Космические исследования. Конспект по географии на тему "современные космические методы исследования земли" Оптические методы изучения земли из космоса

При геологических изысканиях, проводимых с летательных аппаратов, фиксируется излучение или отражение электромагнитных волн природными объектами. Методы дистанционного зондирования условно подразделяются на методы изучения Земли в видимой и ближней инфракрасной области спектра (визуальные наблюдения, фотосъемка, телевизионная съемка) и методы невидимого диапазона электромагнитного спектра (инфракрасная съемка, радиолокационная съемка, спектрометрическая съемка и др.). Остановимся на краткой характеристике этих методов. Пилотируемые космические полеты показали, что, какой бы совершенной не была техника, нельзя пренебрегать визуальными наблюдениями. Началом их можно считать наблюдения Ю. Гагарина. Самое яркое впечатление первого космонавта-вид родной Земли из космоса: «Отчетливо вырисовываются горные хребты, крупные реки, большие лесные массивы, пятна островов… Земля радовала сочной палитрой красок…». Космонавт П. Попович передавал: «Хорошо видны города, реки, горы, корабли и другие объекты». Таким образом уже с первых полетов стало очевидно, что космонавт может хорошо ориентироваться на орбите и целенаправленно наблюдать природные объекты. Со временем усложнилась программа работ космонавтов, все длительнее становились космические полеты, информация из космоса делалась все более точной, детальной.

Многие космонавты отмечали, что в начале полета они видят меньше объектов, чем в конце полета. Так, космонавт В. Севастьянов рассказывал, что в первое время мало что различал с космической высоты, потом стал замечать суда в океане, затем суда у причалов, а в конце полета он различал отдельные постройки на прибрежных участках.

Уже в первых полетах космонавты видели с высоты такие объекты, которые видеть теоретически не могли, так как считалось, что разрешающая способность человеческого глаза равна одной угловой минуте. Но когда люди стали летать в космос, оказалось, что с орбиты видны предметы, угловая протяженность которых меньше минуты. Космонавт, имея прямую связь с Центром управления полетом, может обратить внимание исследователей на Земле на изменение каких-либо природных явлений и обозначить объект съемки, т. е. при наблюдении динамических процессов возросла роль космонавта-исследователя. А имеет ли значение визуальный обзор для изучения геологических объектов? Ведь геологические структуры достаточно стабильны, и поэтому их можно фотографировать, а затем спокойно рассмотреть на Земле.

Оказывается космонавт-исследователь, прошедший специальную подготовку, может наблюдать геологический объект под разными углами, в разное время суток, увидеть его отдельные детали. Перед полетами космонавты специально летали с геологами на самолете, рассматривали детали строения геологических объектов, изучали геологические карты и космические снимки.

Находясь в космосе и осуществляя визуальные наблюдения, космонавты выявляют новые, ранее неизвестные геологические объекты и новые детали ранее известных объектов.

Приведенные примеры показывают большую ценность визуальных наблюдений для изучения геологического строения Земли. При этом, однако, надо учитывать, что они всегда содержат элементы субъективизма и поэтому должны быть подкреплены объективными приборными данными.

Геологи с большим интересом отнеслись уже к первым фотографиям, которые доставил на Землю космонавт Г. Титов. Что привлекло их внимание в геологической информации из космоса? Прежде всего они получили возможность с совершенно другого уровня посмотреть на уже известные структуры Земли.

Кроме того, стала возможной проверка и увязка разрозненных карт, так как отдельные структуры оказались взаимно связанными на больших расстояниях, что объективно подтвердили космические изображения. Также стало возможным получение сведений о строении труднодоступных районов Земли. Помимо этого, геологи вооружились экспресс-методом, позволяющим быстро собрать материал о строении того или иного участка Земли, наметить объекты исследования, которые стали бы ключом к дальнейшему познанию недр нашей планеты.

В настоящее время сделано много «портретов» нашей планеты из космоса. В зависимости от орбит искусственного спутника и установленной на нем аппаратуры получены изображения Земли в различных масштабах. Известно, что космические изображения разных масштабов несут в себе информацию о различных геологических структурах. Поэтому при выборе наиболее информативного масштаба снимка надо исходить из конкретной геологической задачи. Благодаря высокой обзорности на одном космическом снимке отображается сразу несколько геологических структур, что позволяет делать выводы о взаимосвязях между ними. Преимущество использования космической информации для геологии объясняется также естественной генерализацией элементов ландшафта. Благодаря этому маскирующее влияние почвенного и растительного покрова снижается и геологические объекты «выглядят» на космических снимках отчетливее. Фрагменты структур, видимые на космических фотоснимках, выстраиваются в единые зоны. В отдельных случаях удается обнаружить изображения глубоко погребенных структур. Они как бы просвечивают сквозь покровные отложения, что позволяет говорить об определенной рентгеноскопичности космических изображений. Вторая особенность съемок из космоса - возможность сравнивать геологические объекты по суточным и сезонным изменениям их спектральных характеристик. Сопоставление фотографий одного и того же участка, полученных в разное время, позволяет изучить динамику действия экзогенных (внешних) и эндогенных (внутренних) геологических процессов: речных и морских вод, ветра, вулканизма и землетрясений.

