж. вследствие гидролиза имеют кислую реакцию. Добавление к растворам солей fe 3+ тиоцианат-ионов scn - даёт яркую кроваво-красную окраску вследствие возникновения fe (scn) 3 , что позволяет открывать присутствие 1 части fe 3+ примерно в 10 6 частях воды. Для Ж. характерно образование комплексных соединений.

Получение и применение. Чистое Ж. получают в относительно небольших количествах электролизом водных растворов его солей или восстановлением водородом его окислов. Разрабатывается способ непосредственного получения Ж. из руд электролизом расплавов. Постепенно увеличивается производство достаточно чистого Ж. путём его прямого восстановления из рудных концентратов водородом, природным газом или углём при относительно низких температурах.

Ж. - важнейший металл современной техники. В чистом виде Ж. из-за его низкой прочности практически не используется, хотя в быту «железными» часто называют стальные или чугунные изделия. Основная масса Ж. применяется в виде весьма различных по составу и свойствам сплавов. На долю сплавов Ж. приходится примерно 95% всей металлической продукции. Богатые углеродом сплавы (свыше 2% по массе) - чугуны, выплавляют в доменных печах из обогащенных железных руд. Сталь различных марок (содержание углерода менее 2% по массе) выплавляют из чугуна в мартеновских и электрических печах и конвертерах путём окисления (выжигания) излишнего углерода, удаления вредных примесей (главным образом s, Р, О) и добавления легирующих элементов. Высоколегированные стали (с большим содержанием никеля, хрома, вольфрама и др. элементов) выплавляют в электрических дуговых и индукционных печах. Для производства сталей и сплавов Ж. особо ответственного назначения служат новые процессы - вакуумный, электрошлаковый переплав, плазменная и электронно-лучевая плавка и др. Разрабатываются способы выплавки стали в непрерывно действующих агрегатах, обеспечивающих высокое качество металла и автоматизацию процесса.

На основе Ж. создаются материалы, способные выдерживать воздействие высоких и низких температур, вакуума и высоких давлений, агрессивных сред, больших переменных напряжений, ядерных излучений и т. п. Производство Ж. и его сплавов постоянно растет. В 1971 в СССР выплавлено 89,3 млн. т чугуна и 121 млн. т стали.

Л. А. Шварцман, Л. В. Ванюкова.

Железо как художественный материал использовалось с древности в Египте (подставка для головы из гробницы Тутанхамона около Фив, середина 14 в. до н. э., Музей Ашмола, Оксфорд), Месопотамии (кинжалы, найденные около Кархемиша, 500 до н. э., Британский музей, Лондон), Индии (железная колонна в Дели, 415). Со времён средневековья сохранились многочисленные высокохудожественные изделия из Ж. в странах Европы (Англии, Франции, Италии, России и др.) - кованые ограды, дверные петли, настенные кронштейны, флюгера, оковки сундуков, светцы. Кованые сквозные изделия из прутьев и изделия из просечного листового Ж. (часто со слюдяной подкладкой) отличаются плоскостными формами, чётким линейно-графическим силуэтом и эффектно просматриваются на свето-воздушном фоне. В 20 в. Ж. используется для изготовления решёток, оград, ажурных интерьерных перегородок, подсвечников, монументов.

Т. Л.

Железо в организме. Ж. присутствует в организмах всех животных и в растениях (в среднем около 0,02%); оно необходимо главным образом для кислородного обмена и окислительных процессов. Существуют организмы (т. н. концентраторы), способные накапливать его в больших количествах (например, железобактерии - до 17-20% Ж.). Почти всё Ж. в организмах животных и растений связано с белками. Недостаток Ж. вызывает задержку роста и явления хлороза растений, связанные с пониженным образованием хлорофилла. Вредное влияние на развитие растений оказывает и избыток Ж., вызывая, например, стерильность цветков риса и хлороз. В щелочных почвах образуются недоступные для усвоения корнями растений соединения Ж., и растения не получают его в достаточном количестве; в кислых почвах Ж. переходит в растворимые соединения в избыточном количестве. При недостатке или избытке в почвах усвояемых соединений Ж. заболевания растений могут наблюдаться на значительных территориях.

В организм животных и человека Ж. поступает с пищей (наиболее богаты им печень, мясо, яйца, бобовые, хлеб, крупы, шпинат, свёкла). В норме человек получает с рационом 60-110 мг Ж., что значительно превышает его суточную потребность. Всасывание поступившего с пищей Ж. происходит в верхнем отделе тонких кишок, откуда оно в связанной с белками форме поступает в кровь и разносится с кровью к различным органам и тканям, где депонируется в виде Ж.- белкового комплекса - ферритина. Основное депо Ж. в организме - печень и селезёнка. За счёт Ж. ферритина происходит синтез всех железосодержащих соединений организма: в костном мозге синтезируется дыхательный пигмент гемоглобин, в мышцах - миоглобин, в различных тканях цитохромы и др. железосодержащие ферменты. Выделяется Ж. из организма главным образом через стенку толстых кишок (у человека около 6-10 мг в сутки) и в незначительной степени почками. Потребность организма в Ж. меняется с возрастом и физическим состоянием. На 1 кг веса необходимо детям - 0,6, взрослым - 0,1 и беременным - 0,3 мг Ж. в сутки. У животных потребность в Ж. ориентировочно составляет (на 1 кг сухого вещества рациона): для дойных коров - не менее 50 мг, для молодняка - 30-50 мг, для поросят - до 200 мг, для супоросных свиней - 60 мг.

В. В. Ковальский.

В медицине лекарственные препараты Ж. (восстановленное Ж., лактат Ж., глицерофосфат Ж., сульфат 2-валентного Ж., таблетки Бло, раствор яблочнокислого Ж., ферамид, гемостимулин и др.) используют при лечении заболеваний, сопровождающихся недостатком Ж. в организме (железодефицитная анемия), а также как общеукрепляющие средства (после перенесённых инфекционных заболеваний и др.). Изотопы Ж. (52 fe, 55 fe и 59 fe) применяют как индикаторы при медико-биологических исследованиях и диагностике заболеваний крови (анемии, лейкозы, полицитемия и др.).

Лит.: Общая металлургия, М., 1967; Некрасов Б. В., Основы общей химии, т. 3, М., 1970; Реми Г., Курс неорганической химии, пер. с нем., т. 2, М., 1966; Краткая химическая энциклопедия, т. 2, М., 1963; Левинсон Н. Р., [Изделия из цветного и чёрного металла], в кн.: Русское декоративное искусство, т. 1-3, М., 1962-65; Вернадский В. И., Биогеохимические очерки. 1922-1932, М. - Л., 1940; Граник С., Обмен железа у животных и растений, в сборнике: Микроэлементы, пер. с англ., М., 1962; Диксон М., Уэбб Ф., ферменты, пер. с англ., М., 1966; neogi p., iron in ancient india, calcutta, 1914; friend j. n., iron in antiquity, l.,1926; frank e. b., old french ironwork, camb. (mass.), 1950; lister r., decorative wrought ironwork in great britain, l., 1960.

cкачать реферат