В настоящее время на многих космических аппаратах есть фото или телеустройства, которые проводят съемку нашей планеты. Известно, что орбиты искусственных спутников Земли и аппаратура, установленная на них, различны, что определяет масштаб космических изображений. Нижний предел фотографирования из космоса продиктован высотой орбиты космического летательного аппарата, т. е. высотой около 180 км. Верхний предел определяется практической целесообразностью масштабов изображения земного шара, получаемых с межпланетных станций (десятки тысяч километров от Земли). Представим себе геологическую структуру, фотографию которой удалось получить в разных масштабах. На детальном снимке мы можем рассмотреть ее в целом и говорить о деталях строения. С уменьшением масштаба сама структура становится деталью изображения, его составным элементом. Ее очертания будут вписываться в контуры общего рисунка, и мы сможем увидеть связь нашего объекта с другими геологическими телами. Последовательно уменьшая масштаб, можно получить генерализованное изображение, на котором наша структура будет элементом какого-либо геологического образования. Анализ разномасштабных снимков одних и тех же регионов показал, что геологические объекты обладают фотогеничными свойствами, которые проявляются по-разному, в зависимости от масштаба, времени и сезона съемки. Очень интересно узнать, как будет меняться изображение объекта с увеличением генерализации и что собственно определяет и подчеркивает его «портрет». Ныне мы имеем возможность увидеть объект с высоты 200, 500, 1000 км и, более. У специалистов сейчас есть значительный опыт в изучении природных объектов с помощью аэрофотоснимков, полученных с высот от 400 м до 30 км. А что если все эти наблюдения проводить одновременно, включая наземные работы? Тогда мы сможем наблюдать изменение фотогеничных свойств объекта с разных уровней - от поверхности до космических высот. При фотографировании Земли с разных высот, помимо чисто информационной, преследуется цель повысить достоверность выявленных природных объектов. На самых мелкомасштабных изображениях глобальной и частично региональной генерализации определяют наиболее крупные и четко выраженные объекты. Средне- и крупномасштабные изображения служат для проверки схемы дешифрирования, сравнения геологических объектов на косми­ческих снимках и данных, полученных на поверхности индикаторов. Это позволяет специалистам давать описание вещественного состава пород, выходящих на поверхность, определять характер геологических структур, т. е. получать конкретные доказательства геологической природы изучаемых образований. Фотографические камеры, работающие в космосе, представляют собой съемочные системы, специально приспособленные для фотосъемки из космоса. Масштаб полученных фотографий зависит от фокусного расстояния объектива фотокамеры и высоты съемки. Главные достоинства фотосъемки заключаются в большой информативности, хорошей разрешающей способности, сравнительно высокой чувствительности. К. недостаткам космической фотосъемки можно отнести трудность передачи информации на Землю и проведения съемки только в дневное время.

В настоящее время большой объем космической информации попадает в руки исследователей благодаря автоматическим телевизионным системам. Их совершенствование привело к тому, что качество изображений приближается к космическому фотоснимку аналогичного масштаба. Кроме того, телевизионные изображения обладают рядом преимуществ: они обеспечивают оперативность передачи на Землю информации по радиоканалам; периодичность съемки; запись видеоинформации на магнитную пленку и возможность хранения информации на магнитной пленке. В настоящее время можно получать черно-белые, цветные и многозональные телевизионные изображения Земли. Разрешающая способность телевизионных снимков ниже, чем у фотоснимков. Телевизионная съемка проводится с искусственных спутников, работающих в автоматическом режиме. Как правило, их орбиты имеют большое наклонение к экватору, что позволяло охватить съемкой почти все широты.

Спутники системы «Метеор» запускают на орбиту высотой 550- 1000 км. Его телевизионная система включается сама после подъема Солнца над горизонтом, а экспозиция в связи с изменением освещенности в ходе полета устанавливается автоматически. «Метеор» за один оборот вокруг Земли может снять площадь, составляющую приблизительно 8% поверхности земного шара.

По сравнению с одномасштабным фотоснимком телевизионный снимок имеет большую обзорность и генерализацию.

Масштабы телеснимков бывают от 1: 6 000 000 до 1: 14 000 000, разрешающая способность составляет 0,8 - б км, а снимаемая площадь колеблется от сотен тысяч до миллиона квадратных километров. Снимки хорошего качества могут быть увеличены в 2-3 раза без потери детальности. Существует два вида телевизионной съемки - кадровая и сканерная. При кадровой съемке проводится последовательная экспозиция различных участков поверхности и передачи изображения по радиоканалам космической связи. Объектив камеры во время экспозиции строит изображение на светочувствительном экране, которое можно сфотографировать. При сканерной съемке изображение формируется из отдельных полос (сканов), получающихся в результате детального «просматривания» местности лучом поперек движения носителя (сканирования). Поступательное движение носителя позволяет получать изображение в виде непрерывной ленты. Чем детальнее изображение, тем меньше ширина полосы съемки.

Телевизионные снимки в большинстве своем слабоперспективные. Для увеличения полосы захвата на спутниках системы «Метеор» съемки производятся двумя телекамерами, оптические оси которых отклонены от вертикали на 19°. В связи с этим масштаб снимка изменяется от линии проекции орбиты спутника на 5-15%, что осложняет их использование.

Телевизионные снимки дают большой объем информации, позволяя выделить крупные региональные и глобальные особенности геологического строения Земли.

После успешного опыта посылки советских автоматических межпланетных станций к Луне в 1959 г., в начале 60-х гг. в нашей стране были предприняты первые запуски космических аппаратов к планетам Солнечной системы: в 1961 г. к Венере и в 1962 г. к Марсу. АМС «Венера-1» преодолела расстояние до Венеры за 97 суток, АМС «Марс-1» затратила на перелет Земля - Марс более 230 суток. В дальнейшем сроки перелета к Венере были увеличены до 117-120 суток, так как при этом скорость сближения с планетой была ниже, что облегчало спуск в атмосфере и мягкую посадку на планету.

Перелеты к Марсу, в зависимости от его положения на орбите, занимают от 6 до 10 месяцев.

Первая жесткая посадка на Венеру была осуществлена советской станцией «Венера-3» 1 марта 1966 г., плавный спуск в атмосфере с передачей большого комплекса научных данных впервые совершила АМС «Венера-4» 18 октября 1967 г., а мягкую посадку на поверхность Венеры произвела АМС «Венера-7» 15 декабря 1970 г. В октябре 1975 г. вышел на орбиту первый искусственный спутник Венеры - «Венера-9».

Первая передача изображений поверхности другой планеты (Марса) была осуществлена американским космическим аппаратом «Маринер-4» в июле 1965 г., первым искусственным спутником Марса стал «Мари-нер-9» (США) 14 ноября 1971 г., а спустя две недели искусственными спутниками планеты стали советские АМС «Марс-2» и «Марс-3». Первую мягкую посадку на поверхность Марса произвел спускаемый аппарат АМС «Марс-3» в начале декабря 1971 г.

Подлет к Меркурию с передачей изображений его поверхности с близкого расстояния был осуществлен американским космическим аппаратом «Маринер-10» в марте 1974 г., подлет к Юпитеру - «Пионером-10» (США) в декабре 1974 г. Фотографии Венеры с большого расстояния передал тот же «Маринер-10» в феврале 1974 г., первые панорамные изображения поверхности Венеры с нее самой передали советские АМС «Венера-9» и «Венера-10» в октябре 1975 г., а панорамные изображения поверхности Марса - американские спускаемые аппараты «Викинг-1» и «Викинг-2», начиная с 20 июля 1976 г.

Применение космических аппаратов намного расширило возможность исследования планет. Основными методами научных исследований при этом являются следующие:

1. Прямое фотографирование планеты с более или менее близкого расстояния или небольших участков ее поверхности как с орбиты или пролетной траектории, так и с самой поверхности планеты. Примеры применения этого метода уже приводились выше. Иногда съемка производилась с использованием светофильтров («Марс-3», «Маринер-10»).

Полученные изображения передаются на Землю методом, давно уже используемым в «земном» телевидении: изображение развертывается построчно в цепь сигналов, которые передаются антенной станции на Землю, а затем луч в электронно-лучевой трубке телевизора превращает полученный сигнал снова в изображение. Это изображение, фотографируемое с экрана телевизора, проходит затем длительную обработку, направленную на устранение помех, искажений и дефектов, а также специальных марок с экрана телевизора, служащих для ориентировки изображения, но ненужных при рассматривании вида поверхности планеты.

2. Измерение давления и температуры атмосферы планеты при спуске производится с помощью манометров (работающих по принципу барометра-анероида) и термометров сопротивления, плотность измеряется плотномерами различных типов (ионизационный, камертонный и др.). Подробное описание устройства этих приборов имеется в книге А. Д. Кузьмина и М. Я. Марова «Физика планеты Венера» (М.: «Наука», 4974) и в других книгах и статьях, перечисленных в списке литературы в конце книги.

Кроме прямых измерений, параметры атмосферы планеты и их изменение но высоте могут быть вычислены по скорости снижения аппарата, поскольку аэродинамические характеристики его известны. Опыт показал, что этот метод дает хорошее согласие с предыдущим.

3. Измерение химического состава атмосферы. Производится с помощью газоанализаторов различных типов. Обычно каждый газоанализатор предназначен для определения содержания какого-то определенного газа.

4. Изучение верхних слоев атмосферы по методу радиопросвечивания. Этот метод, состоит в том, что космический аппарат, заходя (для земного наблюдателя) за диск планеты или выходя из-за него, посылает радиоволну определенной длины (используются волны от 8 см до 6 м). Проходя сквозь атмосферу планеты, радиоволна испытывает преломление (рефракцию) и дефокусировку, связанную с тем, что показатель преломления атмосферы убывает с высотой. Поэтому волна, прошедшая сквозь более высокие слои атмосферы, преломляется меньше, чем проходящая через более низкие слои (рис. 18).

В результате весь пучок радиоволн расширяется и интенсивность сигнала ослабевает. В зависимости от показателя преломления меняется и частота сигнала.

Если планета имеет ионосферу, то в ионосферных слоях происходит, наоборот, фокусировка радиолуча и усиление сигнала.

Рис. 18. Метод радиопросвечивания (схема).

Поскольку космический аппарат движется, посланный им радиолуч, пересекая последовательно верхние и нижние слои атмосферы планеты (или в обратном порядке - при выходе из-за планеты), испытывает то усиления, то ослабления, что позволяет построить модель верхних слоев атмосферы, включая ионосферу (в нижних слоях луч ослабевает настолько, что принимать сигнал уже нельзя).

5. Спектральные наблюдения свечения газов атмосферы в ультрафиолетовых лучах позволяют регистрировать самые интенсивные,- так называемые резонансные спектральные линии. К ним относится знаменитая линия водорода (Лайман-альфа) на длине волны 1216 А, кислородный триплет с длиной волны 1302- 1305 А и ряд других. Исследование свечения этих линий Дает сведения о составе и плотности атмосферы до самых больших высот. Напомним, что ультрафиолетовый участок спектра совершенно недоступен для наблюдений с Земли.

6. Измерения содержания заряженных частиц в атмосфере и в околопланетном пространстве с помощью ионных ловушек; измерения скорости и потока заряженных частиц в магнитосфере планеты.

7. Измерения напряженности магнитного поля планеты и изучение структуры ее магнитосферы с помощью чувствительных магнитометров.

8. Различные методы изучения физических свойств и состава грунта планеты; определение содержания радиоактивных элементов с помощью гамма-спектрометров, определение диэлектрической проницаемости грунта с помощью бортового радиолокатора, химический анализ забираемых проб грунта приборами спускаемых аппаратов, измерение плотности грунта плотномером и т. д.

9. Изучение рельефа Марса по интенсивности полос поглощения главного компонента его атмосферы - углекислого газа.

10. Изучение гравитационного поля планеты по движению ее искусственных спутников или пролетающих мимо нее космических аппаратов.

11. Исследование собственного теплового и радиоизлучения планеты с близких расстояний в широком диапазоне длин волн - от микронных до дециметровых.

Этот перечень далеко не полон. Некоторые методы будут описаны или упомянуты ниже, при изложении результатов исследований планет. Однако уже из этого перечня можно видеть, насколько разнообразны методы космических исследований планет, какие богатые возможности они представляют ученым. Неудивительно, что за какие-нибудь 15 лет эти исследования дали нам колоссальный объем информации о природе планет.

Исследование природных ресурсов планеты с помощью космических методов

Тема: Исследование природных ресурсов планеты с помощью космических методов.

Сделала: ученица 10-а класса

Муниципальной общеобразовательной

Молодцова Ольга

учебный год 2003-2004

План реферата

1. Введение…………………………………………………………..…. 3

2. Землеведение…………………………………………………….….. 4

3. Способы изучения Земли………………………………………….. 6

4. Область изучения…………………………………………………... 9

5. Список литературы……………………………………………….. 10

Введение.

Стремительное развитие космонавтики, успехи в изучение околоземного и межпланетного космического пространства в огромной степени расширило наши представления о Солнце и Луне, о Марсе, Венере и других планетах. Вместе с тем выявилось весьма высокая эффективность использования околоземного космоса и космических технологий в интересах многих наук о Земле и для различных отраслей хозяйства. География, гидрология, геохимия, геология, океанология, геодезия, гидрология, землеведение – вот некоторые из наук, ныне широко использующих космические методы и средства исследования. Сельское и лесное хозяйство, рыболовство, мелиорация, разведка сырьевых ресурсов, контроль и оценка загрязнения морей, рек, водоемов, воздуха, почвы, охрана окружающей среды, связь, навигация – таков далеко не полный перечень направлений, использующих космическую технику. Использование искусственных спутников Земли для связи и телевидения, оперативного и долгосрочного прогнозирования погоды и гидрометеорологической обстановки, для навигации на морских путях и авиационных трассах, для высокоточной геодезии, изучения природных ресурсов Земли и контроля среды обитания становится все более привычным. В ближайшей и в более отдаленной перспективе разностороннее использование космоса и космической техники в различных областях хозяйства значительно возрастет.

С позиции географии большой интерес представляет космическое землеведение. Так называют совокупность исследований Земли из космоса с помощью аэрокосмических методов и визуальных наблюдений. Главные цели космического землеведения – познание закономерностей космической оболочки, изучение природных ресурсов для их оптимального использования, охрана окружающей среды, обеспечение прогнозов погоды и других природных явлений. Космическое землеведение стало развиваться с начала 60-х годов, после запуска первых советских и американских искусственных спутников Земли, а затем и космических кораблей.

как бы продолжением и новым качественным развитием традиционной аэрофотосъемки. Одновременно начались и визуальные наблюдения экипажей космических кораблей, также сопровождавшиеся космической съемкой. При этом вслед за фотографией и телевизионной съемкой стали применяться более сложные ее виды – радиолокационные, инфракрасная, радиотепловая и другое особое значение для космического землеведения имеют некоторые отличительные свойства космической съемки.

Первое из них - огромная обзорность. Съемка со спутника и космических кораблей обычно осуществляется с высоты от 250 до 500 км.

Другие важные отличительные свойства космической съемки - большая скорость получения и передачи информации, возможность многократного повторения съемки одних и тех же территорий, что позволяет наблюдать природные процессы в их динамике, лучше анализировать взаимосвязи между компонентами природной среды и тем самым увеличивает возможности создания общегеографических и тематических карт.

В последствии развития космического землеведения в нем было выделено несколько подотраслей или направлений.

Во-первых, это геолого-геоморфологические исследования, которые служат основой изучения строения земной коры. В СССР их так же использовали приинженерно-геологических исследованиях (например, при проведении трасс нефтепроводов, Байкало-Амурской железнодорожной магистрали), при геологоразведочных и геолого-съемочных работах (например, для выявления разломов земной коры, тектонических структур, перспективных на нефть и газ).

Способы изучения Земли.

Проблема изучения природных ресурсов, оценка их запасов, объема и темпа расходования, возможности их сохранения и восстановления приобретают в наше время все большую актуальность. На первый план выдвинулись также задачи охраны окружающей среды, борьба с загрязнением почвы, воздуха, водоемов. Возросла необходимость постоянного контроля состояния и рационального использования лесных массивов, источников пресной воды, животного мира.

Развитие растениеводства, животноводства, лесного хозяйства, рыболовства, других областей хозяйственной деятельности человека потребовало применения новых более современных принципов контроля окружающей среды и значительно более оперативного получения его результатов.

Исчерпывание сырьевых ресурсов, находящихся в сравнительно близких и освоенных человеком местах, привело к необходимости изыскания их в отдаленных, труднодоступных, глубинных районах. Возникла задача охвата разносторонней разведкой больших площадей.

Главными достоинствами космических средств, при использовании их для изучения природных ресурсов и контроля окружающей среды являются: оперативность, быстрота получения информации, возможно доставки её потребителю непосредственно в ходе приёма с КА, разнообразие форм наглядность результатов, экономичность.

Отметим, что внедрение космической техники отнюдь не исключает применения в ИПР и КОС самолетных и наземных средств. Наоборот, космические средства могут быть более, эффективно используют именно в сочетании с ними.

Помимо перечисления целей, выявилась эффективность использования космической техники для решения некоторых задач градостроительства, строительства и эксплуатации транспортных магистралей и другое.

объектов на расстоянии, с помощью чувствительных элементов и устройств, не находящихся в прямом контакте (непосредственно близость) с предметом измерений (исследований).

В основе этого метода лежит то важное обстоятельство, что все естественные и искусственные земные образования испускают электромагнитные волны, содержащие как собственное излучение элементов суши, океана, атмосферы, так и отраженное от них солнечное излучение. Установлено, что величина и характер идущих от них электромагнитных колебаний существенно зависят от вида, строения и состояния (от геометрических, физических и иных характеристик) излучаемого объекта.

Эти-то различия в электромагнитном излучении земных различных образований и позволяют применять метод дистанционного зондирования для изучения Земли из космоса.

Чтобы достигнуть чувствительных элементов приемных устройств, установленных на космическом аппарате электромагнитные колебания, идущие с Земли, должны пронизывать всю толщу земной атмосферы. Однако атмосфера пропускает далеко не всю электромагнитную энергию, излучаемую с Земли. Немалая часть её, отражаясь, возвращается на Землю, а некоторое количество рассеивается и поглощается. При этом атмосфера не безразлична к электромагнитным излучениям различной длины волны. Одни колебания она пропускает сравнительно свободно, образуя для них «окна прозрачности», другие – почти полностью задерживает, отражая, рассеивая и поглощая их.

Поглощение и рассеяние электромагнитных волн атмосферой обусловлены ее газовым составом и аэрозольными частицами, и в зависимости от состояния атмосферы она действует на изучение с Земли неодинаково. Поэтому на приемное устройство космического аппарата может только та часть электромагнитного излучения от исследуемых объектов, которая способна пройти сквозь атмосферу. Если влияние ее велико, то возникают существенные изменения в спектральном, угловом и пространственном, распределении излучения.

ее оценке в зависимости от различных факторов.

Значение степени и характера влияния атмосферы, на происхождение сквозь нее электромагнитного излучения с Земли для излучения природных ресурсов из космоса весьма существенно. Особенно важно знать влияние атмосферы на прохождение электромагнитных волн при изучении слабо излучающих и плохо отражающих земных образований, когда атмосфера может почти полностью подавить или исказить сигналы, характеризующие исследуемые объекты.

Для изучения природных ресурсов из космоса подбирают такое время и условия, когда поглощающее и искажающие влияние атмосферы минимально. При работе в видимом диапазоне выбирается светлое время суток, при возвышении угла Солнца над горизонтом 15 - 35°, при невысокой влажности, небольшой облачности, возможности большой прозрачности и малой аэрозольности атмосферы.

Области изучения.

В области геологии: выявление месторождений полезных ископаемых, определение перспективных районов добычи нефти, газа, руды, угля и другие; картографическая и геологическая подготовка крупного строительства; оценка сейсмической и вулканической деятельности, получение данных для их прогнозирования; обследование районов шахт и открытых разработок, оценка ущерба растительности в этих районах.

прогнозирование стока вод после весенних паводков, определение угрожаемых районов и эффективности мер, принимаемых для уменьшения ущерба от наводнений; контроль за изменением водного режима рек в частности в целях оптимального использования мощности гидроэлектростанций.

В области океанологии, океанографии, рыболовства; прогнозирование явлений, влияющих на эффективность судоходства и представляющих опасность для прибрежных районов; оценка морских путей; изменение величены и характера волнений водной поверхности больших акваторий; наблюдение за ледовой обстановкой в высокоширотных районах, контроль за образованием и движением айсбергов; определение районов богатых планктоном, обещающих эффективные уловы, выявление косяков рыбы и скопление промысловых животных.

В области биосферы и охраны окружающей среды; оценка загрязнённости воды в конкретных водоёмах и воздуха в различных районах; контроль сброса сточных вод и насосов в районах плотной заселённости (крупных городов); контроль за местонахождением и миграцией диких животных.

В области сельского и лесного хозяйства, землеведение и мелиорации: оперативная оценка стадий развития, степени зрелости и урожайности культур; выявление поражения отдельных участков полей и лесов, установление эффективности мер, направленных на сохранение растений, оценка состояния участков леса и запасов древесины, таксация лесов; планирование вырубки и посадок; обнаружение лесных пожаров, контроль их развития и эффективности, противопожарных мер; выявление заболоченности определённых районных ирригационные оценки, планирование дренажных и мелиорационных работ; землепользование в конкретных регионах, контроль орошаемых земель, оценка пастбищ.

1 «Мировое освоение космических пространств». Издательство-Наука. Москва 1982 г.

Материал из Юнциклопедии


Не так много лет минуло со дня запуска в 1957 г. первого искусственного спутника Земли, но за этот короткий срок космические исследования сумели занять одно из ведущих мест в мировой науке. Ощутив себя гражданином Вселенной, человек, естественно, захотел лучше узнать свой мир и его окружение.

Уже первый спутник передал ценную информацию о свойствах верхних слоев атмосферы Земли, об особенностях прохождения радиоволн через ионосферу. Второй спутник положил начало целому научному направлению - космической биологии: на его борту в космос впервые отправилось живое существо - собака Лайка. Третий орбитальный полет советского аппарата снова посвящался Земле - исследованию ее атмосферы, магнитного поля, взаимодействия воздушной оболочки с солнечным излучением, метеорной обстановки вокруг планеты.

После первых запусков стало ясно, что исследование космоса должно вестись целенаправленно, по долгосрочным научным программам. В 1962 г. в Советском Союзе начались запуски автоматических спутников серии «Космос», число которых в настоящее время приближается уже к 2 тыс. Спутники «Космос» выводятся на близкие и далекие от Земли орбиты, оснащаются научными приборами для изучения ближайших окрестностей планеты и многообразных явлений в верхней атмосфере и околоземном космическом пространстве.

Спутники «Электрон» и орбитальные автоматические обсерватории «Прогноз» рассказали о Солнце и его определяющем влиянии на земную жизнь. Изучая наше светило, мы постигаем также тайны далеких звезд, знакомимся с работой естественного термоядерного реактора, построить который на Земле пока не удается. Из космоса увидели и «невидимое солнце» - его «портрет» в ультрафиолетовых, рентгеновских и гамма-лучах, которые не доходят до поверхности Земли из-за непрозрачности атмосферы в этих участках спектра электромагнитных волн. Кроме спутников-автоматов длительные исследования Солнца вели советские и американские космонавты на орбитальных космических станциях.

Благодаря исследованиям из космоса мы лучше узнали состав, строение и свойства верхних слоев атмосферы и ионосферы Земли, зависимость их от солнечной активности, что позволило повысить надежность прогноза погоды и условий радиосвязи.

«Космический глаз» позволил не только по-новому оценить «внешние данные» нашей планеты, но и заглянуть в ее недра. С орбит лучше обнаруживаются геологические структуры, прослеживаются закономерности строения земной коры и размещения нужных человеку минералов.

Спутники позволяют в считанные минуты просмотреть и огромные акватории, передать их снимки специалистам-океанологам. С орбит получают информацию о направлениях и скорости ветров, зонах зарождения циклонических вихрей.

С 1959 г. началось изучение спутника Земли - Луны - с помощью советских автоматических станций. Станция «Луна-3», облетев Луну, впервые сфотографировала ее обратную сторону; «Луна-9» осуществила мягкую посадку на спутник Земли. Чтобы иметь более ясное представление о всей Луне, необходимы были длительные наблюдения с орбит ее искусственных спутников. Первый из них - советская станция «Луна-10» - был запущен в 1966 г. Осенью 1970 г. к Луне ушла станция «Луна-16», которая, вернувшись на Землю, привезла с собой образцы пород лунного грунта. Но только длительные систематические исследования лунной поверхности могли помочь селенологам разобраться в происхождении и строении нашего естественного спутника. Такую возможность вскоре предоставили им самоходные советские научные лаборатории - луноходы. Результаты космических исследований Луны предоставили новые данные и об истории происхождения Земли.

Характерные особенности советской программы изучения планет - планомерность, последовательность, постепенное усложнение решаемых задач - особенно ярко проявились в исследованиях Венеры. Два последних десятилетия принесли больше сведений об этой планете, чем весь предыдущий более чем трехвековой период ее изучения. При этом значительная часть информации добыта советской наукой и техникой. Спускаемые аппараты автоматических межпланетных станций «Венера» не раз совершали посадки на поверхность планеты, зондировали ее атмосферу и облака. Советские станции стали и первыми искусственными спутниками Венеры.

Начиная с 1962 г. производится запуск советских автоматических межпланетных станций к планете Марс.

Космонавтика изучает и более удаленные от Земли планеты. Сегодня можно рассматривать телевизионные изображения поверхности Меркурия, Юпитера, Сатурна и их спутников.

Астрономы, получившие в свое распоряжение космическую технику, естественно, не ограничились изучением лишь Солнечной системы. Их приборы, вынесенные за пределы атмосферы, непрозрачной для коротковолновых космических излучений, нацелились в сторону других звезд и галактик.

Идущие от них невидимые лучи - радиоволны, ультрафиолетовое и инфракрасное, рентгеновское и гамма-излучение - несут ценнейшую информацию о том, что происходит в глубинах Вселенной (см. Астрофизика).

Фотографические снимки Земли из космоса начали получать с исследовательских ракет еще до запуска искусственных спутников Земли (ИСЗ). Съемка Земли производилась с высот 100-150 км. Снимки были сильно перспективны и имели изображение горизонта. Вместе с тем программы съемок уже включали опыты по выбору оптимальных параметров космических фотографических систем.

Уже на первых космических снимках были хорошо видны горные цепи, выходы коренных пород, долины и русла рек, снежный покров и лесные массивы.

Съемки с ракет не потеряли своего значения и с запуском ИСЗ. И в настоящее время ученые Беларуси используют снимки, полученные при съемках с ракет. Эти снимки ценны не только своей информацией, но и тем, что они дают серии разномасштабных снимков на одну и ту же территорию.

Космические исследования, начатые в шестидесятых годах прошлого столетия, велись и ведутся с такой интенсивностью, что позволили накопить богатый фонд космических снимков (КС).

Большое, если не сказать – огромное, количество оперативных и метеорологических спутников, пилотируемых космических кораблей и орбитальных станций несли и несут научную вахту. Многие их этих космических объектов были или в настоящее время оснащены съемочной аппаратурой. Полученные и получаемые в них снимки чрезвычайно разнообразны в зависимости от выбора регистрируемых характеристик, технологии получения снимков и передачи их на Землю, масштаба съемки, вида и высоты орбиты и т.п.

Космические снимки выполняются в трех основных съемочных диапазонах: видимом и ближнем инфракрасном (световом) диапазоне, инфракрасном тепловом и радиодиапазоне.

Наиболее значительна первая группа – в видимом и ближнем инфракрасном диапазоне, она подразделяется по способам получения и передачи информации на Землю на три подгруппы: фотографические, телевизионные и сканерные, фототелевизионные снимки. Многообразие снимков по группам, более или менее равноценных по содержанию и объему передаваемой информации и качеству изображения, расширяет возможности использования снимков в тех или иных областях географических исследований.

Геологические исследования – одна из областей, где космические снимки находят наиболее активное применение. Уже первые снимки с космических кораблей нашли широкое использование в исследовании стратиграфии и литолого-петрографических свойств пород; структурно-тектонического изучения территории; поисков месторождений полезных ископаемых; изучения геотермальных зон и вулканизме.

Одно из важных достоинств космических снимков – возможность увидеть новые черты строения территории, незаметные на снимках крупного масштаба – относится прежде всего к изучению крупных геологических структур, фильтрация мелких деталей в результате «оптической генерализации» изображения создает возможность пространственной увязки разрозненных фрагментов крупных геологических образований в единое целое.

Небольшое количество сведений, получаемых при дешифрировании космических снимков, относится именно к области структурной геологии. Хорошо выделяются пликативные структуры и разрывные нарушения разных порядков.

Особенно хорошо отражаются линейные разрывные нарушения, как со смещением, так и без смещения смежных блоков. В платформенных областях они выражаются слабыми перепадами рельефа, искривлениями речных русел и эрозионных форм; в горно-складчатых – дешифрируются благодаря сдвигам горных пород различного литологического состава.

Пликативные нарушения – складчатые структуры, сложные антиклинории, кольцевые структуры – также хорошо дешифрируются на космических снимках.

Космические изображения открывают принципиально новые возможности для познания глубинного строения литосферы, позволяя выявлять по совокупности признаков структуры разных глубин и сопоставлять их между собой. Это направление использования космических снимков приобретает большое значение в связи с поисками скрытых месторождений полезных ископаемых и задачами выявления глубинных сейсмогенных структур.

На космических снимках рельеф не находит достаточно полного прямого отражения; стереоскопически по стереопарам воспринимаются лишь формы предгорного и горного рельефа с амплитудами в несколько десятков-сотен метров. Однако хорошая передача различных индикаторов рельефа, главным образом почвенно-растительного покрова, позволяет изучать рельеф в морфолого-морфометрическом и генетическом отношениях.

Различные генетические типы рельефа имеют свои особенности изображения на КС, свои дешифровочные признаки и индикаторы дешифрирования. Так, например, флювиальный рельеф находит яркое отражение на КС в видимом диапазоне более темным фоном, чем окружающая местность, четко прослеживаются и пролювиальные конусы выноса временных водотоков.

КС позволяют изучать и древние флювиальные формы, например, древние эрозионные притоки и дельты.

На снимках четко отражаются не только отдельные долины, но и вся система эрозионного расчленения, хотя выделения отдельных балок и оврагов удается лишь на снимках наиболее крупного масштаба. В целом же эрозионная сеть выявляется с большой полнотой. По полноте отображения эрозионной сети КС масштаба 1:2 000 000 сопоставимы с топографическими картами масштаба 1:200 000 и 1:100 000.

КС современного и древнего эолового рельефа позволяют изучать особенности образования и эволюции различных форм рельефа, выражающиеся в их рисунке, и выявлять зависимость ориентировки форм от режима ветров. В то же время снимки засвидетельствовали несовершенство изображения песков на картах многих районов мира и необходимость привлечения КС при составлении карт пустынных районов. Кроме того работы показали, что КС могут быть использованы при изучении не только открытых, но и закрытых территорий.

На КС хорошо отображаются карстовые и просадочно-суффозионные формы рельефа, а на крупномасштабных снимках горных территорий различаются даже отдельные обвально-осыпные конусы выноса, делювиальные шлейфы. На КС распознаются некоторые формы ледникового рельефа: троговые долины с их параллельными линиями «плечей» на склонах, конечные морены, перегораживающие крупные долины, ледниковые озера. Часто отражается древний конечно-моренный рельеф. Хорошо на КС отображается береговая форма с характерной резкостью береговых линий абразионного берега и плавными линиями – аккумулятивного.

Тщательный геоморфологический анализ КС показывает целесообразность привлечения их для геоморфологического картографирования в средних масштабах. Снимки масштаба 1:2 000 000 могут служить хорошей основой для проведения полевых работ и рисовки геоморфологических контуров, т.е. составления карты в масштабе 1:1 000 000 и мельче.

КС полезны и для составления других карт рельефа, например, карт густоты расчленения рельефа, карт орографических линий и точек. При составлении последних по снимкам уточняются узлы схождения хребтов (узловые точки), разделения характерных линий первого и последующего порядков и вся сеть расчленения горных районов, границы раздела горных и равнинных территорий и т.п.

КС, сделанные при низком положении солнца, дающие пластическую картину рельефа благодаря светотеневой мозаике, могут быть использованы при изготовлении гипсометрических карт.

Заключая теоретическую часть дисциплины «Геоморфология и геология», необходимо напомнить студентам слова академика, профессора Санкт-Петербургского университета И.Лемана: «Геодезист, рисующий рельеф и не знающий геоморфологии, подобен хирургу, делающему операции и не знающему анатомии».

Вопросы для самопроверки

1. На какие дисциплины делится геоморфология?

2. Какие элементы формы и типов рельефа Вы знаете?

3. Расскажите о классификации рельефа по генезису.

4. Расскажите о классификации форм рельефа по их количественным характеристикам.

5. Дайте общую характеристику типов рельефа.

6. Какие типы равнин по происхождению Вы знаете?

7. Опишите холмисто-моренный рельеф.

8. Опишите долинно-балочный рельеф.

9. Опишите горный рельеф.

10. Опишите структурный рельеф.

11. Опишите карстовый рельеф.

12. Опишите вулканический рельеф.

13. Опишите эоловый рельеф.

14. Какие летательные аппараты используются при космических съемках?

15. В каких съемочных диапазонах выполняются космические снимки?

16. Что дает многообразие использования съемочных диапазонов при космической съемке и что это за диапазон?

17. Каковы результаты использования космических снимков в геологических исследованиях?

18. Каковы результаты использования космических снимков в геоморфологических исследованиях?